Fluorescent Nanomaterials in Visualization of Latent Fingerprint

  • Chapter
  • First Online:
Friction Ridge Analysis

Abstract

Latent fingerprint plays a key role in crime scene examination because it is commonly found in most crime scenes. It is today's need to develop new material for efficient visualization and development of latent fingermarks from various surfaces. Fingermarks are unique evidence for individual identification crime investigations. Routine traditional materials used for the examination of various types of fingermarks have disadvantages including high toxicity, minimum sensitivity, huge background interference, less contrast, and tedious workup protocol. The usefulness of the synthesized fluorescent nanomaterials studies for the development of various classes of fingermarks on porous and non-porous surfaces has been emphasized in this chapter. Fluorescent nanomaterial includes a metal oxide, and rare earth element doped transition metal oxides, which are used for the examination of various types of fingerprints on various surfaces. Eu, Ce, and Tb doped nanomaterial give green and red-emitting fluorescent. Synthesized fluorescent nanomaterial has low background interference, less toxicity, high efficacy, high sensitivity, and excellent contrast with minimum background interference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Algarra M, Jiménez-Jiménez J, Miranda MS, et al (2013) Solid luminescent CdSe-thiolated porous phosphate heterostructures. Application in fingermark detection on different surfaces. Surf Interface Anal 45:612–618. https://doi.org/10.1002/sia.5100

  2. Baride A, Sigdel G, Cross WM et al (2019) Near Infrared-to-Near Infrared Upconversion Nanocrystals for Latent Fingerprint Development. ACS Appl Nano Mater 2:4518–4527. https://doi.org/10.1021/acsanm.9b00890

    Article  CAS  Google Scholar 

  3. Benzler T, Faust S, Dreier T, Schulz C (2015) Low-pressure effective fluorescence lifetimes and photo-physical rate constants of one- and two-ring aromatics. Appl Phys B 121:549–558. https://doi.org/10.1007/s00340-015-6271-1

    Article  CAS  Google Scholar 

  4. Berezin MY, Achilefu S (2010) Fluorescence Lifetime Measurements and Biological Imaging. Chem Rev 110:2641–2684. https://doi.org/10.1021/cr900343z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bhargava R, Schwartz Perlman R, Fernandez DC et al (2009) Non-invasive detection of superimposed latent fingerprints and inter-ridge trace evidence by infrared spectroscopic imaging. Anal Bioanal Chem 394:2069–2075. https://doi.org/10.1007/s00216-009-2817-6

    Article  CAS  PubMed  Google Scholar 

  6. Chen H, Ma R, Chen Y, Fan L-J (2017) Fluorescence Development of Latent Fingerprint with Conjugated Polymer Nanoparticles in Aqueous Colloidal Solution. ACS Appl Mater Interfaces 9:4908–4915. https://doi.org/10.1021/acsami.6b15951

    Article  CAS  PubMed  Google Scholar 

  7. Chen P-Y, Qi J, Klug MT et al (2014) Environmentally responsible fabrication of efficient perovskite solar cells from recycled car batteries. Energy Environ Sci 7:3659–3665. https://doi.org/10.1039/C4EE00965G

    Article  CAS  Google Scholar 

  8. Dixon P (2017) A Failure to “Do No Harm” – India’s Aadhaar biometric ID program and its inability to protect privacy in relation to measures in Europe and the U.S. Health Technol (Berl) 7:539–567. https://doi.org/10.1007/s12553-017-0202-6

    Article  PubMed  Google Scholar 

  9. Euler T, Hausselt SE, Margolis DJ et al (2009) Eyecup scope—optical recordings of light stimulus-evoked fluorescence signals in the retina. Pflügers Arch - Eur J Physiol 457:1393–1414. https://doi.org/10.1007/s00424-008-0603-5

    Article  CAS  Google Scholar 

  10. Fan Z, Zhang C, Chen J et al (2021) Highly Stable, Nondestructive, and Simple Visualization of Latent Blood Fingerprints Based on Covalent Bonding Between the Fluorescent Conjugated Polymer and Proteins in Blood. ACS Appl Mater Interfaces 13:15621–15632. https://doi.org/10.1021/acsami.1c00710

    Article  CAS  PubMed  Google Scholar 

  11. Garcia PT, Gabriel EFM, Pessôa GS, et al (2017) Paper-based microfluidic devices on the crime scene: A simple tool for rapid estimation of post-mortem interval using vitreous humour. Anal Chim Acta 974:69–74. https://doi.org/10.1016/j.aca.2017.04.040

  12. Ghubish Z, El-Kemary M (2022) Influence of Li+ do** on the luminescence performance of green nano-phosphor CaWO4:Tb3+ as a sweat pores fingerprint and cheiloscopy sensor. J Ind Eng Chem 107:61–74. https://doi.org/10.1016/j.jiec.2021.11.026

  13. Ghubish Z, Saif M, Hafez H, et al (2020) Novel red photoluminescence sensor based on Europium ion doped calcium hydroxy stannate CaSn(OH)6:Eu+3 for latent fingerprint detection. J Mol Struct 1207:127840. https://doi.org/10.1016/j.molstruc.2020.127840

  14. Girod A, Ramotowski R, Lambrechts S, et al (2016) Fingermark age determinations: Legal considerations, review of the literature and practical propositions. Forensic Sci Int 262:212–226. https://doi.org/10.1016/j.forsciint.2016.03.021

  15. Jain AK, Nandakumar K, Ross A (2016) 50 years of biometric research: Accomplishments, challenges, and opportunities. Pattern Recognit Lett 79:80–105. https://doi.org/10.1016/j.patrec.2015.12.013

  16. Jelly R, Patton ELT, Lennard C, et al (2009) The detection of latent fingermarks on porous surfaces using amino acid sensitive reagents: A review. Anal Chim Acta 652:128–142. https://doi.org/10.1016/j.aca.2009.06.023

  17. Kayser M (2015) Forensic DNA Phenoty**: Predicting human appearance from crime scene material for investigative purposes. Forensic Sci Int Genet 18:33–48. https://doi.org/10.1016/j.fsigen.2015.02.003

  18. Komahal FF, Nagabhushana H, Basavaraj RB, et al (2018) Design of Bi-functional composite core–shell SiO2@ZnAl2O4:Eu3+ array as a fluorescent sensors for selective and sensitive latent fingerprints visualization protocol. Adv Powder Technol 29:1991–2002. https://doi.org/10.1016/j.apt.2018.05.004

  19. Kumar R, Sharma V (2018) Chemometrics in forensic science. TrAC Trends Anal Chem 105:191–201. https://doi.org/10.1016/j.trac.2018.05.010

  20. Lanahan M, Yoda M (2021) Quantitative evaluation of latent fingermarks with novel enhancement and illumination. Sci Justice 61:635–648. https://doi.org/10.1016/j.scijus.2021.07.006

  21. Li F, Liu S, Qi R, et al (2017) Effective visualization of latent fingerprints with red fluorescent La2(MoO4)3:Eu3+ microcrystals. J Alloys Compd 727:919–924. https://doi.org/10.1016/j.jallcom.2017.08.182

  22. Li L, Li Q, Chu J, et al (2022) Dual-mode luminescent multilayer core-shell UCNPs@SiO2@TEuTbB nanospheres for high-level anti-counterfeiting and recognition of latent fingerprints. Appl Surf Sci 581:152395. https://doi.org/10.1016/j.apsusc.2021.152395

  23. Lin L, Yin Y, Starostin SA, et al (2021) Microfluidic fabrication of fluorescent nanomaterials: A review. Chem Eng J 425:131511. https://doi.org/10.1016/j.cej.2021.131511

  24. Liu J, Jiang X, Zhang R, et al (2019) MXene-Enabled Electrochemical Microfluidic Biosensor: Applications toward Multicomponent Continuous Monitoring in Whole Blood. Adv Funct Mater 29:1807326. https://doi.org/10.1002/adfm.201807326

  25. MacLeod A, Matthews IP, Lowe JJ, et al (2015) A second tephra isochron for the Younger Dryas period in northern Europe: The Abernethy Tephra. Quat Geochronol 28:1–11. https://doi.org/10.1016/j.quageo.2015.03.010

  26. Naik EI, Naik HSB, Swamy BEK, et al (2021) Influence of Cu do** on ZnO nanoparticles for improved structural, optical, electrochemical properties and their applications in efficient detection of latent fingerprints. Chem Data Collect 33:100671. https://doi.org/10.1016/j.cdc.2021.100671

  27. Naveen Kumar K, Dagupati R, Lim J, Choi J (2022) Bright red luminescence from Eu3+-activated noncytotoxic SnO2 quantum dots for latent fingerprint detection. Ceram Int. https://doi.org/10.1016/j.ceramint.2022.03.044

  28. Ogbanufe O, Kim DJ (2018) Comparing fingerprint-based biometrics authentication versus traditional authentication methods for e-payment. Decis Support Syst 106:1–14. https://doi.org/10.1016/j.dss.2017.11.003

  29. Park JY, Chung JW, Yang HK (2019) Versatile fluorescent Gd2MoO6:Eu3+ nanophosphor for latent fingerprints and anti-counterfeiting applications. Ceram Int 45:11591–11599. https://doi.org/10.1016/j.ceramint.2019.03.030

  30. Pavitra E, Raju GSR, Park JY, et al (2020) An efficient far-red emitting Ba2LaNbO6:Mn4+ nanophosphor for forensic latent fingerprint detection and horticulture lighting applications. Ceram Int 46:9802–9809. https://doi.org/10.1016/j.ceramint.2019.12.253

  31. Peng D, Wu X, Liu X et al (2018) Color-Tunable Binuclear (Eu, Tb) Nanocomposite Powder for the Enhanced Development of Latent Fingerprints Based on Electrostatic Interactions. ACS Appl Mater Interfaces 10:32859–32866. https://doi.org/10.1021/acsami.8b10371

    Article  CAS  PubMed  Google Scholar 

  32. Pushpendra, Suryawanshi I, Kalia R, et al (2021) Detection of latent fingerprints using luminescent Gd0.95Eu0.05PO4 nanorods. J Rare Earths. https://doi.org/10.1016/j.jre.2021.01.015

  33. Rohini BS, Darshan GP, Premkumar HB, et al (2019) Ultrasound induced synthesis of dual phased hierarchical ZrO2:Eu3+ architectures: Fluorescent based sensor for rapid visualization of latent fingerprints. Colloids Surfaces A Physicochem Eng Asp 581:123749. https://doi.org/10.1016/j.colsurfa.2019.123749

  34. Su B (2016) Recent progress on fingerprint visualization and analysis by imaging ridge residue components. Anal Bioanal Chem 408:2781–2791. https://doi.org/10.1007/s00216-015-9216-y

    Article  CAS  PubMed  Google Scholar 

  35. Suresh C, Nagabhushana H, Basavaraj RB, et al (2018) SiO2@LaOF:Eu3+ core-shell functional nanomaterials for sensitive visualization of latent fingerprints and WLED applications. J Colloid Interface Sci 518:200–215. https://doi.org/10.1016/j.jcis.2018.01.093

  36. Wang M, Li M, Yu A et al (2015) Rare Earth Fluorescent Nanomaterials for Enhanced Development of Latent Fingerprints. ACS Appl Mater Interfaces 7:28110–28115. https://doi.org/10.1021/acsami.5b09320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang M, Shen D, Zhu Z, et al (2020) Dual-mode fluorescent development of latent fingerprints using NaYbF4:Tm upconversion nanomaterials. Mater Today Adv 8:100113. https://doi.org/10.1016/j.mtadv.2020.100113

  38. Wang M, Zhu Y, Mao C (2015) Synthesis of NIR-Responsive NaYF4:Yb, Er Upconversion Fluorescent Nanoparticles Using an Optimized Solvothermal Method and Their Applications in Enhanced Development of Latent Fingerprints on Various Smooth Substrates. Langmuir 31:7084–7090. https://doi.org/10.1021/acs.langmuir.5b01151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yuan C, Li M, Wang M, et al (2021) A critical review of fundamentals and applications of electrochemical development and imaging of latent fingerprints. Electrochim Acta 390:138798. https://doi.org/10.1016/j.electacta.2021.138798

  40. Yungaicela-Naula NM, Vargas-Rosales C, Pérez-Díaz JA, Zareei M (2022) Towards security automation in software defined networks. Comput Commun 183:64–82

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devidas S. Bhagat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhagat, D.S., Bumbrah, G.S., Thorat, B.R., Deshmukh, S.U., Chawla, V., Pawar, O.B. (2023). Fluorescent Nanomaterials in Visualization of Latent Fingerprint. In: Awasthi, K.K., Sankhla, M.S., Lukose, S., Parihar, K. (eds) Friction Ridge Analysis. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-99-4028-8_9

Download citation

Publish with us

Policies and ethics

Navigation