Biochar for the Improvement of Crop Production

  • Chapter
  • First Online:
Mineral Biofortification in Crop Plants for Ensuring Food Security

Abstract

Rapid urbanization and population increase had a significant negative impact on soil health and fertility, putting additional burden on farming systems. Due to the excessive use of chemical fertilisers and pesticides in farming techniques, results in large greenhouse gas emissions. To fulfill the rising food demand has also contributed to these unsustainable farming methods. It is crucial that agricultural techniques improve soil microbiology, water retention, and fertiliser effectiveness. In recent years, biochars have gained attention for their potential as soil amendments. Biochars are produced by thermochemically processing biomass and are rich in carbon. The source feedstock and the reaction circumstances have an impact on the quality of the biochar during the pyrolysis processes, which heat up to 100 °C in oxygen-limited environments. Due to its potential to reduce greenhouse gas emissions, promote soil fertility, increase agricultural yield, and improve crop quality, biochar is attracting a lot of attention. The sequestration of stable carbon molecules in soil by biochar may also directly contribute in reducing climate change, as well as indirect effects such as enhancing tree carbon absorption. Global climate change and soil degradation are causing increasing difficulties that can be alleviated by the use of biochar. An effective technique to increase soil fertility is through making efficient use of crop residues and other farm wastes by turning them into a valuable source of soil amendment. Biochar’s addition as a soil amendment has had a significant impact on the physical, chemical, and biological characteristics of the soil. When applied to soil, biochar decreases the bulk density and increases microbial activity, pH, and water holding capacity, however the effects vary depending on the texture of the soil. The addition of biochar has also increase soil porosity and infiltration rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adekiya AO, Agbede TM, Olayanju A, Ejue WS, Adekanye TA, Adenusi TT, Ayeni JF (2020) Effect of biochar on soil properties, soil loss, and cocoyam yield on a tropical sandy loam Alfisol. Sci World J 2020:1–9

    Google Scholar 

  • Agegnehu G, Amede T, Erkossa T, Yirga C, Henry C, Tyler R, Nosworthy MG, Beyene S, Sileshi GW (2021) Extent and management of acid soils for sustainable crop production system in the tropical agroecosystems: a review. Acta Agriculturae Scandinavica Sect B—Soil Plant Sci 71(9):852–869

    CAS  Google Scholar 

  • Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33

    Article  CAS  PubMed  Google Scholar 

  • Alghamdi AG (2018) Biochar as a potential soil additive for improving soil physical properties—a review. Arab J Geosci 24:76

    Google Scholar 

  • Aller MF (2016) Biochar properties: transport, fate, and impact. Crit Rev Environ Sci Technol 46:1183–1296

    Article  CAS  Google Scholar 

  • Alling V, Hale SE, Martinsen V, Mulder J, Smebye A, Breedveld GD, Cornelissen G (2014) The role of biochar in retaining nutrients in amended tropical soils. J Plant Nutr Soil Sci 177:671–680

    Article  CAS  Google Scholar 

  • Amini S, Ghadiri H, Chen C, Marschner P (2015) Salt-affected soils, reclamation, carbon dynamics, and biochar: a review. J Soils Sediments 16:939–953

    Article  Google Scholar 

  • Amoah-Antwi C, Kwiatkowska-Malina J, Szara E, Thornton S, Fenton O, Malina G (2020) Efficacy of woodchip biochar and Brown coal waste as stable sorbents for abatement of bioavailable cadmium, lead and zinc in soil. Water Air Soil Pollut 231:1–17

    Article  Google Scholar 

  • Annabi M, Le Bissonnais Y, Le Villio-Poitrenaud M, Houot S (2011) Improvement of soil aggregate stability by repeated applications of organic amendments to a cultivated silty loam soil. Agric Ecosyst Environ 144:382–389

    Article  Google Scholar 

  • Arif M, Jan T, Riaz M, Fahad S, Adnan M, Ali K, Mian IA, Khan B, Rasul F (2020) Biochar; a remedy for climate change. Environment, climate, plant and vegetation growth, pp 151–171

    Google Scholar 

  • Asai H, Samson BK, Stephan HM, Songyikhangsuthor K, Homma K, Kiyono Y, Inoue Y, Shiraiwa T, Horie T (2009) Biochar amendment techniques for upland rice production in northern Laos. Field Crops Res 111:81–84

    Article  Google Scholar 

  • Banwart S (2011) Save our soils. Nature 474:151–152

    Article  CAS  PubMed  Google Scholar 

  • Barrow C (2012) Biochar: potential for countering land degradation and for improving agriculture. Appl Geogr 34:21–28

    Article  Google Scholar 

  • Barskov S, Zappi M, Buchireddy P, Dufreche S, Guillory J, Gang D, Hernandez R, Bajpai R, Baudier J, Cooper R, Sharp R (2019) Torrefaction of biomass: a review of production methods for biocoal from cultured and waste lignocellulosic feedstocks. Renew Energ 142:624–642

    Article  CAS  Google Scholar 

  • Beesley L, Moreno-Jiménez E, Gomez-Eyles JL (2010) Effects of biochar and greenwaste compost amendments on mobility, bioavailability, and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ Pollut 158:2282–2287

    Article  CAS  PubMed  Google Scholar 

  • Benedetti V, Patuzzi F, Baratieri M (2018) Characterization of char from biomass gasification and its similarities with activated carbon in adsorption applications. Appl Energy 227:92–99

    Article  CAS  Google Scholar 

  • Biederman LA, Harpole WS (2013) Biochar and its effects on plant productivity and nutrient cycling: a metaanalysis. GCB Bioenergy 5(2):202–214

    Article  CAS  Google Scholar 

  • Blanco-Canqui H (2017) Biochar and soil physical properties. Soil Sci Soc Am J 81:687–711

    Article  CAS  Google Scholar 

  • Bot A, Benites J (2005) The importance of soil organic matter: key to drought-resistant soil and sustained food production. FAO UN, Rome, p 78

    Google Scholar 

  • Briggs C, Breiner JM, Graham RC (2012) Physical and chemical properties of Pinus ponderosa charcoal. Soil Sci 177:263–268

    Article  CAS  Google Scholar 

  • Brodowski S, Amelung W, Haumaier L, Abetz C, Zech W (2005) Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. Geoderma 128:116–129

    Article  CAS  Google Scholar 

  • Burrell LD, Zehetner F, Rampazzo N, Wimmer B, Soja G (2016) Long-term effects of biochar on soil physical properties. Geoderma 282:96–102

    Article  CAS  Google Scholar 

  • Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S (2008) Using poultry litter biochars as soil amendments. Soil Res 46:437

    Article  Google Scholar 

  • Chathurika JS, Kumaragamage D, Zvomuya F, Akinremi OO, Flaten DN, Indraratne SP, Dandeniya WS (2016) Woodchip biochar with or without synthetic fertilizers affects soil properties and available phosphorus in two alkaline, chernozemic soils. Can J Soil Sci 96:472–484

    Article  CAS  Google Scholar 

  • Choi JH, Kim SS, Ly HV, Kim J, Woo HC (2017) Effects of water-washing Saccharina japonica on fast pyrolysis in a bubbling fluidized-bed reactor. Biom Bioener 98:112–123

    Article  CAS  Google Scholar 

  • Colombo C, Palumbo G, He JZ, Pinton R, Cesco S (2013) Review on iron availability in soil: interaction of FE minerals, plants, and microbes. J Soils Sediments 14:538–548

    Article  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • De Meyer A, Poesen J, Isabirye M, Deckers J, Raes D (2011) Soil erosion rates in tropical villages: a case study from Lake Victoria basin, Uganda. Catena 84:89–98

    Article  Google Scholar 

  • DeLuca TH, Gundale MJ, MacKenzie MD, Jones DL (2015) Biochar effects on soil nutrient transformations. In: Biochar for environmental management, pp 453–486

    Google Scholar 

  • Demirbas A (2004) Combustion characteristics of different biomass fuels. Prog Energy Combust Sci 30:219–230

    Article  CAS  Google Scholar 

  • Diatta AA, Fike JH, Battaglia ML, Galbraith JM, Baig MB (2020) Effects of biochar on soil fertility and crop productivity in arid regions: a review. Arab J Geosci 13:1–7

    Article  Google Scholar 

  • El-Naggar A, Lee SS, Awad YM, Yang X, Ryu C, Rizwan M, Rinklebe J, Tsang DC, Ok YS (2018) Influence of soil properties and feedstocks on biochar potential for carbon mineralization and improvement of infertile soils. Geoderma 332:100–108

    Article  CAS  Google Scholar 

  • El-Naggar A, El-Naggar AH, Shaheen SM, Sarkar B, Chang SX, Tsang DC, Rinklebe J, Ok YS (2019) Biochar composition-dependent impacts on soil nutrient release, carbon mineralization, and potential environmental risk: a review. J Environ Manag 241:458–467

    Article  CAS  Google Scholar 

  • Enders A, Hanley K, Whitman T et al (2012) Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour Technol 114:644–653

    Article  CAS  PubMed  Google Scholar 

  • Fang Y, Singh B, Singh BP, Krull E (2013) Biochar carbon stability in four contrasting soils. Eur J Soil Sci 65:60–71

    Article  Google Scholar 

  • FAO (2009) How to feed the world in 2050. High-Level Expert Forum, Rome

    Google Scholar 

  • FAO (2012) Current world fertilizer trends and outlook to 2016. Food and Agriculture Organization of the United Nations Rome

    Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK (2005a) Global consequences of land use. Science 309:570–574

    Article  CAS  PubMed  Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005b) Global consequences of land use. Science 309:570–574

    Article  CAS  PubMed  Google Scholar 

  • Gabhane JW, Bhange VP, Patil PD, Bankar ST, Kumar S (2020) Recent trends in biochar production methods and its application as a soil health conditioner: a review, vol 2. SN Appl Sci

    Google Scholar 

  • Gao L, Wang R, Shen G, Zhang J, Meng G, Zhang J (2017) Effects of biochar on nutrients and the microbial community structure of tobacco-planting soils. J Soil Sci Plant Nutr 17:884–896

    Article  CAS  Google Scholar 

  • Gholizadeh M, Li C, Zhang S, Wang Y, Niu S, Li Y, Hu X (2020) Progress of the development of reactors for pyrolysis of municipal waste. Sustain Energy Fuels 4:5885–5915

    Article  CAS  Google Scholar 

  • Glaser B, Birk JJ (2012) State of the scientific knowledge on properties and genesis of anthropogenic dark earths in Central Amazonia (Terra preta de Índio). Geochimica et Cosmochimica Acta 82:39–51

    Article  CAS  Google Scholar 

  • Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - a review. Biol Fertil Soils 35:219–230

    Article  CAS  Google Scholar 

  • Gomez JD, Denef K, Stewart CE, Zheng J, Cotrufo MF (2013) Biochar addition rate influences soil microbial abundance and activity in temperate soils. Eur J Soil Sci 65:28–39

    Article  Google Scholar 

  • Grossman JM, O’Neill BE, Tsai SM, Liang B, Neves E, Lehmann J, Thies JE (2010) Amazonian Anthrosols support similar microbial communities that differ distinctly from those extant in adjacentunmodified soils of the same mineralogy. Microbiol Ecol 60:192–205

    Article  CAS  Google Scholar 

  • Gruhn P, Goletti F, Yudelman M (2000) Integrated nutrient management, soil fertility, and sustainable agriculture: current issues and future challenges. Intl Food Policy Res Inst

    Google Scholar 

  • Gul S, Whalen JK, Thomas BW, Sachdeva V, Deng H (2015) Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agric Ecosyst Environ 206:46–59

    Article  CAS  Google Scholar 

  • Hale S, Hanley K, Lehmann J, Zimmerman A, Cornelissen G (2011) Effects of chemical, biological, and physical aging as well as soil addition on the sorption of pyrene to activated carbon and biochar. Environ Sci Technol 45:10445–10453

    Article  CAS  PubMed  Google Scholar 

  • Hass A, Gonzalez JM (2014) Biochar, fertilizers: components, uses in agriculture and environmental impacts

    Google Scholar 

  • Hassan M, Liu Y, Naidu R, Parikh SJ, Du J, Qi F, Willett IR (2020) Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: a meta-analysis. Sci Total Environ 744:140714

    Article  CAS  PubMed  Google Scholar 

  • Henao J, Baanante CA (1999) Estimating rates of nutrient depletion in soils of agricultural lands of Africa. International Fertilizer Development

    Google Scholar 

  • Ippolito JA, Cui L, Kammann C, Wrage-Mönnig N, Estavillo JM, Fuertes-Mendizabal T, Cayuela ML, Sigua G, Novak J, Spokas K, Borchard N (2020) Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review. Biochar 2:421–438

    Article  Google Scholar 

  • Jafri N, Wong W, Doshi V, Yoon L, Cheah K (2018) A review on production and characterization of biochars for application in direct carbon fuel cells. PSEP 118:152–166

    Article  CAS  Google Scholar 

  • Jatav HS, Singh SK, Rajput VD, Minkin T (2021) Sustainable soil fertility management. Nova Science Publishers

    Google Scholar 

  • Jeffery S, Verheijen F, Van der Velde M, Bastos A (2011) A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric Ecosyst Environ 144:175–187

    Article  Google Scholar 

  • Jeyasubramanian K, Thangagiri B, Sakthivel A, Dhaveethu Raja J, Seenivasan S, Vallinayagam P, Madhavan D, Malathi Devi S, Rathika B (2021) A complete review on biochar: production, property, multifaceted applications, interaction mechanism and computational approach. Fuel 292:120243

    Article  CAS  Google Scholar 

  • Jian** Z (2006) Soil erosion in Guizhou province of China: a case study in Bijie prefecture. Soil Use Manag 15:68–70

    Article  Google Scholar 

  • Joseph S, Graber E, Chia C, Munroe P, Donne S, Thomas T, Nielsen S, Marjo C, Rutlidge H, Pan G, Li L, Taylor P, Rawal A, Hook J (2013) Shifting paradigms: development of high-efficiency biochar fertilizers based on nanostructures and soluble components. Carbon Manag 4:323–343

    Article  CAS  Google Scholar 

  • Jouhara H, Ahmad D, Van den Boogaert I, Katsou E, Simons S, Spencer N (2018) Pyrolysis of domestic based feedstock at temperatures up to 300 °C. Therm Sci Eng Prog 5:117–143

    Article  Google Scholar 

  • Jung K, Kim K, Jeong T, Ahn K (2016) Influence of pyrolysis temperature on characteristics and phosphate adsorption capability of biochar derived from waste-marine macroalgae (Undaria pinnatifida roots). Bioresour Technol 200:1024–1028

    Article  CAS  PubMed  Google Scholar 

  • Kammann C I, Schmidt H, Messerschmidt N, Linsel S, Steffens D, Müller C, Koyro H, Conte P, Joseph S (2015) Plant growth improvement mediated by nitrate capture in co-composted biochar. Sci Rep 5

    Google Scholar 

  • Karhu K, Mattila T, Bergström I, Regina K (2011) Biochar addition to agricultural soil increased CH4 uptake and water holding capacity – results from a short-term pilot field study. Agric Ecosyst Environ 140:309–313

    Article  CAS  Google Scholar 

  • Karimi A, Moezzi A, Chorom M, Enayatizamir N (2020) Application of biochar changed the status of nutrients and biological activity in a calcareous soil. J Soil Sci Plant Nutr 20:450–459

    Article  CAS  Google Scholar 

  • Kätterer T, Roobroeck D, Andrén O, Kimutai G, Karltun E, Kirchmann H, Nyberg G, Vanlauwe B, Röing de Nowina K (2019) Biochar addition persistently increased soil fertility and yields in maize-soybean rotations over 10 years in sub-humid regions of Kenya. Field Crops Res 235:18–26

    Article  Google Scholar 

  • Kavitha B, Reddy PV, Kim B, Lee SS, Pandey SK, Kim K (2018) Benefits and limitations of biochar amendment in agricultural soils: a review. J Environ Manag 227:146–154

    Article  CAS  Google Scholar 

  • Kim J, Sparovek G, Longo RM, De Melo WJ, Crowley D (2007) Bacterial diversity of Terra preta and pristine forest soil from the western Amazon. Soil Biol Biochem 39:684–690

    Article  CAS  Google Scholar 

  • Kloss S, Zehetner F, Wimmer B, Buecker J, Rempt F, Soja G (2013) Biochar application to temperate soils: effects on soil fertility and crop growth under greenhouse conditions. J Plant Nutr Soil Sci 177:3–15

    Article  CAS  Google Scholar 

  • Kookana RS, Sarmah AK, Van Zwieten L, Krull E, Singh B (2011) Biochar application to soil: agronomic and environmental benefits and unintended consequences. In: Donald LS (ed) Advances in agronomy. AP, pp 103–143

    Google Scholar 

  • Kumar P, Lai L, Battaglia ML, Kumar S, Owens V, Fike J, Galbraith J, Hong CO, Farris R, Crawford R, Crawford J, Hansen J, Mayton H, Viands D (2019) Impacts of nitrogen fertilization rate and landscape position on select soil properties in switchgrass field at four sites in the USA. Catena 180:183–193

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Subbotina I, Chen H, Bogomolova I, Xu X (2009) Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biol Biochem 41:210–219

    Article  CAS  Google Scholar 

  • Laird DA, Fleming P, Davis DD, Horton R, Wang B, Karlen DL (2010a) Impact of biochar amendments on the quality of a typical midwestern agricultural soil. Geoderma 158:443–449

    Article  CAS  Google Scholar 

  • Laird D, Fleming P, Wang B, Horton R, Karlen D (2010b) Biochar impact on nutrient leaching from a midwestern agricultural soil. Geoderma 158:436–442

    Article  CAS  Google Scholar 

  • Lal R (2009) Soils and sustainable agriculture: a review. Sustain Agric:15–23

    Google Scholar 

  • Lal R (2015) Sequestering carbon and increasing productivity by conservation agriculture. J Soil Water Conserv 70:55A–62A

    Article  Google Scholar 

  • Lehmann J, Joseph S (2009) Biochar for environmental management: science and technology

    Google Scholar 

  • Lehmann J, Rondon M (2006) Bio-char soil management on highly weathered soils in the humid tropics. Bio Approaches to Sus Soil Syst 517–529

    Google Scholar 

  • Lehmann J, Silva Júnior JPD, Steiner C, Nehls T, Zech W, Glaser B (2003) Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure, and charcoal amendments. Plant Soil 249:343–357

    Article  CAS  Google Scholar 

  • Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems – a review. Mitig Adapt Strateg Glob Chang 11:403–427

    Article  Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota – a review. Soil Biol Biochem 43:1812–1836

    Article  CAS  Google Scholar 

  • Liang B, Lehmann J, Sohi SP, Thies JE, O’Neill B, Trujillo L, Gaunt J, Solomon D, Grossman J, Neves EG, Luizão FJ (2010) Black carbon affects the cycling of non-Black carbon in soil. Org Geochem 41:206–213

    Article  CAS  Google Scholar 

  • Lima HN, Schaefer CE, Mello JW, Gilkes RJ, Ker JC (2002) Pedogenesis and pre-colombian land use of “Terra Preta Anthrosols” (“Indian Black earth”) of western Amazonia. Geoderma 110:1–17

    Article  CAS  Google Scholar 

  • Liu E, Yan C, Mei X, He W, Bing SH, Ding L, Liu Q, Liu S, Fan T (2010) Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in Northwest China. Geoderma 158:173–180

    Article  CAS  Google Scholar 

  • Liu Z, Hoekman SK, Balasubramanian R, Zhang F (2015) Improvement of fuel qualities of solid fuel biochars by washing treatment. Fuel Process Technol 134:130–135

    Article  CAS  Google Scholar 

  • Liu Z, Dugan B, Masiello CA, Barnes RT, Gallagher ME, Gonnermann H (2016) Impacts of biochar concentration and particle size on hydraulic conductivity and DOC leaching of biochar–sand mixtures. J Hydrol 533:461–472

    Article  CAS  Google Scholar 

  • Liu Z, Dugan B, Masiello CA, Gonnermann HM (2017) Biochar particle size, shape, and porosity act together to influence soil water properties. PLoS One 12:0179079

    Google Scholar 

  • Major J, Rondon M, Molina D, Riha SJ, Lehmann J (2010) Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil 333:117–128

    Article  CAS  Google Scholar 

  • Major J, Rondon M, Molina D, Riha SJ, Lehmann J (2012) Nutrient leaching in a colombian Savanna Oxisol amended with biochar. J Environ Qual 41:1076–1086

    Article  CAS  PubMed  Google Scholar 

  • Martinsen V, Alling V, Nurida N, Mulder J, Hale S, Ritz C, Rutherford D, Heikens A, Breedveld G, Cornelissen G (2015) PH effects of the addition of three biochars to acidic Indonesian mineral soils. Soil Sci Plant Nutr 61:821–834

    Article  CAS  Google Scholar 

  • Mašek O, Brownsort P, Cross A, Sohi S (2013) Influence of production conditions on the yield and environmental stability of biochar. Fuel 103:151–155

    Article  Google Scholar 

  • Mclennon E, Solomon JK, Neupane D, Davison J (2020) Biochar and nitrogen application rates effect on phosphorus removal from a mixed grass Sward irrigated with reclaimed wastewater. Sci Total Environ 715:137012

    Article  CAS  PubMed  Google Scholar 

  • Murtaza G, Ahmed Z, Usman M, Tariq W, Ullah Z, Shareef M, Iqbal H, Waqas M, Tariq A, Wu Y, Zhang Z, Ditta A (2021) Biochar induced modifications in soil properties and its impacts on crop growth and production. J Plant Nutr 44(11):1677–1691

    CAS  Google Scholar 

  • Nath H, Sarkar B, Mitra S, Bhaladhare S (2022) Biochar from biomass: a review on biochar preparation its modification and impact on soil including soil microbiology. Geomicrobiology J 39:373–388

    Article  CAS  Google Scholar 

  • Ndor E, Jayeoba O, Asadu C (2015) Effect of biochar soil amendment on soil properties and yield of sesame varieties in Lafia, Nigeria. Am J Exp Agric 9:1–8

    CAS  Google Scholar 

  • Nidheesh P, Gopinath A, Ranjith N, Praveen Akre A, Sreedharan V, Suresh Kumar M (2021) Potential role of biochar in advanced oxidation processes: a sustainable approach. Chem Eng J 405:126582

    Article  CAS  Google Scholar 

  • Novak J, Busscher W, Watts D, Laird D, Ahmedna M, Niandou M (2010) Short-term CO2 mineralization after additions of biochar and switchgrass to a typic Kandiudult. Geoderma 154:281–288

    Article  CAS  Google Scholar 

  • Novotny EH, Maia CM, Carvalho MT, Madari BE (2015) Biochar: Pyrogenic carbon for agricultural use - a critical review. Rev Bras Cienc 39:321–344

    Article  Google Scholar 

  • O’Neill B, Grossman J, Tsai MT, Gomes JE, Lehmann J, Peterson J, Neves E, Thies JE (2009) Bacterial community composition in Brazilian Anthrosols and adjacent soils characterized using culturing and molecular identification. Microb Ecol 58:23–35

    Article  PubMed  Google Scholar 

  • Oguntunde PG, Fosu M, Ajayi AE, Van de Giesen N (2004) Effects of charcoal production on maize yield, chemical properties, and texture of soil. Biol Fertil Soils 39:295–299

    Article  CAS  Google Scholar 

  • Omondi MO, **a X, Nahayo A, Liu X, Korai PK, Pan G (2016) Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data. Geoderma 274:28–34

    Article  CAS  Google Scholar 

  • Omotade I, Momoh S, Oluwafemi B, Agboola E (2020) Comparative analysis of nutrients composition in biochar produced from different feedstocks at varying pyrolysis temperature. Environ Sci Technol 3:64–70

    Google Scholar 

  • Ouyang L, Tang Q, Yu L, Zhang R (2014) Effects of amendment of different biochars on soil enzyme activities related to carbon mineralisation. Soil Res 52:706

    Article  CAS  Google Scholar 

  • Palm CA, Gachengo CN, Delve RJ, Cadisch G, Giller KE (2001) Organic inputs for soil fertility management in tropical agroecosystems: application of an organic resource database. Agric Ecosyst Environ 83:27–42

    Article  Google Scholar 

  • Pandit NR, Mulder J, Hale SE, Martinsen V, Schmidt HP, Cornelissen G (2018) Biochar improves maize growth by alleviation of nutrient stress in a moderately acidic low-input Nepalese soil. Sci Total Environ 625:1380–1389

    Article  CAS  PubMed  Google Scholar 

  • Pender J (2009) The world food crisis, land degradation, and sustainable land management

    Google Scholar 

  • Pietikäinen J, Kiikkilä O, Fritze H (2000) Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos 89:231–242

    Article  Google Scholar 

  • Purakayastha T, Bera T, Bhaduri D, Sarkar B, Mandal S, Wade P, Kumari S, Biswas S, Menon M, Pathak H, Tsang DC (2019) A review on biochar modulated soil condition improvements and nutrient dynamics concerning crop yields: pathways to climate change mitigation and global food security. Chemosphere 227:345–365

    Article  CAS  PubMed  Google Scholar 

  • Rashid M, Hussain Q, Khan KS, Al-Wabel MI, Afeng Z, Akmal M, Ijaz SS, Aziz R, Shah GA, Mehdi SM, Alvi S, Qayyum MF (2020) Prospects of biochar in alkaline soils to mitigate climate change. In: Environment, climate, plant and vegetation growth. Springer, Cham, pp 133–149

    Google Scholar 

  • Razzaghi F, Obour PB, Arthur E (2020) Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma 361:114055

    Article  CAS  Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    Article  CAS  PubMed  Google Scholar 

  • Rondon MA, Lehmann J, Ramírez J, Hurtado M (2006) Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol Fertil Soils 43:699–708

    Article  Google Scholar 

  • Rosset P, Collins J, Lappe FM, (2000) Lessons from the green revolution. Third World Resurgence, pp 11–14

    Google Scholar 

  • Schmidt H, Pandit B, Martinsen V, Cornelissen G, Conte P, Kammann C (2015) Fourfold increase in pumpkin yield in response to low-dosage root zone application of urine-enhanced biochar to a fertile tropical soil. Agriculture 5:723–741

    Article  CAS  Google Scholar 

  • Schwartz MW, Hoeksema JD, Gehring CA, Johnson NC, Klironomos JN, Abbott LK, Pringle A (2006) The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecol Lett 9:501–515

    Article  PubMed  Google Scholar 

  • Seleiman MF, Alotaibi MA, Alhammad BA, Alharbi BM, Refay Y, Badawy SA (2020) Effects of ZnO nanoparticles and biochar of rice straw and cow manure on characteristics of contaminated soil and sunflower productivity, oil quality, and heavy metals uptake. Agronomy 10:790

    Article  CAS  Google Scholar 

  • Shackley S, Carter S, Knowles T, Middelink E, Haefele S, Haszeldine S (2012) Sustainable gasification–biochar systems? A case-study of rice-husk gasification in Cambodia, part II: field trial results, carbon abatement, economic assessment, and conclusions. Energy Policy 41:618–623

    Article  CAS  Google Scholar 

  • Shafer AB, Wolf JB, Alves PC, Bergström L, Bruford MW, Brännström I, Zieliński P (2015) Genomics and the challenging translation into conservation practice. Trends Ecol Evol 30:78–87

    Article  PubMed  Google Scholar 

  • Singh B, Singh BP, Cowie AL (2010) Characterisation and evaluation of biochars for their application as a soil amendment. Soil Res 48:516

    Article  CAS  Google Scholar 

  • Sohi SP (2012) Carbon storage with benefits. Science 338:1034–1035

    Article  CAS  PubMed  Google Scholar 

  • Sohi S, Lopez-Capel E, Krull E, Bol R (2009) Biochar, climate change and soil: a review to guide future research. CSIRO

    Google Scholar 

  • Sohi S, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil. Adv Agron:47–82

    Google Scholar 

  • Song D, Tang J, ** X, Zhang S, Liang G, Zhou W, Wang X (2018) Responses of soil nutrients and microbial activities to additions of maize straw biochar and chemical fertilization in a calcareous soil. Eur J Soil Biol 84:1–10

    Article  CAS  Google Scholar 

  • Spokas K, Koskinen W, Baker J, Reicosky D (2009) Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere 77:574–581

    Article  CAS  PubMed  Google Scholar 

  • Srivastava AK (2009) Integrated nutrient management: concept and application in citrus: citrus II. Tree For Sci Biotechnol 3:32–58

    Google Scholar 

  • Steiner C, Das KC, Garcia M, Förster B, Zech W (2008a) Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic Ferralsol. Pedobiologia 51:359–366

    Article  Google Scholar 

  • Steiner C, Glaser B, Geraldes Teixeira W, Lehmann J, Blum WE, Zech W (2008b) Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. J Plant Nutr Soil Sci 171:893–899

    Article  CAS  Google Scholar 

  • Sun F, Lu S (2013) Biochars improve aggregate stability, water retention, and pore-space properties of clayey soil. J Plant Nutr Soil Sci 177:26–33

    Article  CAS  Google Scholar 

  • Tan ZX, Lal R, Wiebe KD (2005) Global soil nutrient depletion and yield reduction. J Sustain Agric 26:123–146

    Article  Google Scholar 

  • ten Berge HFM, van Loon MP, Vonk WJ (2022) Nutrient cycling indicators and their relation with nutrient use efficiency in agro-food systems. In: Book of abstracts XXI international N workshop 2022, pp 299–299

    Google Scholar 

  • Thines K, Abdullah E, Mubarak N, Ruthiraan M (2017) Synthesis of magnetic biochar from agricultural waste biomass to enhancing route for wastewater and polymer application: a review. Renew Sustain Energy Rev 67:257–276

    Article  CAS  Google Scholar 

  • Thomas SC, Gale N (2015) Biochar and forest restoration: a review and meta-analysis of tree growth responses. New Forests 46:931–946

    Article  Google Scholar 

  • Tian S, Tan Z, Kasiulienė A, Ai P (2017) Transformation mechanism of nutrient elements in the process of biochar preparation for returning biochar to soil. Chin J Chem Eng 25:477–486

    Article  CAS  Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci 108:20260–20264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchimiya M, Wartelle LH, Klasson KT, Fortier CA, Lima IM (2011) Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. J Agric Food Chem 59:2501–2510

    Article  CAS  PubMed  Google Scholar 

  • UNEP (2012) Avoiding future famines: strengthening the ecological Foundation of Food Security through sustainable food systems; United Nations Environment Program (UNEP): Nairobi

    Google Scholar 

  • Van der Voort TS, Hagedorn F, McIntyre C, Zell C, Walthert L, Schleppi P, Feng X, Eglinton TI (2016) Variability in C contents of soil organic matter at the plot and regional scale across climatic and geologic gradients. Biogeosciences 13:3427–3439

    Article  Google Scholar 

  • Vanlauwe B, Bationo A, Chianu J, Giller K, Merckx R, Mokwunye U, Ohiokpehai O, Pypers P, Tabo R, Shepherd K, Smaling E, Woomer P, Sanginga N (2010) Integrated soil fertility management. Outlook Agric 39:17–24

    Article  Google Scholar 

  • Vijay V, Shreedhar S, Adlak K, Payyanad S, Sreedharan V, Gopi G, Sophia van der Voort T, Malarvizhi P, Yi S, Gebert J, Aravind P (2021) Review of large-scale biochar field-trials for soil amendment and the observed influences on crop yield variations. Front Energy Res 9:710766

    Article  Google Scholar 

  • Wang D, Zhang W, Hao X, Zhou D (2013) Transport of biochar particles in saturated granular media: effects of pyrolysis temperature and particle size. Environ Sci Technol 47:821–828

    Article  CAS  PubMed  Google Scholar 

  • Wang J, **ong Z, Kuzyakov Y (2015) Biochar stability in soil: meta-analysis of decomposition and priming effects. GCB Bioenergy 8:512–523

    Article  Google Scholar 

  • Wang D, Fonte SJ, Parikh SJ, Six J, Scow KM (2017) Biochar additions can enhance soil structure and the physical stabilization of C in aggregates. Geoderma 303:110–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang D, Jiang P, Zhang H, Yuan W (2020) Biochar production and applications in agro and forestry systems: a review. Sci Total Environ 723:137775

    Article  CAS  PubMed  Google Scholar 

  • Wardle DA, Nilsson M, Zackrisson O (2008) Fire-derived charcoal causes loss of forest humus. Science 320:629–629

    Article  CAS  PubMed  Google Scholar 

  • Warnock DD, Lehmann J, Kuyper TW, Rillig MC (2007) Mycorrhizal responses to biochar in soil – concepts and mechanisms. Plant Soil 300:9–20

    Article  CAS  Google Scholar 

  • Winsley P (2007) Biochar and bioenergy production for climate change mitigation. N Z Sci Rev 64:5–10

    Google Scholar 

  • Woolf D, Amonette JE, Street-Perrott FA, Lehmann J, Joseph S (2010) Sustainable biochar to mitigate global climate change. Nat Commun 1:56

    Article  PubMed  Google Scholar 

  • **e Y, Wang L, Li H, Westholm LJ, Carvalho L, Thorin E, Yu Z, Yu X, Skreiberg Ø (2022) A critical review on production, modification and utilization of biochar. J Anal Appl Pyrolysis 161:105405

    Article  CAS  Google Scholar 

  • Yadav V, Khare P (2020) Impact of pyrolysis techniques on biochar characteristics: application to soil. J Soil Sci Environ Manage 33–52

    Google Scholar 

  • Yao Y, Gao B, Zhang M, Inyang M, Zimmerman AR (2012) Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 89:1467–1471

    Article  CAS  PubMed  Google Scholar 

  • You S, Ok YS, Chen SS, Tsang DC, Kwon EE, Lee J, Wang C (2017) A critical review on sustainable biochar system through gasification: energy and environmental applications. Bioresour Technol 246:242–253

    Article  CAS  PubMed  Google Scholar 

  • Zhai L, CaiJi Z, Liu J, Wang H, Ren T, Gai X, ** B, Liu H (2015) Short-term effects of maize residue biochar on phosphorus availability in two soils with different phosphorus sorption capacities. Biol Fertil Soils 51:113–122

    Article  CAS  Google Scholar 

  • Zhang H, Voroney R, Price G (2015) Effects of temperature and processing conditions on biochar chemical properties and their influence on soil C and N transformations. Soil Biol Biochem 83:19–28

    Article  CAS  Google Scholar 

  • Zhang C, Lin Y, Tian X, Xu Q, Chen Z, Lin W (2017) Tobacco bacterial wilt suppression with biochar soil addition associates to improved soil physiochemical properties and increased rhizosphere bacteria abundance. Appl Soil Ecol 112:90–96

    Article  Google Scholar 

  • Zhang M, Song G, Gelardi DL, Huang L, Khan E, Mašek O, Parikh SJ, Ok YS (2020) Evaluating biochar and its modifications for the removal of ammonium, nitrate, and phosphate in water. Water Res 186:116303

    Article  CAS  PubMed  Google Scholar 

  • Zheng H, Wang Z, Deng X, Herbert S, **ng B (2013) Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil. Geoderma 206:32–39

    Article  CAS  Google Scholar 

  • Zimmerman AR (2010) Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ Sci Technol 44:1295–1301

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are thankful to the Director, Dayalbagh Educational Institute, Dayalbagh, Agra for providing kind support and infrastructure.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, J., Soni, S.K., Ranjan, R. (2023). Biochar for the Improvement of Crop Production. In: Hasanuzzaman, M., Tahir, M.S., Tanveer, M., Shah, A.N. (eds) Mineral Biofortification in Crop Plants for Ensuring Food Security. Springer, Singapore. https://doi.org/10.1007/978-981-99-4090-5_13

Download citation

Publish with us

Policies and ethics

Navigation