Proton Conductors: Physics and Technological Advancements for PC-SOFC

  • Chapter
  • First Online:
Energy Materials

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 447 Accesses

Abstract

Electroceramics are functional materials with a complex interplay between structural, chemical and electrophysical properties. Significant reliability over energy storage and conversion devices has outgrown over the years in search of sustainability. The advent of eco-friendly continuous energy extraction with liberty over fuel flexibility at intermediate temperatures (400–700 °C) reveals the monopoly of proton conductors (PCs) as an effective electrolyte for proton-conducting solid oxide fuel cells (PC-SOFC). They illustrate high operation efficiency (60–80%) and energy density over existing energy storage devices (capacitors, batteries and combustion engines) with a compromise over power density. The electrochemical activity of PCs is in principle different from distinct fuel cells which are categorized on the nature of electrolyte and diffusing charge carriers alongside operating temperature regimes. PC-SOFC thus bridges the research gap between high-temperature (SOFC) and low-temperature (PEMFC) applications. The intermediate operation devoid the use of catalysts for requisite electrochemical kinetics across the electrode–electrolyte interface with simultaneous compatibility of fuel cell’s components. Unlike key limitations in SOFC owing to high operating temperatures, PC-SOFC forbids major limitations. The anti-phase consistency between chemical and electrophysical parameters obstructs the commercialization of PCs for technological advancements. The fundaments of which lie with the physics of structural perturbations and inflexions in charge chemistry. Lower symmetry shifts (distorted structures) although assist unimpeded charge dynamics, yet lag in cooperative chemical compatibility. Attempts of material engineering via heterogeneous impurity substitutions in terms of acceptor dopants at the B-site of perovskite PCs have been executed to pacify the existing trade-off. Compositional-induced charge trap** effect constituted by increasing impurities presents novel material engineering limitations. Thus, preserving the host characteristics with additional improvement in thermal, chemical and electrical properties has recently become the principal motive of research with PCs. Since the charge kinetics is determined at the electrode–electrolyte interface, suitable sealant and blend of composite electrodes with thin epitaxially grown film electrolytes have cultivated a unique research perspective. The chapter encloses the backbone of energy materials for energy conversion devices (fuel cells) with a detailed emphasis on the physics of electrochemistry in perovskite-type PCs (BaCeO3 and BaZrO3). The miscellaneous motive also associates compiled outcomes and a summary of novel constraints (proton trap** effect) associated with material processing and architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mohammed H, Al-othman A, Nancarrow P et al (2019) Direct hydrocarbon fuel cells: a promising technology for improving. Energy. https://doi.org/10.1016/j.energy.2019.01.105

    Article  Google Scholar 

  2. Lyu Y, **e J, Wang D (2020) Review of cell performance in solid oxide fuel cells. J Mater Sci 55:7184–7207. https://doi.org/10.1007/s10853-020-04497-7

    Article  CAS  Google Scholar 

  3. Tahir NNM, Baharuddin NA, Samat AA et al (2022) A review on cathode materials for conventional and proton-conducting solid oxide fuel cells. J Alloys Compd 894:162458

    Article  CAS  Google Scholar 

  4. Chang Y, Qin Y, Yin Y et al (2018) Humidification strategy for polymer electrolyte membrane fuel cells—a review. Appl Energy 230:643–662. https://doi.org/10.1016/j.apenergy.2018.08.125

    Article  CAS  Google Scholar 

  5. Shi H, Su C, Ran R et al (2020) Electrolyte materials for intermediate-temperature solid oxide fuel cells. Prog Nat Sci Mater Int 30:764. https://doi.org/10.1016/j.pnsc.2020.09.003

    Article  CAS  Google Scholar 

  6. Shearing PR (2018) Energy Fuels 2. https://doi.org/10.1039/c8se00292d

  7. Li G, Gou Y, Qiao J et al (2020) Recent progress of tubular solid oxide fuel cell: from materials to applications. J Power Sources 477:228693. https://doi.org/10.1016/j.jpowsour.2020.228693

    Article  CAS  Google Scholar 

  8. Junaida A, Aziz A, Akidah N et al (2020) Review of composite cathodes for intermediate-temperature solid oxide fuel cell applications. Ceram Int 46:23314. https://doi.org/10.1016/j.ceramint.2020.06.176

    Article  CAS  Google Scholar 

  9. Vignesh D, Sonu BK, Rout E (2022) Factors constituting proton trap** in BaCeO3 and BaZrO3 perovskite proton conductors in fuel cell technology: a review. Energy Fuels. https://doi.org/10.1021/acs.energyfuels.2c00650

  10. Vignesh D, Rout E (2022) Structural and electrophysical perturbations in Y3+ doped BaCeO3 proton conducting electrolyte: a first principles approach. Comput Condens Matter 33:e00763. https://doi.org/10.1016/j.cocom.2022.e00763

    Article  Google Scholar 

  11. Vignesh D, Rout E (2022) Analysis of symmetry variation as a function of rare earth dopant concentration in proton conducting solid oxide fuel cells. Mater Today Proc 66:3416–3421. https://doi.org/10.1016/j.matpr.2022.08.373

    Article  CAS  Google Scholar 

  12. Scherban T, Villeneuve R, Abello L, Lucazeau G (1993) Raman scattering study of acceptor-doped BaCeO3. Solid State Ionics 61:93–98

    Google Scholar 

  13. Takeuchi K, Loong C-K, Richardson JW Jr et al (2000) The crystal structures and phase transitions in Y-doped BaCeO3: their dependence on Y concentration and hydrogen do**. Solid State Ionics 138:63–77

    Article  CAS  Google Scholar 

  14. Rajendran S, Thangavel NK, Ding H et al (2020) Tri-doped BaCeO3–BaZrO3 as a chemically stable electrolyte with high proton-conductivity for intermediate temperature solid oxide electrolysis cells (SOECs). ACS Appl Mater Interfaces 12:38275–38284

    Article  CAS  Google Scholar 

  15. Sagar R, Gaur MS, Raghav RK (2022) Study of structural, thermal and piezoelectric properties of polyvinylidene fluoride–BaZrO3 nanocomposites. J Therm Anal Calorim 147:10371–10381

    Article  CAS  Google Scholar 

  16. Rahman MA, Hasan W, Khatun R et al (2023) An ab-initio study to investigate the structural, mechanical, electrical, optical and thermal properties of the AZrO3 (A = Mg, Ca, Sr, Ba, Sn, Cu) compounds. Mater Today Commun 105339

    Google Scholar 

  17. Nayak AK, Sasmal A (2023) Recent advance on fundamental properties and synthesis of barium zirconate for proton conducting ceramic fuel cell. J Clean Prod 135827

    Google Scholar 

  18. Dawood F, Anda M, Shafiullah GM (2020) Hydrogen production for energy: an overview. Int J Hydrogen Energy 45:3847–3869

    Article  CAS  Google Scholar 

  19. Zhang Z, Pan S-Y, Li H et al (2020) Recent advances in carbon dioxide utilization. Renew Sustain Energy Rev 125:109799

    Article  CAS  Google Scholar 

  20. Hibino T, Mizutani K, Iwahara H (1993) H/D isotope effect on electrochemical pumps of hydrogen and water vapor using a proton-conductive solid electrolyte. J Electrochem Soc 140:2588

    Article  CAS  Google Scholar 

  21. Kawamura Y, Isobe K, Yamanishi T (2007) Mass transfer process of hydrogen via ceramic proton conductor membrane of electrochemical hydrogen pump. Fusion Eng Des 82:113–121

    Article  CAS  Google Scholar 

  22. Lin K, Chen Q, Gerhardt MR et al (2015) Alkaline quinone flow battery. Science (80-) 349:1529–1532

    Google Scholar 

  23. Aristidou N, Eames C, Sanchez-Molina I et al (2017) Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nat Commun 8:15218

    Article  Google Scholar 

  24. Kadi MW, Mohamed RM (2019) Synthesis of BaCeO3 nanoneedles and the effect of V, Ag, Au, Pt do** on the visible light hydrogen evolution in the photocatalytic water splitting reaction. J Sol-Gel Sci Technol 91:138–145. https://doi.org/10.1007/s10971-019-05018-y

    Article  CAS  Google Scholar 

  25. Gundeboina R, Perala V, Muga V (2020) Perovskite material-based photocatalysts. Revolut Perovskite Synth Prop Appl 251–287

    Google Scholar 

  26. Mekhilef S, Saidur R, Kamalisarvestani M (2012) Effect of dust, humidity and air velocity on efficiency of photovoltaic cells. Renew Sustain Energy Rev 16:2920–2925

    Article  CAS  Google Scholar 

  27. Wang J (2015) Barriers of scaling-up fuel cells: cost, durability and reliability. Energy 80:509–521

    Article  Google Scholar 

  28. Ioroi T, Siroma Z, Yamazaki S, Yasuda K (2019) Electrocatalysts for PEM fuel cells. Adv Energy Mater 9:1801284

    Article  Google Scholar 

  29. Wang Y, Diaz DFR, Chen KS et al (2020) Materials, technological status, and fundamentals of PEM fuel cells—a review. Mater Today 32:178–203

    Article  CAS  Google Scholar 

  30. Maystrenko AL, Kushch VI, Pashchenko EA et al (2020) Ceramic armour for armoured vehicles against large-calibre bullets. Probl Mechatroniki Uzbroj lotnictwo, inżynieria bezpieczeństwa 11

    Google Scholar 

  31. Hart M (2020) Vulnerabilities and challenges of integrating AI into future air force intelligence systems

    Google Scholar 

  32. Rizwan M, Aleena S, Shakil M et al (2020) A computational insight of electronic and optical properties of Cd-doped BaZrO3. Chinese J Phys 66:318–326

    Article  CAS  Google Scholar 

  33. Al Azar S, Al-Zoubi I, Mousa AA et al (2021) Investigation of electronic, optical and thermoelectric properties of perovskite BaTMO3 (TM = Zr, Hf): First principles calculations. J Alloys Compd 887:161361

    Article  Google Scholar 

  34. Husain J, Anvarullha M, Raghu N et al. DC Conductivity studies on polyethylene oxide/nickel ferrite composites

    Google Scholar 

  35. Sunarso J, Baumann S, Serra JM et al (2008) Mixed ionic–electronic conducting (MIEC) ceramic-based membranes for oxygen separation. J Membr Sci 320:13–41

    Article  CAS  Google Scholar 

  36. Gilardi E, Fabbri E, Bi L et al (2017) Effect of dopant–host ionic radii mismatch on acceptor-doped barium zirconate microstructure and proton conductivity. J Phys Chem C 121:9739–9747

    Article  CAS  Google Scholar 

  37. Fu C-F, Wu X, Yang J (2018) Material design for photocatalytic water splitting from a theoretical perspective. Adv Mater 30:1802106

    Article  Google Scholar 

  38. Fajrina N, Tahir M (2019) A critical review in strategies to improve photocatalytic water splitting towards hydrogen production. Int J Hydrogen Energy 44:540–577

    Article  CAS  Google Scholar 

  39. Lin L, Hisatomi T, Chen S et al (2020) Visible-light-driven photocatalytic water splitting: recent progress and challenges. Trends Chem 2:813–824

    Article  CAS  Google Scholar 

  40. Cao S, Piao L (2020) Considerations for a more accurate evaluation method for photocatalytic water splitting. Angew Chem Int Ed 59:18312–18320

    Article  CAS  Google Scholar 

  41. Yuan Y, Zhang X, Liu L et al (2008) Synthesis and photocatalytic characterization of a new photocatalyst BaZrO3. Int J Hydrogen Energy 33:5941–5946

    Article  CAS  Google Scholar 

  42. Jun A, Ju Y-W, Kim G (2015) Solid oxide electrolysis: concluding remarks. Faraday Discuss 182:519–528

    Article  CAS  Google Scholar 

  43. Jun A, Kim J, Shin J, Kim G (2016) Achieving high efficiency and eliminating degradation in solid oxide electrochemical cells using high oxygen-capacity perovskite. Angew Chem Int Ed 55:12512–12515

    Article  CAS  Google Scholar 

  44. Luo M, Lu P, Yao W et al (2016) Shape and composition effects on photocatalytic hydrogen production for Pt–Pd alloy cocatalysts. ACS Appl Mater Interfaces 8:20667–20674

    Article  CAS  Google Scholar 

  45. Qin J, Zeng H (2017) Photocatalysts fabricated by depositing plasmonic Ag nanoparticles on carbon quantum dots/graphitic carbon nitride for broad spectrum photocatalytic hydrogen generation. Appl Catal B Environ 209:161–173

    Article  CAS  Google Scholar 

  46. Rather RA, Singh S, Pal B (2017) AC3N4 surface passivated highly photoactive Au-TiO2 tubular nanostructure for the efficient H2 production from water under sunlight irradiation. Appl Catal B Environ 213:9–17

    Article  CAS  Google Scholar 

  47. Kumar N (2016) Bulletproof vest and its improvement–a review. Int J Sci Dev Res 1:34–39

    Google Scholar 

  48. Samir NS, Radwan MA, Sadek MA, Elazab HA (2018) Preparation and characterization of bullet-proof vests based on polyamide fibers. Int J Eng Technol 7:1290–1294

    Article  CAS  Google Scholar 

  49. Tepeduzu B, Karakuzu R (2019) Ballistic performance of ceramic/composite structures. Ceram Int 45:1651–1660

    Article  CAS  Google Scholar 

  50. Nurazzi NM, Asyraf MRM, Khalina A et al (2021) A review on natural fiber reinforced polymer composite for bullet proof and ballistic applications. Polymers (Basel) 13:646

    Article  CAS  Google Scholar 

  51. Reddy PRS, Savio SG, Madhu V (2020) Ceramic composite armour for ballistic protection. Handbook of advanced ceramics and composites: defense, security, aerospace and energy applications, pp 357–402

    Google Scholar 

  52. Zhang J, Liu Z, Zhang T et al (2021) High strain response and low hysteresis in BaZrO3-modified KNN-based lead-free relaxor ceramics. J Mater Sci Mater Electron 32:16715–16725

    Article  CAS  Google Scholar 

  53. Li F, Wu S, Li T et al (2020) Normal-relaxor ferroelectric phase transition induced morphotropic phase boundary accompanied by enhanced piezoelectric and electrostrain properties in strontium modulated Bi0.5K0.5TiO3 lead-free ceramics. J Eur Ceram Soc 40:3918–3927

    Article  CAS  Google Scholar 

  54. Yin Y, Tang Y, Pan W et al (2021) Relaxor behaviors enhance piezoelectricity in lead-free BiFeO3-BaTiO3 ceramics incorporated with a tiny amount of Bi(Mg1/2Ti1/2)O3 near the morphotropic phase boundary. Ceram Int 47:9486–9494

    Article  CAS  Google Scholar 

  55. Wu L, Zheng T, Wu J (2022) Excellent fatigue resistance in Sb nonstoichiometric KNN-based ceramics by engineering relaxor multiphase state. J Eur Ceram Soc 42:4888–4897

    Article  CAS  Google Scholar 

  56. Singh K, Kannan R, Thangadurai V (2019) Perspective of perovskite-type oxides for proton conducting solid oxide fuel cells. Solid State Ionics 339:114951

    Article  CAS  Google Scholar 

  57. Cathcart JV, Perkins RA, Bates JB, Manley LC (1979) Tritium diffusion in rutile (TiO2). J Appl Phys 50:4110–4119

    Article  CAS  Google Scholar 

  58. Stotz S, Wagner C (1966) Die löslichkeit von wasserdampf und wasserstoff in festen oxiden. Berichte der Bunsengesellschaft für physikalische Chemie 70:781–788

    Google Scholar 

  59. Zhang Z, Chen L, Li Q et al (2018) High performance In, Ta and Y-doped BaCeO3 electrolyte membrane for proton-conducting solid oxide fuel cells. Solid State Ionics 323:25–31

    Article  CAS  Google Scholar 

  60. Yokokawa H (2009) Overview of intermediate-temperature solid oxide fuel cells. Perovskite oxide solid oxide fuel cells, pp 17–43

    Google Scholar 

  61. Choudhury A, Chandra H, Arora A (2013) Application of solid oxide fuel cell technology for power generation—a review. Renew Sustain Energy Rev 20:430–442

    Article  CAS  Google Scholar 

  62. Tarragó DP, Moreno B, Chinarro Martín E, de Sousa VC (2016) Perovskites used in fuel cells. Pan L, Zhu G (eds) Perovskite Materials: synthesis, characterisation, properties, and applications [recurso eletrônico] [Rijeka, Croatia], chap 21. InTech, pp 619–637

    Google Scholar 

  63. Chambi‐Rocha A, Cabrera‐Domínguez ME, Domínguez‐Reyes A (2018) Breathing mode influence on craniofacial development and head posture. J Pediatr (Versão em Port) 94:123–130

    Google Scholar 

  64. Li P, Yang W, Tian C et al (2021) Electrochemical performance of La2NiO4+δ-Ce0.55 La0.45O2δ as a promising bifunctional oxygen electrode for reversible solid oxide cells. J Adv Ceram 10:328–337

    Article  CAS  Google Scholar 

  65. Wang W, Medvedev D, Shao Z (2018) Gas humidification impact on the properties and performance of perovskite-type functional materials in proton-conducting solid oxide cells. Adv Funct Mater 28:1802592

    Article  Google Scholar 

  66. Horita T, Yokokawa H (2005) Solid oxide fuel cells. In: Materials for energy conversion devices. Elsevier, pp 140–173

    Google Scholar 

  67. Anjaneya KC, Nayaka GP, Manjanna J et al (2013) Preparation and characterization of Ce1xGdxO2δ (x = 0.1–0.3) as solid electrolyte for intermediate temperature SOFC. J Alloys Compd 578:53–59

    Article  CAS  Google Scholar 

  68. Steele BCH (1994) Oxygen transport and exchange in oxide ceramics. J Power Sources 49:1–14

    Article  CAS  Google Scholar 

  69. Jaiswal N, Tanwar K, Suman R et al (2019) A brief review on ceria based solid electrolytes for solid oxide fuel cells. J Alloys Compd 781:984–1005

    Article  CAS  Google Scholar 

  70. Guo X, Waser R (2006) Electrical properties of the grain boundaries of oxygen ion conductors: acceptor-doped zirconia and ceria. Prog Mater Sci 51:151–210

    Article  CAS  Google Scholar 

  71. Mendonça C, Santos DMF (2021) Towards the commercialization of solid oxide fuel cells: recent advances in materials and integration strategies. Fuels 2:393–419

    Google Scholar 

  72. Kreuer K-D (2003) Proton-conducting oxides. Annu Rev Mater Res 33:333–359

    Article  CAS  Google Scholar 

  73. Fu Y-P, Weng C-S (2014) Effect of rare-earth ions doped in BaCeO3 on chemical stability, mechanical properties, and conductivity properties. Ceram Int 40:10793–10802

    Article  CAS  Google Scholar 

  74. Li J, Wang C, Wang X, Bi L (2020) Sintering aids for proton-conducting oxides—a double-edged sword? A mini review. Electrochem Commun 112:106672

    Article  CAS  Google Scholar 

  75. Tarutin A, Kasyanova A, Lyagaeva J et al (2020) Towards high-performance tubular-type protonic ceramic electrolysis cells with all-Ni-based functional electrodes. J Energy Chem 40:65–74

    Article  Google Scholar 

  76. Fabbri E, Pergolesi D, Traversa E (2010) Materials challenges toward proton-conducting oxide fuel cells: a critical review. Chem Soc Rev 39:4355–4369

    Article  CAS  Google Scholar 

  77. Zhang W, Hu YH (2021) Progress in proton-conducting oxides as electrolytes for low-temperature solid oxide fuel cells: from materials to devices. Energy Sci Eng 9:984–1011

    Article  CAS  Google Scholar 

  78. Meng Y, Gao J, Zhao Z et al (2019) recent progress in low-temperature proton-conducting ceramics. J Mater Sci 54:9291–9312

    Article  CAS  Google Scholar 

  79. Islam MS, Nolan AM, Wang S et al (2020) A computational study of fast proton diffusion in Brownmillerite Sr2Co2O5. Chem Mater 32:5028–5035

    Article  CAS  Google Scholar 

  80. Hossain MK, Biswas MC, Chanda RK et al (2021) A review on experimental and theoretical studies of perovskite barium zirconate proton conductors. Emerg Mater 4:999–1027. https://doi.org/10.1007/s42247-021-00230-5

    Article  CAS  Google Scholar 

  81. Hossain S, Abdalla AM, Jamain SNB et al (2017) A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells. Renew Sustain Energy Rev 79:750–764

    Article  CAS  Google Scholar 

  82. Kreuer K-D (1996) Proton conductivity: materials and applications. Chem Mater 8:610–641

    Article  CAS  Google Scholar 

  83. Vera CYR, Ding H, Peterson D et al (2021) A mini-review on proton conduction of BaZrO3-based perovskite electrolytes. J Phys Energy 3:32019

    Article  CAS  Google Scholar 

  84. Lim D, Kitagawa H (2021) Rational strategies for proton-conductive metal–organic frameworks. Chem Soc Rev https://doi.org/10.1039/d1cs00004g

  85. **g J, Pang J, Chen L et al (2022) Structure, synthesis, properties and solid oxide electrolysis cells application of Ba(Ce, Zr)O3 based proton conducting materials. Chem Eng J 429:132314. https://doi.org/10.1016/j.cej.2021.132314

    Article  CAS  Google Scholar 

  86. Fischer SA, Gunlycke D (2019) Analysis of correlated dynamics in the Grotthuss mechanism of proton diffusion. J Phys Chem B 123:5536–5544

    Article  CAS  Google Scholar 

  87. Gupta A, Goswami S, Elahi SM, Konar S (2021) Role of Framework–carrier interactions in proton-conducting crystalline porous materials. Cryst Growth Des. https://doi.org/10.1021/acs.cgd.0c01394

  88. Papac M, Stevanović V, Zakutayev A, O’Hayre R (2021) Triple ionic–electronic conducting oxides for next-generation electrochemical devices. Nat Mater 20:301–313

    Article  CAS  Google Scholar 

  89. Li S, Irvine JTS (2021) Non-stoichiometry, structure and properties of proton-conducting perovskite oxides. Solid State Ionics 361:115571

    Article  CAS  Google Scholar 

  90. Xu X, Xu Y, Ma J et al (2021) Tailoring electronic structure of perovskite cathode for proton-conducting solid oxide fuel cells with high performance. J Power Sources 489:1–9. https://doi.org/10.1016/j.jpowsour.2021.229486

    Article  CAS  Google Scholar 

  91. Zhao C, Li Y, Zhang W et al (2020) Heterointerface engineering for enhancing the electrochemical performance of solid oxide cells. Energy Environ Sci 13:53–85

    Article  Google Scholar 

  92. Tao Z, Yan L, Qiao J et al (2015) A review of advanced proton-conducting materials for hydrogen separation. Prog Mater Sci 74:1–50

    Article  CAS  Google Scholar 

  93. Stambouli AB, Traversa E (2002) Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renew Sustain Energy Rev 6:433–455

    Article  CAS  Google Scholar 

  94. Jamsak W, Assabumrungrat S, Douglas PL et al (2007) Performance of ethanol-fuelled solid oxide fuel cells: proton and oxygen ion conductors. Chem Eng J 133:187–194

    Article  CAS  Google Scholar 

  95. Medvedev D, Murashkina A, Pikalova E et al (2014) BaCeO3: materials development, properties and application. Prog Mater Sci 60:72–129

    Article  CAS  Google Scholar 

  96. Lan R, Tao S (2013) Proton-conducting materials as electrolytes for solid oxide fuel cells. Mater High-Temp Fuel Cells 133–158

    Google Scholar 

  97. Medvedev DA, Lyagaeva JG, Gorbova EV et al (2016) Advanced materials for SOFC application: strategies for the development of highly conductive and stable solid oxide proton electrolytes. Prog Mater Sci 75:38–79

    Article  CAS  Google Scholar 

  98. Liu JF, Nowick AS (1992) The incorporation and migration of protons in Nd-doped BaCeO3. Solid State Ionics 50:131–138

    Article  CAS  Google Scholar 

  99. Saparov B, Mitzi DB (2016) Organic–inorganic perovskites: structural versatility for functional materials design. Chem Rev 116:4558–4596

    Article  CAS  Google Scholar 

  100. Gao P, Bin Mohd Yusoff AR, Nazeeruddin MK (2018) Dimensionality engineering of hybrid halide perovskite light absorbers. Nat Commun 9:5028

    Article  Google Scholar 

  101. Euvrard J, Yan Y, Mitzi DB (2021) Electrical do** in halide perovskites. Nat Rev Mater 6:531–549

    Article  CAS  Google Scholar 

  102. Jacobson AJ, Tofield BC, Fender BEF (1972) The structures of BaCeO3, BaPrO3 and BaTbO3 by neutron diffraction: lattice parameter relations and ionic radii in O-perovskites. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 28:956–961

    Google Scholar 

  103. Yamanaka S, Fujikane M, Hamaguchi T et al (2003) Thermophysical properties of BaZrO3 and BaCeO3. J Alloys Compd 359:109–113

    Article  CAS  Google Scholar 

  104. Matsumoto H, Kawasaki Y, Ito N et al (2007) Relation between electrical conductivity and chemical stability of BaCeO3-based proton conductors with different trivalent dopants. Electrochem Solid-State Lett 10:B77

    Article  CAS  Google Scholar 

  105. Münch W, Seifert G, Kreuer KD, Maier J (1996) A quantum molecular dynamics study of proton conduction phenomena in BaCeO3. Solid State Ionics 86:647–652

    Article  Google Scholar 

  106. Scherban T, Villeneuve R, Abello L, Lucazeau G (1993) Raman scattering study of acceptor-doped BaCeO3. Solid State Ionics 61:93–98

    Article  CAS  Google Scholar 

  107. Zhao F, Chen F (2010) Performance of solid oxide fuel cells based on proton-conducting BaCe0.7In0.3xYxO3δ electrolyte. Int J Hydrogen Energy 35:11194–11199

    Article  CAS  Google Scholar 

  108. Affandi NSM, Zainor ML, Hassan OH et al (2022) Review on the preparation of electrolyte thin films based on cerate-zirconate oxides for electrochemical analysis of anode-supported proton ceramic fuel cells. J Alloys Compd 165434

    Google Scholar 

  109. Pİşkİn B, Pİşkİn F (2022) Production and characterization of sputtered Y-doped BaZrO3 for proton conducting oxides. JOM 74:4181–4187

    Google Scholar 

  110. Baharuddin NA, Abd Rahman H, Samat AA et al (2023) Perovskite-structured ceramics in solid oxide fuel cell application. In: Perovskite ceramics. Elsevier, pp 221–261

    Google Scholar 

  111. Shen H-Z, Guo N, Shen P (2023) Synthesis and densification of BaZrO3 ceramics by reactive cold sintering of Ba(OH)2⋅8H2O-Zr(OH)4 powders. J Eur Ceram Soc 43:392–400

    Article  CAS  Google Scholar 

  112. Rizi VS (2019) Ce Pte Us Pt. Mater Res Express 0–12

    Google Scholar 

  113. Jeong Y-C, Kim B-K, Kim Y-C (2014) Proton migration in bulk orthorhombic barium cerate using density functional theory. Solid State Ionics 259:1–8

    Article  CAS  Google Scholar 

  114. Iguchi F, Tsurui T, Sata N et al (2009) The relationship between chemical composition distributions and specific grain boundary conductivity in Y-doped BaZrO3 proton conductors. Solid State Ionics 180:563–568

    Article  CAS  Google Scholar 

  115. Makagon E, Merkle R, Maier J, Lubomirsky I (2020) Influence of hydration and dopant ionic radius on the elastic properties of BaZrO3. Solid State Ionics 344:115130

    Article  CAS  Google Scholar 

  116. Yamazaki Y, Blanc F, Okuyama Y et al (2013) Proton trap** in yttrium-doped barium zirconate. Nat Mater 12:647–651

    Article  CAS  Google Scholar 

  117. Draber FM, Ader C, Arnold JP et al (2020) Nanoscale percolation in doped BaZrO3 for high proton mobility. Nat Mater 19:338–346

    Article  CAS  Google Scholar 

  118. Bork N, Bonanos N, Rossmeisl J, Vegge T (2010) Simple descriptors for proton-conducting perovskites from density functional theory. Phys Rev B 82:14103

    Article  Google Scholar 

  119. Kochetova N, Animitsa I, Medvedev D et al (2016) Recent activity in the development of proton-conducting oxides for high-temperature applications. Rsc Adv 6:73222–73268

    Article  CAS  Google Scholar 

  120. Sunarso J, Hashim SS, Zhu N, Zhou W (2017) Perovskite oxides applications in high temperature oxygen separation, solid oxide fuel cell and membrane reactor: a review. Prog Energy Combust Sci 61:57–77

    Article  Google Scholar 

  121. Alberti G, Casciola M (2001) Solid state protonic conductors, present main applications and future prospects. Solid State Ionics 145:3–16

    Article  CAS  Google Scholar 

  122. Zhou Y, Guan X, Zhou H et al (2016) Strongly correlated perovskite fuel cells. Nature 534:231–234

    Article  CAS  Google Scholar 

  123. Levin I, Han M-G, Playford HY et al (2021) Nanoscale-correlated octahedral rotations in BaZrO3. Phys Rev B 104:214109

    Article  CAS  Google Scholar 

  124. Perrichon A, Jedvik Granhed E, Romanelli G et al (2020) Unraveling the ground-state structure of BaZrO3 by neutron scattering experiments and first-principles calculations. Chem Mater 32:2824–2835

    Article  CAS  Google Scholar 

  125. Muñoz-García AB, Massaro A, Schiavo E, Pavone M (2020) Tuning perovskite-based oxides for effective electrodes in solid oxide electrochemical cells. In: Solid oxide-based electrochemical devices. Elsevier, pp 1–25

    Google Scholar 

  126. Bartel CJ, Sutton C, Goldsmith BR et al (2019) New tolerance factor to predict the stability of perovskite oxides and halides. Sci Adv 5:eaav0693

    Google Scholar 

  127. Mburu CW, Gaita SM, Knee CS et al (2017) Influence of yttrium concentration on local structure in BaZr1xYxO3δ based proton conductors. J Phys Chem C 121:16174–16181. https://doi.org/10.1021/acs.jpcc.7b05023

    Article  CAS  Google Scholar 

  128. Medvedev D, Lyagaeva J, Plaksin S et al (2015) Sulfur and carbon tolerance of BaCeO3–BaZrO3 proton-conducting materials. J Power Sources 273:716–723

    Article  CAS  Google Scholar 

  129. Medvedev DA (2021) Current drawbacks of proton-conducting ceramic materials: how to overcome them for real electrochemical purposes. Curr Opin Green Sustain Chem 32:100549. https://doi.org/10.1016/j.cogsc.2021.100549

    Article  CAS  Google Scholar 

  130. Zohourian R, Merkle R, Maier J (2017) Proton uptake into the protonic cathode material BaCo0.4Fe0.4Zr0.2O3δ and comparison to protonic electrolyte materials. Solid State Ionics 299:64–69

    Article  CAS  Google Scholar 

  131. Mazzei L, Perrichon A, Mancini A et al (2019) Local structure and vibrational dynamics in indium-doped barium zirconate. J Mater Chem A 7:7360–7372

    Article  CAS  Google Scholar 

  132. Poolphol P, Muanghlua R, Atiwongsangthong N et al (2019) The study of trivalent-dopants effect on electrical properties of the BaZr0.7In0.3O3δ system. Integr Ferroelectr 195:109–118

    Article  CAS  Google Scholar 

  133. Andreev R, Korona D, Anokhina I, Animitsa I (2022) Proton and oxygen-ion conductivities of hexagonal perovskite Ba5In2Al2ZrO13. Materials (Basel) 15:3944

    Article  CAS  Google Scholar 

  134. Hossain MK, Chanda R, El-Denglawey A et al (2021) Recent progress in barium zirconate proton conductors for electrochemical hydrogen device applications: a review. Ceram Int 47:23725–23748

    Article  CAS  Google Scholar 

  135. Yang Z-B, Han M-F, Zhu P et al (2011) Ba1xCo0.9yFeyNb0.1O3δ (x = 0–0.15, y = 0–0.9) as cathode materials for solid oxide fuel cells. Int J Hydrogen Energy 36:9162–9168

    Article  CAS  Google Scholar 

  136. Yang Z, Liu Y, Zhu T et al (2016) Mechanism analysis of CO2 corrosion on Ba0.9Co0.7Fe0.2Nb0.1O3δ cathode. Int J Hydrogen Energy 41:1997–2001

    Article  CAS  Google Scholar 

  137. D’Epifanio A, Fabbri E, Di Bartolomeo E et al (2008) Design of BaZr0.8Y0.2O3δ protonic conductor to improve the electrochemical performance in intermediate temperature solid oxide fuel cells (IT-SOFCs). Fuel Cells 8:69–76. https://doi.org/10.1002/fuce.200700045

    Article  CAS  Google Scholar 

  138. Krug F, Schober T, Springer T (1995) In situ measurements of the water uptake in Yb doped SrCeO3. Solid State Ionics 81:111–118

    Article  CAS  Google Scholar 

  139. Han D, Toyoura K, Uda T (2021) Protonated BaZr0.8Y0.2O3δ: impact of hydration on electrochemical conductivity and local crystal structure. ACS Appl Energy Mater 4:1666–1676

    Article  CAS  Google Scholar 

  140. Stevenson DA, Jiang N, Buchanan RM, Henn FEG (1993) Characterization of Gd, Yb and Nd doped barium cerates as proton conductors. Solid State Ionics 62:279–285

    Article  CAS  Google Scholar 

  141. Iwahara H, Esaka T, Uchida H, Maeda N (1981) Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ionics 3:359–363

    Article  Google Scholar 

  142. Iwahara H, Uchida H, Ono K, Ogaki K (1988) Proton conduction in sintered oxides based on BaCeO3. J Electrochem Soc 135:529

    Google Scholar 

  143. Gu Y-J, Liu Z-G, Ouyang J-H et al (2013) Structure and electrical conductivity of BaCe0.85Ln0.15O3δ (Ln = Gd, Y, Yb) ceramics. Electrochim Acta 105:547–553

    Article  CAS  Google Scholar 

  144. Medvedev DA, Gorbova EV, Demin AK, Tsiakaras P (2014) Conductivity of Gd-doped BaCeO3 protonic conductor in H2–H2O–O2 atmospheres. Int J Hydrogen Energy 39:21547–21552

    Article  CAS  Google Scholar 

  145. Lim D-K, Lee T-R, Singh B et al (2014) Charge and mass transport properties of BaCe0.45Zr0.4Y0.15O3−δ. J Electrochem Soc 161:F710

    Google Scholar 

  146. Shao Z, Zhou W, Zhu Z (2012) Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells. Prog Mater Sci 57:804–874

    Article  CAS  Google Scholar 

  147. Haugsrud R (2016) High temperature proton conductors-fundamentals and functionalities. Diffusion Foundations, pp 31–79

    Google Scholar 

  148. Park J-S, Lee J-H, Lee H-W, Kim B-K (2010) Low temperature sintering of BaZrO3-based proton conductors for intermediate temperature solid oxide fuel cells. Solid State Ionics 181:163–167

    Article  CAS  Google Scholar 

  149. Shin EK, Anggia E, Park JS (2019) Effects of Al2O3 do** in BaCeO3 on chemical stability and electrical conductivity of proton conducting oxides. Solid State Ionics 339:2–7. https://doi.org/10.1016/j.ssi.2019.115007

    Article  CAS  Google Scholar 

  150. Exner J, Nazarenus T, Kita J, Moos R (2020) Dense Y-doped ion conducting perovskite films of BaZrO3, BaSnO3, and BaCeO3 for SOFC applications produced by powder aerosol deposition at room temperature. Int J Hydrogen Energy 45:10000–10016

    Article  CAS  Google Scholar 

  151. Fabbri E, Bi L, Tanaka H et al (2011) Chemically stable Pr and Y co-doped barium zirconate electrolytes with high proton conductivity for intermediate-temperature solid oxide fuel cells. Adv Funct Mater 21:158–166

    Article  CAS  Google Scholar 

  152. Han D, Shinoda K, Sato S et al (2015) Correlation between electroconductive and structural properties of proton conductive acceptor-doped barium zirconate. J Mater Chem A 3:1243–1250

    Article  CAS  Google Scholar 

  153. Gonçalves MD, Maram PS, Navrotsky A, Muccillo R (2016) Effect of synthesis atmosphere on the proton conductivity of Y-doped barium zirconate solid electrolytes. Ceram Int 42:13689–13696

    Article  Google Scholar 

  154. Zhu Z, Sun W, Shi Z, Liu W (2016) Proton-conducting solid oxide fuel cells with yttrium-doped barium zirconate electrolyte films sintered at reduced temperatures. J Alloys Compd 658:716–720

    Article  CAS  Google Scholar 

  155. Bi L, Shafi SP, Da’as EH, Traversa E (2018) Tailoring the cathode–electrolyte interface with nanoparticles for boosting the solid oxide fuel cell performance of chemically stable proton-conducting electrolytes. Small 14:1801231

    Google Scholar 

  156. Demin AK, Tsiakaras PE, Sobyanin VA, Hramova SY (2002) Thermodynamic analysis of a methane fed SOFC system based on a protonic conductor. Solid State Ionics 152:555–560

    Article  Google Scholar 

  157. Assabumrungrat S, Sangtongkitcharoen W, Laosiripojana N et al (2005) Effects of electrolyte type and flow pattern on performance of methanol-fuelled solid oxide fuel cells. J Power Sources 148:18–23

    Article  CAS  Google Scholar 

  158. Sun W, Zhu Z, Shi Z, Liu W (2013) Chemically stable and easily sintered high-temperature proton conductor BaZr0.8In0.2O3δ for solid oxide fuel cells. J Power Sources 229:95–101

    Article  CAS  Google Scholar 

  159. Cervera RB, Oyama Y, Miyoshi S et al (2014) Nanograined Sc-doped BaZrO3 as a proton conducting solid electrolyte for intermediate temperature solid oxide fuel cells (IT-SOFCs). Solid State Ionics 264:1–6

    Article  CAS  Google Scholar 

  160. Yoo Y, Lim N (2013) Performance and stability of proton conducting solid oxide fuel cells based on yttrium-doped barium cerate-zirconate thin-film electrolyte. J Power Sources 229:48–57

    Article  CAS  Google Scholar 

  161. Ding J, Balachandran J, Sang X et al (2018) The influence of local distortions on proton mobility in acceptor doped perovskites. Chem Mater 30:4919–4925. https://doi.org/10.1021/acs.chemmater.8b00502

    Article  CAS  Google Scholar 

  162. Zhu Z, Wang S (2019) Investigation on samarium and yttrium co-do** barium zirconate proton conductors for protonic ceramic fuel cells. Ceram Int 45:19289–19296

    Article  CAS  Google Scholar 

  163. Loureiro FJA, Nasani N, Reddy GS et al (2019) A review on sintering technology of proton conducting BaCeO3-BaZrO3 perovskite oxide materials for protonic ceramic fuel cells. J Power Sources 438:226991

    Article  CAS  Google Scholar 

  164. Tao Z, Xu X, Bi L (2021) Density functional theory calculations for cathode materials of proton-conducting solid oxide fuel cells: a mini-review. Electrochem commun 129:107072

    Article  CAS  Google Scholar 

  165. Sonu BK, Sinha E (2021) Structural, thermal stability and electrical conductivity of zirconium substituted barium cerate ceramics. J Alloys Compd 860:158471

    Article  CAS  Google Scholar 

  166. Iwahara H, Asakura Y, Katahira K, Tanaka M (2004) Prospect of hydrogen technology using proton-conducting ceramics. Solid State Ionics 168:299–310

    Article  CAS  Google Scholar 

  167. Bévillon É, Hermet J, Dezanneau G, Geneste G (2014) How dopant size influences the protonic energy landscape in BaSn1xMxO3x/2 (M= Ga, Sc, In, Y, Gd, La). J Mater Chem A 2:460–471

    Article  Google Scholar 

  168. Shakel Z, Loureiro FJA, Antunes I et al (2022) Tailoring the properties of dense yttrium-doped barium zirconate ceramics with nickel oxide additives by manipulation of the sintering profile. Int J Energy Res 46:21989–22000

    Article  CAS  Google Scholar 

  169. Li X, Li Z, Zhu Y (2022) Effect of CoO–NiO additives on the microstructure and mechanical properties of microcrystalline corundum abrasives with in-situ formed needle-shaped LaAl11O18. Ceram Int 48:33794–33800

    Article  CAS  Google Scholar 

  170. Leng Z, Huang Z, Zhou X et al (2022) The effect of sintering aids on BaCe0.7Zr0.1Y0.1Yb0.1O3δ as the electrolyte of proton-conducting solid oxide electrolysis cells. Int J Hydrogen Energy 47:33861–33871

    Article  CAS  Google Scholar 

  171. Babar ZUD, Hanif MB, Gao J-T et al (2022) Sintering behavior of BaCe0.7Zr0.1Y0.2O3δ electrolyte at 1150° C with the utilization of CuO and Bi2O3 as sintering aids and its electrical performance. Int J Hydrogen Energy 47:7403–7414

    Article  CAS  Google Scholar 

  172. Lindman A, Helgee EE, Wahnstrom G (2017) Comparison of space-charge formation at grain boundaries in proton-conducting BaZrO3 and BaCeO3. Chem Mater 29:7931–7941

    Article  CAS  Google Scholar 

  173. Polfus JM, Pishahang M, Bredesen R (2018) Influence of Ce3+ polarons on grain boundary space-charge in proton conducting Y-doped BaCeO3. Phys Chem Chem Phys 20:16209–16215

    Article  CAS  Google Scholar 

  174. Somekawa T, Matsuzaki Y, Sugahara M et al (2017) Physicochemical properties of Ba(Zr, Ce)O3δ-based proton-conducting electrolytes for solid oxide fuel cells in terms of chemical stability and electrochemical performance. Int J Hydrogen Energy 42:16722–16730

    Article  CAS  Google Scholar 

  175. Pasierb P, Wierzbicka M, Komornicki S, Rekas M (2009) Electrochemical impedance spectroscopy of BaCeO3 modified by Ti and Y. J Power Sources 194:31–37

    Article  CAS  Google Scholar 

  176. De Souza RA, Dickey EC (2019) The effect of space-charge formation on the grain-boundary energy of an ionic solid. Philos Trans R Soc A 377:20180430

    Article  Google Scholar 

  177. Nasani N, Shakel Z, Loureiro FJA et al (2021) Exploring the impact of sintering additives on the densification and conductivity of BaCe0.3Zr0.55Y0.15O3−δ electrolyte for protonic ceramic fuel cells. J Alloys Compd 862:158640

    Google Scholar 

  178. Kim H-W, Seo J, Yu JH et al (2021) Effect of cerium on yttrium-doped barium zirconate with a ZnO sintering aid: grain and grain boundary protonic conduction. Ceram Int 47:32720–32726

    Article  CAS  Google Scholar 

  179. Hudish G, Manerbino A, Coors WG, Ricote S (2018) Chemical expansion in BaZr0.9xCexY0.1O3δ (x = 0 and 0.2) upon hydration determined by high-temperature X-ray diffraction. J Am Ceram Soc 101:1298–1309

    Article  CAS  Google Scholar 

  180. Tarancón A, Skinner SJ, Chater RJ et al (2007) Layered perovskites as promising cathodes for intermediate temperature solid oxide fuel cells. J Mater Chem 17:3175–3181

    Article  Google Scholar 

  181. Choi S, Yoo S, Kim J et al (2013) Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: PrBa0.5Sr0.5Co2−xFexO5+δ. Sci Rep 3:2426

    Google Scholar 

  182. Haile SM (2003) Fuel cell materials and components. Acta Mater 51:5981–6000

    Article  CAS  Google Scholar 

  183. Wachsman ED, Lee KT (2011) Lowering the temperature of solid oxide fuel cells. Science 80(334):935–939

    Article  Google Scholar 

  184. Zhao Y, **a C, Jia L et al (2013) Recent progress on solid oxide fuel cell: lowering temperature and utilizing non-hydrogen fuels. Int J Hydrogen Energy 38:16498–16517

    Article  CAS  Google Scholar 

  185. Kim J, Choi S, Jun A et al (2014) Chemically stable perovskites as cathode materials for solid oxide fuel cells: La-doped Ba0.5Sr0.5Co0.8Fe0.2O3δ. Chemsuschem 7:1669–1675

    Article  CAS  Google Scholar 

  186. Bohn HG, Schober T (2000) Electrical conductivity of the high-temperature proton conductor BaZr0.9Y0.1O2.95. J Am Ceram Soc 83:768–772

    Article  CAS  Google Scholar 

  187. Fabbri E, Pergolesi D, Licoccia S, Traversa E (2010) Does the increase in Y-dopant concentration improve the proton conductivity of BaZr1xYxO3δ fuel cell electrolytes? Solid State Ionics 181:1043–1051

    Article  CAS  Google Scholar 

  188. Kim J, Sengodan S, Kim S et al (2019) Proton conducting oxides: a review of materials and applications for renewable energy conversion and storage. Renew Sustain Energy Rev 109:606–618. https://doi.org/10.1016/j.rser.2019.04.042

    Article  CAS  Google Scholar 

  189. Shao Z, Tadé MO (2016) Intermediate-temperature solid oxide fuel cells. Chem Soc Rev 37:1568

    Google Scholar 

  190. Da Silva FS, de Souza TM (2017) Novel materials for solid oxide fuel cell technologies: a literature review. Int J Hydrogen Energy 42:26020–26036

    Article  Google Scholar 

  191. Abdalla AM, Hossain S, Azad AT et al (2018) Nanomaterials for solid oxide fuel cells: a review. Renew Sustain Energy Rev 82:353–368

    Article  CAS  Google Scholar 

  192. Wang F, Lyu Y, Chu D et al (2019) The electrolyte materials for SOFCs of low-intermediate temperature. Mater Sci Technol 35:1551–1562

    Article  Google Scholar 

  193. Boldrin P, Brandon NP (2019) Progress and outlook for solid oxide fuel cells for transportation applications. Nat Catal 2:571–577

    Article  CAS  Google Scholar 

  194. Pikalova EY, Kalinina EG (2021) Approaches to improving efficiency of solid oxide fuel cells based on ceramic membranes with mixed conductivity. Russ Chem Rev 90

    Google Scholar 

  195. Prakash BS, Pavitra R, Kumar SS, Aruna ST (2018) Electrolyte bi-layering strategy to improve the performance of an intermediate temperature solid oxide fuel cell: a review. J Power Sources 381:136–155

    Article  Google Scholar 

  196. Kalinina E, Pikalova E, Ermakova L, Bogdanovich N (2021) Challenges of formation of thin-film solid electrolyte layers on non-conductive substrates by electrophoretic deposition. Coatings 11:805

    Article  CAS  Google Scholar 

  197. Pikalova E, Osinkin D, Kalinina E (2022) Direct electrophoretic deposition and characterization of thin-film membranes based on doped BaCeO3 and CeO2 for anode-supported solid oxide fuel cells. Membranes (Basel) 12:682. https://doi.org/10.3390/membranes12070682

    Article  CAS  Google Scholar 

  198. Lian Y, Zheng M (2020) Investigation of the electrochemical performance of anode-supported SOFCs under steady-state conditions. Int J Electrochem Sci 15:12475–12490

    Article  CAS  Google Scholar 

  199. Park B-K, Barnett SA (2020) Boosting solid oxide fuel cell performance via electrolyte thickness reduction and cathode infiltration. J Mater Chem A 8:11626–11631

    Article  CAS  Google Scholar 

  200. Norman NW, Somalu MR, Muchtar A (2018) A short review on the proton conducting electrolytes for solid oxide fuel cell applications. Akademia Baru 2:115–122

    Google Scholar 

  201. Sažinas R, Bernuy-López C, Einarsrud M-A, Grande T (2016) Effect of CO2 exposure on the chemical stability and mechanical properties of BaZrO3-ceramics. J Am Ceram Soc 99:3685–3695

    Article  Google Scholar 

  202. Polfus JM, Yildiz B, Tuller HL, Bredesen R (2018) Adsorption of CO2 and facile carbonate formation on BaZrO3 surfaces. J Phys Chem C 122:307–314

    Article  CAS  Google Scholar 

  203. Kim D-H, Kim B-K, Kim Y-C (2012) Energy barriers for proton migration in yttrium-doped barium zirconate super cell with $Σ$5 (310)/[001] tilt grain boundary. Solid State Ionics 213:18–21

    Article  CAS  Google Scholar 

  204. Lindman A, Helgee EE, Wahnström G (2017) Comparison of space-charge formation at grain boundaries in proton-conducting BaZrO3 and BaCeO3. Chem Mater 29:7931–7941. https://doi.org/10.1021/acs.chemmater.7b02829

    Article  CAS  Google Scholar 

  205. Ishihara T, Matsuda H, Takita Y (1994) Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor. J Am Chem Soc 116:3801–3803

    Article  CAS  Google Scholar 

  206. ** X, Abe H, Kuruma K et al (2014) Novel Co-precipitation method to synthesize NiO–YSZ nanocomposite powder for solid oxide fuel cell. Adv Powder Technol 25:490–494

    Article  CAS  Google Scholar 

  207. Yang W-D, Chang Y-H, Huang S-H (2005) Influence of molar ratio of citric acid to metal ions on preparation of La0.67Sr0.33MnO3 materials via polymerizable complex process. J Eur Ceram Soc 25:3611–3618

    Article  CAS  Google Scholar 

  208. Li P, Li F, Deng G et al (2016) Polymerized-complex method for preparation of supported bimetallic alloy and monometallic nanoparticles. Chem Commun 52:2996–2999

    Article  CAS  Google Scholar 

  209. Galceran M, Pujol MC, Aguiló M, Díaz F (2007) Sol-gel modified Pechini method for obtaining nanocrystalline KRE (WO4) 2 (RE = Gd and Yb). J Sol-Gel Sci Technol 42:79–88

    Google Scholar 

  210. Gao D, Guo R (2010) Yttrium-doped barium zirconate powders synthesized by the gel-casting method. J Am Ceram Soc 93:1572–1575

    CAS  Google Scholar 

  211. Abdullah NA, Osman N, Hasan S, Hassan OH (2012) Chelating agents role on thermal characteristics and phase formation of modified cerate-zirconate via sol-gel synthesis route. Int J Electrochem Sci 7:9401–9409

    Article  CAS  Google Scholar 

  212. Zhao H (2015) Research on impact of BaZr0.1Ce0.7Y0.2O3−δ electrolyte doped with a small amount of Al2O3 on the proton conducting solid oxide fuel cell. In: 5th international conference on information engineering for mechanics and materials, pp 1694–1700

    Google Scholar 

  213. Sabry F (2022) Multi function structure: future air force systems will become integrated into multi-function material airframes with embedded sensor, and network components. One Billion Knowledgeable

    Google Scholar 

  214. Kato K, Han D, Uda T (2019) Transport properties of proton conductive Y-doped BaHfO3 and Ca or Sr-substituted Y-doped BaZrO3

    Google Scholar 

  215. Rajendran S, Thangavel NK, Alkatie S et al (2021) Y, Gd, and Pr tri-doped perovskite-type proton conducting electrolytes with improved sinterability and chemical stability. J Alloys Compd 870:159431. https://doi.org/10.1016/j.jallcom.2021.159431

    Article  CAS  Google Scholar 

  216. Zhu B, Yang XT, Xu J et al (2003) Innovative low temperature SOFCs and advanced materials. J Power Sources 118:47–53

    Article  CAS  Google Scholar 

  217. Huang J, Gao Z, Mao Z (2010) Effects of salt composition on the electrical properties of samaria-doped ceria/carbonate composite electrolytes for low-temperature SOFCs. Int J Hydrogen Energy 35:4270–4275

    Article  CAS  Google Scholar 

  218. Xu P, Li Y, Liu T et al (2022) Electrochemical analysis of BaZr0.8Y0.2O3δ-Gd0.2Ce0.8O2δ composite electrolytes by distribution of relaxation time method. Ceram Int 48:12856–12865. https://doi.org/10.1016/j.ceramint.2022.01.157

    Article  CAS  Google Scholar 

  219. Laali KK, Greves WJ, Correa-Smits SJ et al (2018) Novel fluorinated curcuminoids and their pyrazole and isoxazole derivatives: synthesis, structural studies, computational/docking and in-vitro bioassay. J Fluor Chem 206:82–98

    Article  CAS  Google Scholar 

  220. Xu X, Bi L, Zhao XS (2018) Highly-conductive proton-conducting electrolyte membranes with a low sintering temperature for solid oxide fuel cells. J Membr Sci 558:17–25

    Article  CAS  Google Scholar 

  221. Sudhakar YN, Selvakumar M, Bhat DK (2018) Biopolymer electrolytes for fuel cell applications. Biopolym electrolytes, pp 151–166. https://doi.org/10.1016/b978-0-12-813447-4.00005-4

  222. Duval SBC, Holtappels P, Vogt UF, Pomjakushina E, Conder K, Stimming U, Graule T (2007) Solid State Ionics 178:1437

    Google Scholar 

  223. Liang F, Yang J, Zhao Y et al (2022) A review of thin film electrolytes fabricated by physical vapor deposition for solid oxide fuel cells. Int J Hydrogen Energy

    Google Scholar 

  224. Pergolesi D, Fabbri E, Traversa E (2010) Chemically stable anode-supported solid oxide fuel cells based on Y-doped barium zirconate thin films having improved performance. Electrochem commun 12:977–980

    Article  CAS  Google Scholar 

  225. Bae K, Jang DY, Choi HJ et al (2017) Demonstrating the potential of yttrium-doped barium zirconate electrolyte for high-performance fuel cells. Nat Commun 8:14553

    Article  CAS  Google Scholar 

  226. Fluri A, Marcolongo A, Roddatis V et al (2017) Enhanced proton conductivity in Y-doped BaZrO3 via strain engineering. Adv Sci 4:1700467

    Article  Google Scholar 

  227. Campos Covarrubias MS, Sriubas M, Bockute K et al (2020) Properties of barium cerate thin films formed using E-beam deposition. Crystals 10:1152

    Article  Google Scholar 

  228. Eddaoudi M, Kim J, Rosi N et al (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 80(295):469–472

    Article  Google Scholar 

  229. Kitagawa S, Kitaura R, Noro S (2004) Functional porous coordination polymers. Angew Chem Int Ed 43:2334–2375

    Article  CAS  Google Scholar 

  230. Férey G (2008) Hybrid porous solids: past, present, future. Chem Soc Rev 37:191–214

    Article  Google Scholar 

  231. Lim D-W, Kitagawa H (2021) Rational strategies for proton-conductive metal–organic frameworks. Chem Soc Rev 50:6349–6368

    Article  CAS  Google Scholar 

  232. Yu S, Wang Y, Bi L (2022) Tailoring BaCe0.8Y0.2O3δ proton-conducting oxide with U ions for an enhanced stability. Ceram Int 48:17987–17993

    Article  CAS  Google Scholar 

  233. Li J, Yu S, Bi L (2022) Sr-doped BaZr0.5Fe0.5O3δ cathode with improved chemical stability and higher performance for proton-conducting solid oxide fuel cells. Ceram Int 48:35642–35648

    Article  CAS  Google Scholar 

  234. Escorihuela J, Narducci R, Compañ V, Costantino F (2019) Proton conductivity of composite polyelectrolyte membranes with metal-organic frameworks for fuel cell applications. Adv Mater Interfaces 6:1–30. https://doi.org/10.1002/admi.201801146

    Article  CAS  Google Scholar 

  235. Li J-R, Sculley J, Zhou H-C (2012) Metal–organic frameworks for separations. Chem Rev 112:869–932

    Article  CAS  Google Scholar 

  236. Gascon J, Corma A, Kapteijn F, Xamena FX (2014) Metal organic framework catalysis: Quo vadis? Acs Catal 4:361–378

    Google Scholar 

  237. Wu HB, Lou XW (2017) Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: promises and challenges. Sci Adv 3:eaap9252

    Google Scholar 

  238. Wang Y, Zhao D (2017) Beyond equilibrium: metal–organic frameworks for molecular sieving and kinetic gas separation. Cryst Growth Des 17:2291–2308

    Article  CAS  Google Scholar 

  239. Zhu L, Liu X-Q, Jiang H-L, Sun L-B (2017) Metal–organic frameworks for heterogeneous basic catalysis. Chem Rev 117:8129–8176

    Article  CAS  Google Scholar 

  240. Chandra S, Kundu T, Kandambeth S et al (2014) Phosphoric acid loaded azo (-N=N-) based covalent organic framework for proton conduction. J Am Chem Soc 136:6570–6573

    Article  CAS  Google Scholar 

  241. Yin Y, Li Z, Yang X et al (2016) Enhanced proton conductivity of Nafion composite membrane by incorporating phosphoric acid-loaded covalent organic framework. J Power Sources 332:265–273

    Article  CAS  Google Scholar 

  242. Yang F, Xu G, Dou Y et al (2017) A flexible metal–organic framework with a high density of sulfonic acid sites for proton conduction. Nat Energy 2:877–883

    Article  CAS  Google Scholar 

  243. Meng Z, Aykanat A, Mirica KA (2018) Proton conduction in 2D aza-fused covalent organic frameworks. Chem Mater 31:819–825

    Article  Google Scholar 

  244. Xu H, Gao J, Jiang D (2015) Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nat Chem 7:905–912

    Article  CAS  Google Scholar 

  245. Waller PJ, Gándara F, Yaghi OM (2015) Chemistry of covalent organic frameworks. Acc Chem Res 48:3053–3063

    Article  CAS  Google Scholar 

  246. Rodríguez-San-Miguel D, Zamora F (2019) Processing of covalent organic frameworks: an ingredient for a material to succeed. Chem Soc Rev 48:4375–4386

    Google Scholar 

  247. Nie H, Schauser NS, Dolinski ND et al (2020) Light-controllable ionic conductivity in a polymeric ionic liquid. Angew Chemie 132:5161–5166

    Article  Google Scholar 

  248. Chen X, Addicoat M, Irle S et al (2013) Control of crystallinity and porosity of covalent organic frameworks by managing interlayer interactions based on self-complementary π-electronic force. J Am Chem Soc 135:546–549

    Article  CAS  Google Scholar 

  249. Chen X, Addicoat M, ** E et al (2015) Locking covalent organic frameworks with hydrogen bonds: general and remarkable effects on crystalline structure, physical properties, and photochemical activity. J Am Chem Soc 137:3241–3247

    Article  CAS  Google Scholar 

  250. Tao S, Zhai L, Dinga Wonanke AD et al (2020) Confining H3PO4 network in covalent organic frameworks enables proton super flow. Nat Commun 11:8–15. https://doi.org/10.1038/s41467-020-15918-1

    Article  CAS  Google Scholar 

  251. Bao S-S, Shimizu GKH, Zheng L-M (2019) Proton conductive metal phosphonate frameworks. Coord Chem Rev 378:577–594

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author acknowledges DST-INSPIRE (DST/INSPIRE/03/2021/002004) for financial aid and equivalent support by Birla Institute of Technology Mesra for providing essential resources for the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ela Rout .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vignesh, D., Rout, E. (2023). Proton Conductors: Physics and Technological Advancements for PC-SOFC. In: Swain, B.P. (eds) Energy Materials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-99-3866-7_1

Download citation

Publish with us

Policies and ethics

Navigation