Perovskite Manganite Materials: Recent Advancements and Challenges as Cathode for Solid Oxide Fuel Cell Applications

  • Chapter
  • First Online:
Energy Materials

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 377 Accesses

Abstract

In the current scenario, the materials research activity plays a crucial role in the areas such as multiphase composite cathodes, ceramics anodes and electrolyte for solid oxide fuel cell (SOFC) applications. With the recent trends towards the lowering of SOFCs operating temperature, recent research activities have been focusing on develo** new electrodes, electrolyte and metallic interconnects; this presents a whole new matrix of possible material interactions. The engineering of novel materials has been much more complicated than simply optimizing the electrochemical performance of a known one. Particularly, the cathode materials for SOFC applications have a challenging task. The noble metals, which had been used in the early days, have fallen out of favour on cost basis. Hence, multiphase composite cathode materials have much more importance in recent days. The key role of the cathode is to make the maximum number of available reaction sites for the electrochemical reduction of the oxidant. In this chapter, we have discussed perovskite manganite metal oxides, particularly lanthanum manganite materials for the recent advancements as well as its challenges. An overview of the other type of perovskite cathode materials and effect of porosity for SOFC applications has also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Winter M, Brodd RJ (2004) Chem Rev 104:4245–4270

    Article  CAS  Google Scholar 

  2. Minh NQ (2004) Solid State Ionics 174:271–277

    Article  CAS  Google Scholar 

  3. Chelmehsara ME, Mahmoudimehr J (2018) Int J Hydrogen Energy 43:15521–15530

    Article  CAS  Google Scholar 

  4. Blum L, (Bert) de Haart LGJ, Malzbender J, Menzler NH, Remmel J, Steinberger-Wilckens R (2013) J Power Sour 241:477–485

    Google Scholar 

  5. Singhal SC (2000) Solid State Ionics 135:305–313

    Article  CAS  Google Scholar 

  6. Yamamoto O (2000) Electrochim Acta 45:2423–2435

    Article  CAS  Google Scholar 

  7. Mahato N, Banerjee A, Gupta A, Omar S, Balani K (2015) Prog Mater Sci 72:141–337

    Article  CAS  Google Scholar 

  8. Hussain S, Yang** L (2020) Energy Transitions 4:113–126

    Article  Google Scholar 

  9. da Silva FS, de Souza TM (2017) Int J Hydrogen Energy 42:26020–26036

    Article  Google Scholar 

  10. Sun C, Hui R, Roller J (2010) J Solid State Electrochem 14:1125–1144

    Article  CAS  Google Scholar 

  11. Harrison CM, Slater PR, Steinberger-Wilckens R (2020) Solid State Ionics 354:115410–211538

    Article  CAS  Google Scholar 

  12. Kan WH, Samson AJ, Thangadurai V (2016) J Mater Chem A 4:17913–17932

    Article  CAS  Google Scholar 

  13. Afroze S, Karim A, Cheok Q, Eriksson S, Azad AK (2019) Front Energy 13:770–797

    Article  Google Scholar 

  14. Chen K, Li N, Ai N, Li M, Cheng Y, Rickard WDA, Li J, Jiang SP (2016) J Mater Chem A 4:17678–17685

    Article  CAS  Google Scholar 

  15. Nagasawa K, Daviero-Minaud S, Preux N, Rolle A, Roussel P, Nakatsugawa H, Mentr O (2009) 21:4738–4745

    Google Scholar 

  16. Zou J, Park J, Yoon H, Kim T, Chung J (2012) Int J Hydrogen Energy 37:8592–8602

    Article  CAS  Google Scholar 

  17. Fan W, Sun Z, Bai Y, Wu K, Chen Y, Appl ACS (2019) Mater Interfaces 11(26):23168–23179

    Article  CAS  Google Scholar 

  18. Ni C, Zhou J, Zhang Z, Li S, Ni J, Wu K, Irvine JTS (2021) Energy Environ Sci 14:6287–6319

    Article  CAS  Google Scholar 

  19. Amow G, Davidson IJ, Skinner SJ (2006) Solid State Ionics 177:1205–1210

    Article  CAS  Google Scholar 

  20. Ding P, Li W, Zhao H, Wu C, Zhao L, Dong B, Wang S (2021) J Phys Mater 4:022002

    Article  CAS  Google Scholar 

  21. Pelosato R, Cordaro G, Stucchi D, Cristiani C, Dotelli G (2015) J Power Sour 298:46–67

    Article  CAS  Google Scholar 

  22. Tsai T, Barnett SA (1997) Solid State Ionics 93:207–217

    Article  CAS  Google Scholar 

  23. Jiang SP (2008) J Mater Sci 43:6799–6833

    Article  CAS  Google Scholar 

  24. Carpanese MP, Clematis D, Bertei A, Giuliano A, Sanson A, Mercadelli E, Nicolella C, Barbucci A (2017) Solid State Ionics 301:106–115

    Article  CAS  Google Scholar 

  25. Norby P, Andersen IGK, Andersen EK, Andersen NH (1995) J Solid State Chem 119:191–196

    Article  CAS  Google Scholar 

  26. van Roosmalen JAM, van Vlaanderen P, Cordfunke EHP, Ijdo WL, Ijdo DJW (1995) J Solid State Chem 114:516–523

    Google Scholar 

  27. Bogush AK, Pavlov VI, Balyko LV (1983) Crystal Res Technol 18:589–598

    Article  CAS  Google Scholar 

  28. Shekhtman VSh, Sedykh VD (2007) J Surf Invest X-Ray Synchrotron Neutron Tech 5:513–521

    Google Scholar 

  29. Xu W, Apodaca N, Wang H, Yan L, Chen G, Zhou M, Ding D, Choudhury P, Luo H (2019) ACS Catal 9:5074–5083

    Article  CAS  Google Scholar 

  30. Kuo JH, Anderson HU, Sparlin DM (1990) J Solid Sate Chem 87:55–63

    Article  CAS  Google Scholar 

  31. Carini GF, Anderson HU, Nasrallah MM, Sparlin DM (1991) J Solid State Chem 94:329–336

    Article  CAS  Google Scholar 

  32. Kertesz M, Riess I, Tannhauser DS, Langpape R, Rohr FJ (1982) J Solid State Chem 42:125–129

    Article  CAS  Google Scholar 

  33. Wandekar RV, Wani BN, Bharadwaj SR (2005) Mater Lett 59:2799–2803

    Article  CAS  Google Scholar 

  34. Gaudon M, Laberty-Robert C, Ansart F, Stevens P, Rousset A (2004) Solid State Sci 4:125–133

    Article  Google Scholar 

  35. van Roosmalen JAM, Cordfunke EHP, Huijsmans JPP (1993) Solid State Ionics 66:285–293

    Article  Google Scholar 

  36. Ghosh A, Sahu AK, Gulnar AK, Suri AK (2005) Scripta Mater 52:1305–1309

    Article  CAS  Google Scholar 

  37. Pang G, Xu X, Markovich V, Avivi S, Palchik O, Koltypin Y, Gorodetsky G, Yeshurun Y, Buchkremer HP, Gedanken A (2003) Mater Res Bull 38:11–16

    Article  CAS  Google Scholar 

  38. Das N, Bhattacharya D, Sen A, Maiti HS (2009) Ceram Int 35:21–24

    Article  CAS  Google Scholar 

  39. Belardi RM, Deseure J, Brant MC, Matencio T, Domingues RZ (2009) Ionics 15:227–232

    Google Scholar 

  40. Ming Q, Nersesyan MD, Richardson JT, Luss D, Shiryaev AA (2000) J Mater Sci 35:3599–3606

    Article  CAS  Google Scholar 

  41. Bell RJ, Millar GJ, Drennan J (2000) Solid State Ionics 131:211–220

    Article  CAS  Google Scholar 

  42. da Conceicao L, Silva CRB, Ribeiro NFP, Souza MMVM (2009) Mater Charact 60:1417–1423

    Article  Google Scholar 

  43. Bidrawn F, Kim G, Aramrueang N, Vohs JM, Gorte RJ (2010) J Power Sour 195:720–728

    Article  CAS  Google Scholar 

  44. Zhang Q, Nakagawa T, Saito F (2000) J Alloy Compd 308:121–125

    Article  CAS  Google Scholar 

  45. Alonso JA, Martinez-Lope MJ, Casais MT, Mac Manus-Driscoll JL, de Silva PSIN, Cohen LF, Fernandez-Diaz MT (1997) J Mater Chem 7(10):2139–2144

    Google Scholar 

  46. Jiang SP, Zhang JP, Ramorakash Y, Milosevic D, Wilshier K (2000) J Mater Sci 35:2735–2741

    Article  CAS  Google Scholar 

  47. Duprat AM, Alphonse P, Sarda C, Rousset A (1994) Mater Chem Phys 37:76–81

    Article  CAS  Google Scholar 

  48. Van Roosmalen JAM, Cordfunke EHP (1994) J Solid State Chem 110:106–108

    Article  Google Scholar 

  49. Wold A, Arnott RJ (1959) J Phys Chem Solids 9:176–180

    Article  CAS  Google Scholar 

  50. Aruna ST, Muthuraman M, Patil KC (1999) Solid State Ionics 120:275–280

    Article  CAS  Google Scholar 

  51. Taguchi H, Yoshioka H, Matsuda D, Nagao M (1993) 104:460–463

    Google Scholar 

  52. Shu Q, Zhang J, Liu J (2005) 390:240–244

    Google Scholar 

  53. Jonker GH, Van Santen JH (1950) Physica XVI 3:337–349

    Google Scholar 

  54. Van Santen JH, Jonker GH (1950) Phys XVI 7–9:599–600

    Google Scholar 

  55. Jonker JH (1954) Phys XX 11:1118–1122

    Google Scholar 

  56. Kuo JH, Anderson HU, Sparlin DM (1990) J Solid State Chem 87:55–63

    Article  CAS  Google Scholar 

  57. Hammouche A, Schouler EJL, Henault M (1988) Solid State Ionics 28–30:1205–1207

    Article  Google Scholar 

  58. Goodenough JB (1955) Phys Rev 100(2):564–573

    Article  CAS  Google Scholar 

  59. Takeda Y, Sakaki Y, Ichikawa T, Imanishi N, Yamamoto O, Mori M, Mori N, Abe T (1994) Solid State Ionics 72:257–264

    Article  CAS  Google Scholar 

  60. Mori M (2004) Solid State Ionics 174:1–8

    Article  CAS  Google Scholar 

  61. Scotti C, Gharbage B, Lauret H, Levy M, Hammou A (1993) Mater Res Bull 28:1215–1220

    Article  CAS  Google Scholar 

  62. Kertesz M, Riess I, Tannhauser DS, Langpape R, Rohr FJ (1982) J Solid Sate Chem 42:125–129

    Article  CAS  Google Scholar 

  63. Jiang SP (2002) Solid State Ionics 146:1–22

    Article  CAS  Google Scholar 

  64. Jiang SP (2003) J Power Sour 124:390–402

    Article  CAS  Google Scholar 

  65. Hansen KK, Vels Hansen K (2007) Solid Sate Ionics 178:1379–1384

    Google Scholar 

  66. Arul Antiny S, Swaminathan A, Nagaraja KS, Sreedharan OM (2001) J Alloy Compd 322:113

    Google Scholar 

  67. Nakamura T, Petzow G, Gauckler LJ (1979) Mater Res Bull 14:649

    Article  CAS  Google Scholar 

  68. Shridharan OM, Pankajavalli R, Gnanammoorthy JB (1983) High Temp Sci 16:251

    Google Scholar 

  69. Hildrum R, Brustad M, Changzhen W, Johannesn O (1994) Mater Res Bull 29:851

    Article  CAS  Google Scholar 

  70. Kuo JH, Anderson HU, Spaelin DM (1989) J Solid State Chem 83:52

    Article  CAS  Google Scholar 

  71. Van Roosmalen JAM, Cordfunke EHP, Helmholdt RB (1994) Solid State Chem 110:100

    Article  Google Scholar 

  72. Norby P, Krogh IG, Andersen EK, Krogh E, Andersen J (1995) Solid State Chem 119:191

    Google Scholar 

  73. Hammouche A, Siebert E, Hammou A (1989) Mater Res Bull 24:367

    Article  CAS  Google Scholar 

  74. Jonker GH, Vansanten JH (1991) Physica 3:337

    Google Scholar 

  75. Harwood G (1990) Proc Phys Soc 68:586

    Article  Google Scholar 

  76. Larminie J. Fuell cell systems explained (2nd edn). Andrew Dick

    Google Scholar 

  77. Takeda Y, Kanno R, Noda M, Tomida Y, Yamamoto O (1987) J Electrochem Soc 134:2656

    Article  CAS  Google Scholar 

  78. Li Z, Behruzi M, Fuerst L, Stover D (1993) In: Singhal SC, Iwahara H (eds) SOFC III, PV 93-4. Eectrochemical Society, p 171

    Google Scholar 

  79. Yasuda I, Ogasawara K, Hishinuma M, Kawada T, Dokiya M (1996) Solid State Ionics 1197:86

    Google Scholar 

  80. Carter S, Selcuk A, Chater RJ, Kadja J, Kilner JA, Steele BCH (1997) Ionics 597:53

    Google Scholar 

  81. Labrlncha JA, Jian Meng L, Santos MP, Marques FMB, Frade JR (1993) Mater Res Bull 28:101

    Google Scholar 

  82. Vanherle J, Mcevoy AJ, Thampi KR (1994) Electrochim Acta 39(11/12):1675

    Article  CAS  Google Scholar 

  83. Jurgensen MJ, Primdahl S, Mogensen M (1999) Electrochim Acta 44:4195

    Article  Google Scholar 

  84. Kroeger FA, Vink HJ (1956) Solid State Phys 3:307

    Article  Google Scholar 

  85. Kenjo T, Nishiya M (1992) Solid State Ionics 57:295

    Article  CAS  Google Scholar 

  86. Sasaki K, Gauckler LJ (1995) In: Proceedings of the international symposium on struct. func. grad. mater., vol 3, p 651

    Google Scholar 

  87. Juhl M, Primdahl S, Manon C, Mogensen M (1996) J Power Sour 61:173

    Article  CAS  Google Scholar 

  88. Estergaerd MJL, Clausen C, Bagger C, Mogensen M (1995) Electrochim Acta 40:1971

    Article  Google Scholar 

  89. Gaudon M (2002) Solid State Sci 4:125

    Article  CAS  Google Scholar 

  90. Decorse P, Caboche G, Dufour L (1999) Solid State Ionics 117:161

    Article  CAS  Google Scholar 

  91. Van Roomsmalen JAM, Van Vlaanderen P, Corefunke EHP, Ijdo WL (1995) J Solid State Chem 114:516

    Article  Google Scholar 

  92. Aruna TS, Muthuraraman M, Patil KC (1997) Mater Chem 7(12):2499

    Article  CAS  Google Scholar 

  93. Mahendiran R, Mahesh R, Raychaudri AK, Rao CNR (1995) J Phys 44:393

    Google Scholar 

  94. Tanaka J, Umehara M, Tamura S, Tsukioka M, Ehara S (1982) J Phys Soc 51:1236

    Article  CAS  Google Scholar 

  95. Karim DP, Aldrad AT (1979) Phys Rev B 20:2255

    Article  CAS  Google Scholar 

  96. Kharton VV, Kovalevsky AV, Tikhonivich N, Naumivuch EN, Viskup AP (1998) Solid State Ionics 110:53

    Article  CAS  Google Scholar 

  97. Jonker GH, Phys J (1959) Chem Solids 9:165

    Article  CAS  Google Scholar 

  98. Lee HK (2002) J Mater Chem Phys 77:639

    Article  Google Scholar 

  99. Kertesz M, Riess I, Tannhauser GS, Langpage R, Rahr FJ (1982) J Solid State Chem 42:125

    Article  CAS  Google Scholar 

  100. Van Roosmalen JAM, Cordfunke EHP, Huijamans JPP (1993) Solid State Ionics 66:279

    Article  Google Scholar 

  101. Van Roosmalen JAM, Huijsmans JPP, Plomp L (1998) Solid State Ionics 66:279

    Google Scholar 

  102. Haung T, Hong YS (2003) Mater Sci Eng B 103:207

    Article  Google Scholar 

  103. Dessemond L, Stevens P (2004) J Power Sour 133:214

    Article  Google Scholar 

  104. Nagde KR, Bhoga SS (2010) Ionics 16:361

    Google Scholar 

  105. Tanhauser DS, Langpape R, Rohr FJ (1982) J Solid State Chem 42:125

    Article  Google Scholar 

  106. Sakaki Y, Takeda Y, Kato A, Imanishi N, Yamamoto O, Hattori M, Esaki Y (1999) Soid State Ionics 118:187

    Article  CAS  Google Scholar 

  107. Gaudon M, Robert CL, Ansart F, Stevens P, Rousset A (2004) J Power Sour 133:214

    Article  CAS  Google Scholar 

  108. Kening S, **huo P, Naiqing Z, **nbing C, Shen X, Derui Z (2008) Rare Met 27(3):278

    Article  Google Scholar 

  109. Tietz F (1999) Ionics 5:129–139

    Article  CAS  Google Scholar 

  110. Inoue T, Eguchi K, Setoguchi T, Arai H (1990) Solid State Ionics 40(41):407

    Article  Google Scholar 

  111. Kindermann L, Das D, Bahadur R, Weir R, Nickel H, Hilpert K (1997) J Am Ceram Soc 80:909

    Article  CAS  Google Scholar 

  112. Sekido S, Tachibana H, Yamamura Y, Kambara T (1990) Solid State Ionics 37:253

    Article  CAS  Google Scholar 

  113. Tai LW, Nasrallah MM, Anderson HU, Sparlin DM, Sehlin SR (1995) Solid State Ionics 76:259

    Article  CAS  Google Scholar 

  114. Roosmalen JAM, Cordfunke EHP (1992) Solid State Ionics 52:303

    Article  Google Scholar 

  115. Tiff EI, Wersing W, Schiefl M, Greiner H, Bunsenges B (1990) Phys Chem 94:978

    Article  Google Scholar 

  116. Uhlenbruck S, Tietz F (2004) Mater Sci Eng B Solid State Mater Adv Technol 107:211

    Google Scholar 

  117. Caboche G, Dufour LC, Morin F (2001) Solid State Ionics 144:211

    Article  CAS  Google Scholar 

  118. Kuharuangrong S, Dechakupt T, Aungkavattana P (2004) Mater Lett 58:1964

    Article  CAS  Google Scholar 

  119. Kuharuangrong S (2004) Cerem Int 30:273

    Article  CAS  Google Scholar 

  120. Endo A, Fukunaga H, Wen C, Yamad K (2000) Solid State Ionics 135:353

    Article  CAS  Google Scholar 

  121. Nagabushan BM, Sreekant RP, Ramesh KP, Shivkumara C, Chandrapp GT (2006) Mater Res Bull 42:1735

    Article  Google Scholar 

  122. Yi JY, Choi GM (2002) Solid State Ionics 148:557

    Article  CAS  Google Scholar 

  123. Steele BCH (1997) Solid State Ionics 94:239

    Article  CAS  Google Scholar 

  124. Phillipps MB, Sammes NM, Yamamoto O (1999) Solid State Ionics 123:131

    Article  CAS  Google Scholar 

  125. Huang X, Liu J, Lu Z, Liu W, Pei L, He T, Liu Z, Wenhui S (2000) Solid State Ionics 130:195

    Article  CAS  Google Scholar 

  126. Tietz F, Haanappel VAC, Mai A, Mertens J, Stover D (2006) J Power Sour 156:20

    Article  CAS  Google Scholar 

  127. Maguire E, Gharbage B, Marques FMB, Labrincha JA (2000) Solid State Ionics 127:329

    Article  CAS  Google Scholar 

  128. Kostogloudis GC, Ftikos C, Ahmad-Khanlou A, Naoumidis A, Stover D (2000) Solid State Ionics 134:127

    Article  CAS  Google Scholar 

  129. Bebelis S, Kotsionopoulos N, Mai A, Tietz F (2007) J Appl Electrochem 37:15

    Article  CAS  Google Scholar 

  130. Dusastre V, Kilner JA (1999) Solid State Ionics 126:163

    Article  CAS  Google Scholar 

  131. **a CR, Chen FL, Liu ML (2001) Electrochem Solid-State Lett 4(5):A52

    Article  CAS  Google Scholar 

  132. Shao Z, Haile SM (2004) Nature 43:170

    Article  Google Scholar 

  133. Ullmann H, Trofimenko N, Tietz F (2000) Solid State Ionics 138:79

    Article  CAS  Google Scholar 

  134. Hart NT, Brandon NP, Day MJ, Shemilt JE (2001) J Mater Sci 36:1077

    Article  CAS  Google Scholar 

  135. Holtappels P, Bagger C (2002) J Eur Ceram Soc 22:41

    Article  CAS  Google Scholar 

  136. **a CR, Rauch W, Wellborn W, Liu ML (2002) Electrochem Solid State Lett 5:A217

    Article  CAS  Google Scholar 

  137. Yamada H, Nagamoto H (1993) In: Proceedings of the 3rd international symposium on solid oxide fuel cells, Honolulu, Hawaii (USA). Electrochemical Society, p 213

    Google Scholar 

  138. Yamamoto O, Takeda Y, Kanno R, Kojima T (1989) In: Yamamoto O, Dokiya M, Tagawa H (eds) Proceedings of the international symposium on solidoxide fuel cells, Nagoya. Science House, Tokyo, p 87

    Google Scholar 

  139. Teraoka Y, Nobunaga T, Okamoto K, Miura N, Yamazoe N (1991) Solid State Ionics 48:207

    Article  CAS  Google Scholar 

  140. Xu X, **a C, **ao G, Peng D (2005) Solid State Ionics 176:1513

    Article  CAS  Google Scholar 

  141. Ishihara T, Honda M, Shibayama T, Minami H, Nishiguchi H, Takita Y (1998) J Electrochem Soc 145:3177

    Article  CAS  Google Scholar 

  142. Fukunaga H, Koyama M, Takahashi N, Wen C, Yamada K (2000) Solid State Ionics 132:279

    Article  CAS  Google Scholar 

  143. He H, Huang X, Chen L (2000) Solid State Ionics 130:183

    Article  CAS  Google Scholar 

  144. Yasumoto K, Inagaki Y, Shiono M, Dokiya M (2002) Solid State Ionics 148:545

    Article  CAS  Google Scholar 

  145. **a C, Rauch W, Chen F, Liu M (2002) Solid State Ionics 149:11

    Article  CAS  Google Scholar 

  146. Minh NQ (1993) J Am Ceram Soc 76:563

    Article  CAS  Google Scholar 

  147. Selman JR, Lin YP (1993) Electrochim Acta 38(14):2063

    Article  CAS  Google Scholar 

  148. Levie RD (1967) Adv Electrochem and Electrochem Eng 6:329

    Google Scholar 

  149. Levie RD (1963) Electrochemica acta 8:751

    Article  Google Scholar 

  150. Ostergard MJL, Mogensen M (1993) Electrochim Acta 38(14):2015

    Article  Google Scholar 

  151. Barbucci A, Viviani M, Carpanese P, Vladikova D, Stoynov Z (2006) Electrochim Acta 51:1641

    Article  CAS  Google Scholar 

  152. Brant MC, Matencio T, Dessemond L, Domingues RZ (2006) Solid State Ionics 177:915

    Google Scholar 

  153. Choi JH, Jang JH, Oh SM (2001) Electrochim Acta 46:867

    Article  CAS  Google Scholar 

  154. Deseure J, Bultel Y, Dessemond L, Siebert E (2005) Electrochim Acta 50:2037

    Article  CAS  Google Scholar 

  155. Ralphz JM, Schoeler AC, Krumpelt M (2001) J Mater Sci 36:1161

    Article  Google Scholar 

  156. Hildrum R, Aasland S, Johannesen O (1993) Solid State Ionics 66:207

    Article  CAS  Google Scholar 

  157. Kostogloudis GC, Fertis P, Ftikos C (1998) J Euro Ceram Soc 18:2209

    Article  CAS  Google Scholar 

  158. Kamata H, Hosaka A, Mizusakia J, Tagawa H (1998) Solid State Ionics 106:237

    Google Scholar 

  159. Yoon HS, Choi SW, Lee D, Kim BH (2001) J Power Sour 93:1

    Article  CAS  Google Scholar 

  160. Kim J, Kim GD, Moon J, Park Y, Lee W, Kobayashi K, Nagai M, Kim C (2001) Solid State Ionics 143:379

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Kumar Patro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jena, P., Patro, P.K. (2023). Perovskite Manganite Materials: Recent Advancements and Challenges as Cathode for Solid Oxide Fuel Cell Applications. In: Swain, B.P. (eds) Energy Materials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-99-3866-7_7

Download citation

Publish with us

Policies and ethics

Navigation