In the Pipeline: Emerging Therapy for Classical Ph-Negative MPNs

  • Chapter
  • First Online:
Pathogenesis and Treatment of Leukemia
  • 505 Accesses

Abstract

Conventional therapy for myeloproliferative neoplasm (MPN) has modest disease-modifying effect. In this chapter, we discuss the emerging novel agents and approaches that may potentially modify the underlying disease biology in MPN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kaplan JB, Stein BL, McMahon B, Giles FJ, Platanias LC. Evolving therapeutic strategies for the classic Philadelphia-negative myeloproliferative neoplasms. EBioMedicine. 2016;3:17–25.

    PubMed  PubMed Central  Google Scholar 

  2. National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology (NCCN guidelines): myeloproliferative neoplasms (Version 1.2020). 2020.

    Google Scholar 

  3. Cervantes F. How I treat myelofibrosis. Blood. 2014;124(17):2635–42.

    CAS  PubMed  Google Scholar 

  4. Economides MP, Verstovsek S, Pemmaraju N. Novel therapies in myeloproliferative neoplasms (MPN): beyond JAK inhibitors. Curr Hematol Malig Rep. 2019;14(5):460–8.

    PubMed  Google Scholar 

  5. Szuber N, Mudireddy M, Nicolosi M, Penna D, Vallapureddy RR, Lasho TL, et al. 3023 Mayo Clinic patients with myeloproliferative neoplasms: risk-stratified comparison of survival and outcomes data among disease subgroups. Mayo Clin Proc. 2019;94(4):599–610.

    PubMed  Google Scholar 

  6. Verstovsek S, Gotlib J, Mesa RA, Vannucchi AM, Kiladjian J-J, Cervantes F, et al. Long-term survival in patients treated with ruxolitinib for myelofibrosis: COMFORT-I and -II pooled analyses. J Hematol Oncol. 2017;10(1):55.

    PubMed  PubMed Central  Google Scholar 

  7. Harrison CN, Vannucchi AM, Kiladjian JJ, Al-Ali HK, Gisslinger H, Knoops L, et al. Long-term findings from COMFORT-II, a phase 3 study of ruxolitinib vs best available therapy for myelofibrosis. Leukemia. 2016;30(8):1701–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Talpaz M, Kiladjian J-J. Fedratinib, a newly approved treatment for patients with myeloproliferative neoplasm-associated myelofibrosis. Leukemia. 2021;35(1):1–17.

    CAS  PubMed  Google Scholar 

  9. Devlin R, Gupta V. Myelofibrosis: to transplant or not to transplant? Hematology. 2016;2016(1):543–51.

    PubMed  PubMed Central  Google Scholar 

  10. Bewersdorf JP, Jaszczur SM, Afifi S, Zhao JC, Zeidan AM. Beyond ruxolitinib: fedratinib and other emergent treatment options for myelofibrosis. Cancer Manag Res. 2019;11:10777–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. McLornan DP, Harrison CN. Guidance on changing therapy choice in myelofibrosis. Blood Adv. 2020;4(4):607–10.

    PubMed  PubMed Central  Google Scholar 

  12. Mullally A, Hood J, Harrison C, Mesa R. fedratinib in myelofibrosis. Blood Adv. 2020;4(8):1792–800.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kvasnicka HM. How to define treatment failure for JAK inhibitors. Lancet Haematol. 2017;4(7):e305–e6.

    PubMed  Google Scholar 

  14. Harrison CN, Schaap N, Mesa RA. Management of myelofibrosis after ruxolitinib failure. Ann Hematol. 2020;99(6):1177–91.

    PubMed  PubMed Central  Google Scholar 

  15. Gupta V, Cerquozzi S, Foltz L, Hillis C, Devlin R, Elsawy M, et al. Patterns of ruxolitinib therapy failure and its management in myelofibrosis: perspectives of the Canadian myeloproliferative neoplasm group. JCO Oncol Pract. 2020;16(7):351–9.

    PubMed  PubMed Central  Google Scholar 

  16. Kesarwani M, Huber E, Kincaid Z, Evelyn CR, Biesiada J, Rance M, et al. Targeting substrate-site in Jak2 kinase prevents emergence of genetic resistance. Sci Rep. 2015;5(1):14538.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Harrison CN, Schaap N, Vannucchi AM, Kiladjian JJ, Jourdan E, Silver RT, et al. fedratinib in patients with myelofibrosis previously treated with ruxolitinib: an updated analysis of the JAKARTA2 study using stringent criteria for ruxolitinib failure. Am J Hematol. 2020;95(6):594–603.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ogasawara K, Zhou S, Krishna G, Palmisano M, Li Y. Population pharmacokinetics of fedratinib in patients with myelofibrosis, polycythemia vera, and essential thrombocythemia. Cancer Chemother Pharmacol. 2019;84(4):891–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Williams L, Kelley HH, Meng X, Prada A, Crisan D. FLT3 mutations in myeloproliferative neoplasms: the Beaumont experience. Diagn Mol Pathol. 2013;22(3):156–60.

    CAS  PubMed  Google Scholar 

  20. Wang M, He N, Tian T, Liu L, Yu S, Ma D. Mutation analysis of JAK2V617F, FLT3-ITD, NPM1, and DNMT3A in Chinese patients with myeloproliferative neoplasms. Biomed Res Int. 2014;2014:485645.

    PubMed  PubMed Central  Google Scholar 

  21. Jiang Q, Jamieson C. BET’ing on dual JAK/BET inhibition as a therapeutic strategy for myeloproliferative neoplasms. Cancer Cell. 2018;33(1):3–5.

    CAS  PubMed  Google Scholar 

  22. Kleppe M, Koche R, Zou L, Van Galen P, Hill CE, Dong L, et al. Dual targeting of oncogenic activation and inflammatory signaling increases therapeutic efficacy in myeloproliferative neoplasms. Cancer Cell. 2018;33(1):29–43.e7.

    CAS  PubMed  Google Scholar 

  23. Harrison CN, Schaap N, Vannucchi AM, Kiladjian JJ, Tiu RV, Zachee P, et al. Janus kinase-2 inhibitor fedratinib in patients with myelofibrosis previously treated with ruxolitinib (JAKARTA-2): a single-arm, open-label, non-randomised, phase 2, multicentre study. Lancet Haematol. 2017;4(7):e317–e24.

    PubMed  PubMed Central  Google Scholar 

  24. Pardanani A, Harrison C, Cortes JE, Cervantes F, Mesa RA, Milligan D, et al. Safety and efficacy of fedratinib in patients with primary or secondary myelofibrosis. JAMA Oncol. 2015;1(5):643.

    PubMed  Google Scholar 

  25. Verstovsek S, Harrison CN, Barosi G, Kiladjian J-J, Buglio D, Chia V, et al. FREEDOM: a phase 3b efficacy and safety study of fedratinib in intermediate- or high-risk myelofibrosis patients previously treated with ruxolitinib. J Clin Oncol. 2019;37(15_suppl):TPS7072–TPS.

    Google Scholar 

  26. Mascarenhas J, Hoffman R, Talpaz M, Gerds AT, Stein B, Gupta V, et al. Pacritinib vs best available therapy, including ruxolitinib, in patients with myelofibrosis. JAMA Oncol. 2018;4(5):652.

    PubMed  PubMed Central  Google Scholar 

  27. Diaz AE, Mesa RA. Pacritinib and its use in the treatment of patients with myelofibrosis who have thrombocytopenia. Future Oncol. 2018;14(9):797–807.

    CAS  PubMed  Google Scholar 

  28. Verstovsek S, Komrokji RS. A comprehensive review of pacritinib in myelofibrosis. Future Oncol. 2015;11(20):2819–30.

    CAS  PubMed  Google Scholar 

  29. Tremblay D, Mascarenhas J. Pacritinib to treat myelofibrosis patients with thrombocytopenia. Expert Rev Hematol. 2018;11(9):707–14.

    CAS  PubMed  Google Scholar 

  30. Mesa RA, Vannucchi AM, Mead A, Egyed M, Szoke A, Suvorov A, et al. Pacritinib versus best available therapy for the treatment of myelofibrosis irrespective of baseline cytopenias (PERSIST-1): an international, randomised, phase 3 trial. Lancet Haematol. 2017;4(5):e225–e36.

    PubMed  PubMed Central  Google Scholar 

  31. Singer J, Al-Fayoumi S, Ma H, Komrokji R, Mesa R, Verstovsek S. Comprehensive kinase profile of pacritinib, a nonmyelosuppressive janus kinase 2 inhibitor. J Exp Pharmacol. 2016;8:11–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Tremblay D, Mesa R, Scott B, Buckley S, Roman-Torres K, Verstovsek S, et al. Pacritinib demonstrates spleen volume reduction in patients with myelofibrosis independent of JAK2V617F allele burden. Blood Adv. 2020;4(23):5929–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Marcellino BK, Verstovsek S, Mascarenhas J. The myelodepletive phenotype in myelofibrosis: clinical relevance and therapeutic implication. Clin Lymphoma Myeloma Leuk. 2020;20(7):415–21.

    PubMed  Google Scholar 

  34. Harrison CN, Gerds AT, Kiladjian J-J, Döhner K, Buckley SA, Smith JA, et al. Pacifica: a randomized, controlled phase 3 study of pacritinib vs. Physician’s choice in patients with primary myelofibrosis, post polycythemia vera myelofibrosis, or post essential thrombocytopenia myelofibrosis with severe thrombocytopenia (platelet count <50,000/ml). Blood. 2019;134(Supplement_1):4175.

    Google Scholar 

  35. Asshoff M, Petzer V, Warr MR, Haschka D, Tymoszuk P, Demetz E, et al. Momelotinib inhibits ACVR1/ALK2, decreases hepcidin production, and ameliorates anemia of chronic disease in rodents. Blood. 2017;129(13):1823–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Mesa RA, Kiladjian J-J, Catalano JV, Devos T, Egyed M, Hellmann A, et al. SIMPLIFY-1: a phase iii randomized trial of momelotinib versus ruxolitinib in janus kinase inhibitor–naïve patients with myelofibrosis. J Clin Oncol. 2017;35(34):3844–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Xu L, Feng J, Gao G, Tang H. Momelotinib for the treatment of myelofibrosis. Expert Opin Pharmacother. 2019;20(16):1943–51.

    CAS  PubMed  Google Scholar 

  38. Oh ST, Talpaz M, Gerds AT, Gupta V, Verstovsek S, Mesa R, et al. ACVR1/JAK1/JAK2 inhibitor momelotinib reverses transfusion dependency and suppresses hepcidin in myelofibrosis phase 2 trial. Blood Adv. 2020;4(18):4282–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Harrison CN, Vannucchi AM, Platzbecker U, Cervantes F, Gupta V, Lavie D, et al. Momelotinib versus best available therapy in patients with myelofibrosis previously treated with ruxolitinib (SIMPLIFY 2): a randomised, open-label, phase 3 trial. Lancet Haematol. 2018;5(2):e73–81.

    PubMed  Google Scholar 

  40. Gupta V, Mesa RA, Deininger MWN, Rivera CE, Sirhan S, Brachmann CB, et al. A phase 1/2, open-label study evaluating twice-daily administration of momelotinib in myelofibrosis. Haematologica. 2017;102(1):94–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Verstovsek S, Courby S, Griesshammer M, Mesa RA, Brachmann CB, Kawashima J, et al. A phase 2 study of momelotinib, a potent JAK1 and JAK2 inhibitor, in patients with polycythemia vera or essential thrombocythemia. Leuk Res. 2017;60:11–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Abdelrahman RA, Begna KH, Al-Kali A, Hogan WJ, Litzow MR, Pardanani A, et al. Momelotinib treatment-emergent neuropathy: prevalence, risk factors and outcome in 100 patients with myelofibrosis. Br J Haematol. 2015;169(1):77–80.

    CAS  PubMed  Google Scholar 

  43. Nakaya Y, Shide K, Naito H, Niwa T, Horio T, Miyake J, et al. Effect of NS-018, a selective JAK2V617F inhibitor, in a murine model of myelofibrosis. Blood Cancer J. 2014;4(1):e174–e.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Nakaya Y, Shide K, Niwa T, Homan J, Sugahara S, Horio T, et al. Efficacy of NS-018, a potent and selective JAK2/Src inhibitor, in primary cells and mouse models of myeloproliferative neoplasms. Cancer J. 2011;1(7):e29–e.

    CAS  Google Scholar 

  45. Verstovsek S, Talpaz M, Ritchie EK, Wadleigh M, Odenike O, Jamieson C, et al. Phase 1/2 study of ns-018, an oral jak2 inhibitor, in patients with primary myelofibrosis (PMF), post-polycythemia vera myelofibrosis (postPV MF), or post-essential thrombocythemia myelofibrosis (postet Mf). Blood. 2016;128(22):1936.

    Google Scholar 

  46. Verstovsek S, Talpaz M, Ritchie E, Wadleigh M, Odenike O, Jamieson C, et al. A phase I, open-label, dose-escalation, multicenter study of the JAK2 inhibitor NS-018 in patients with myelofibrosis. Leukemia. 2017;31(2):393–402.

    CAS  PubMed  Google Scholar 

  47. Mascarenhas J, Baer MR, Kessler C, Hexner E, Tremblay D, Price L, et al. Phase II trial of lestaurtinib, a JAK2 inhibitor, in patients with myelofibrosis. Leuk Lymphoma. 2019;60(5):1343–5.

    PubMed  PubMed Central  Google Scholar 

  48. Tefferi A, Barraco D, Lasho TL, Shah S, Begna KH, Al-Kali A, et al. Momelotinib therapy for myelofibrosis: a 7-year follow-up. Blood Cancer J. 2018;8(3):29.

    PubMed  PubMed Central  Google Scholar 

  49. Pardanani A, Gotlib J, Roberts AW, Wadleigh M, Sirhan S, Kawashima J, et al. Long-term efficacy and safety of momelotinib, a JAK1 and JAK2 inhibitor, for the treatment of myelofibrosis. Leukemia. 2018;32(4):1034–7.

    Google Scholar 

  50. Verstovsek S, Mesa RA, Salama ME, Li L, Pitou C, Nunes FP, et al. A phase 1 study of the janus kinase 2 (JAK2) V617F inhibitor, gandotinib (LY2784544), in patients with primary myelofibrosis, polycythemia vera, and essential thrombocythemia. Leuk Res. 2017;61:89–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Berdeja J, Palandri F, Baer MR, Quick D, Kiladjian JJ, Martinelli G, et al. Phase 2 study of gandotinib (LY2784544) in patients with myeloproliferative neoplasms. Leuk Res. 2018;71:82–8.

    CAS  PubMed  Google Scholar 

  52. Bose P, Verstovsek S. JAK inhibition for the treatment of myelofibrosis: limitations and future perspectives. HemaSphere. 2020;4:e424.

    PubMed  PubMed Central  Google Scholar 

  53. Yung Y, Lee E, Chu H-T, Yip P-K, Gill H. Targeting abnormal hematopoietic stem cells in chronic myeloid Leukemia and Philadelphia chromosome-negative classical myeloproliferative neoplasms. Int J Mol Sci. 2021;22(2):659.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Verger E, Soret-Dulphy J, Maslah N, Roy L, Rey J, Ghrieb Z, et al. Ropeginterferon alpha-2b targets JAK2V617F-positive polycythemia vera cells in vitro and in vivo. Blood Cancer J. 2018;8(10):94.

    PubMed  PubMed Central  Google Scholar 

  55. How J, Hobbs G. Use of interferon Alfa in the treatment of myeloproliferative neoplasms: perspectives and review of the literature. Cancers. 2020;12(7):1954.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Hasselbalch HC, Holmström MO. Perspectives on interferon-alpha in the treatment of polycythemia vera and related myeloproliferative neoplasms: minimal residual disease and cure? Semin Immunopathol. 2019;41(1):5–19.

    CAS  PubMed  Google Scholar 

  57. Ianotto J-C, Chauveau A, Boyer-Perrard F, Gyan E, Laribi K, Cony-Makhoul P, et al. Benefits and pitfalls of pegylated interferon-α2a therapy in patients with myeloproliferative neoplasm-associated myelofibrosis: a French intergroup of myeloproliferative neoplasms (FIM) study. Haematologica. 2018;103(3):438–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Gisslinger H, Klade C, Georgiev P, Krochmalczyk D, Gercheva-Kyuchukova L, Egyed M, et al. Ropeginterferon alfa-2b versus standard therapy for polycythaemia vera (PROUD-PV and CONTINUATION-PV): a randomised, non-inferiority, phase 3 trial and its extension study. Lancet Haematol. 2020;7(3):e196–208.

    PubMed  Google Scholar 

  59. Gisslinger H, Zagrijtschuk O, Buxhofer-Ausch V, Thaler J, Schloegl E, Gastl GA, et al. Ropeginterferon alfa-2b, a novel IFNα-2b, induces high response rates with low toxicity in patients with polycythemia vera. Blood. 2015;126(15):1762–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Gisslinger H, Klade C, Georgiev P, Krochmalczyk D, Gercheva-Kyuchukova L, Egyed M, et al. Ropeginterferon Alfa-2b: efficacy and safety in different age groups. HemaSphere. 2020;4(6):e485–e.

    PubMed  PubMed Central  Google Scholar 

  61. Huang C-E, Wu Y-Y, Hsu C-C, Chen Y-J, Tsou H-Y, Li C-P, et al. Real-world experience with ropeginterferon-alpha 2b (Besremi) in Philadelphia-negative myeloproliferative neoplasms. J Formos Med Assoc. 2021;120(2):863–73.

    CAS  PubMed  Google Scholar 

  62. Vasko T, Kaifie A, Stope M, Kraus T, Ziegler P. Telomeres and telomerase in hematopoietic dysfunction: prognostic implications and pharmacological interventions. Int J Mol Sci. 2017;18(11):2267.

    PubMed  PubMed Central  Google Scholar 

  63. Wang X, Hu CS, Petersen B, Qiu J, Ye F, Houldsworth J, et al. Imetelstat, a telomerase inhibitor, is capable of depleting myelofibrosis stem and progenitor cells. Blood Adv. 2018;2(18):2378–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Mosoyan G, Kraus T, Ye F, Eng K, Crispino JD, Hoffman R, et al. Imetelstat, a telomerase inhibitor, differentially affects normal and malignant megakaryopoiesis. Leukemia. 2017;31(11):2458–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Baerlocher GM, Haubitz M, Braschler TR, Brunold C, Burington B, Oppliger Leibundgut E, et al. Imetelstat inhibits growth of megakaryocyte colony-forming units from patients with essential thrombocythemia. Blood Adv. 2019;3(22):3724–8.

    PubMed  PubMed Central  Google Scholar 

  66. Iancu-Rubin C, Mosoyan G, Parker CC, Eng K, Hoffman R. Imetelstat (GRN163L), a telomerase inhibitor selectively affects malignant megakaryopoiesis in myeloproliferative neoplasms (mpn). Blood. 2014;124(21):4582.

    Google Scholar 

  67. Baerlocher GM, Oppliger Leibundgut E, Ottmann OG, Spitzer G, Odenike O, McDevitt MA, et al. Telomerase inhibitor imetelstat in patients with essential thrombocythemia. N Engl J Med. 2015;373(10):920–8.

    CAS  PubMed  Google Scholar 

  68. Tefferi A, Lasho TL, Begna KH, Patnaik MM, Zblewski DL, Finke CM, et al. A pilot study of the telomerase inhibitor imetelstat for myelofibrosis. N Engl J Med. 2015;373(10):908–19.

    CAS  PubMed  Google Scholar 

  69. Mascarenhas J, Komrokji RS, Cavo M, Martino B, Niederwieser D, Reiter A, et al. Imetelstat is effective treatment for patients with intermediate-2 or high-risk myelofibrosis who have relapsed on or are refractory to janus kinase inhibitor therapy: results of a phase 2 randomized study of two dose levels. Blood. 2018;132(Supplement 1):685.

    Google Scholar 

  70. Jutzi JS, Kleppe M, Dias J, Staehle HF, Shank K, Teruya-Feldstein J, et al. LSD1 inhibition prolongs survival in mouse models of MPN by selectively targeting the disease clone. HemaSphere. 2018;2(3):e54–e.

    PubMed  PubMed Central  Google Scholar 

  71. Rampal RK, McGrath JP, Krishnan A, Li B, **ao W, Nikom D, et al. LSD1 inhibitor CPI-482 shows efficacy and prolongs survival in mouse models of AML and post-MPN AML in the context of constitutive JAK-STAT pathway activation. Blood. 2020;136(Supplement 1):50–1.

    Google Scholar 

  72. Dunbar A, Park Y, Levine R. Epigenetic dysregulation of myeloproliferative neoplasms. Hematol Oncol Clin North Am. 2021;35(2):237–51.

    PubMed  PubMed Central  Google Scholar 

  73. Niebel D, Kirfel J, Janzen V, Höller T, Majores M, Gütgemann I. Lysine-specific demethylase 1 (LSD1) in hematopoietic and lymphoid neoplasms. Blood. 2014;124(1):151–2.

    CAS  PubMed  Google Scholar 

  74. Pettit K, Gerds AT, Yacoub A, Watts JM, Tartaczuch M, Bradley TJ, et al. A phase 2a study of the LSD1 inhibitor Img-7289 (bomedemstat) for the treatment of myelofibrosis. Blood. 2019;134(Supplement_1):556.

    Google Scholar 

  75. Saenz DT, Fiskus W, Manshouri T, Rajapakshe K, Krieger S, Sun B, et al. BET protein bromodomain inhibitor-based combinations are highly active against post-myeloproliferative neoplasm secondary AML cells. Leukemia. 2017;31(3):678–87.

    CAS  PubMed  Google Scholar 

  76. Bose P, Masarova L, Verstovsek S. Novel concepts of treatment for patients with myelofibrosis and related neoplasms. Cancers. 2020;12(10):2891.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Harrison CN, Patriarca A, Mascarenhas J, Kremyanskaya M, Hoffman R, Schiller GJ, et al. Preliminary report of manifest, a phase 2 study of cpi-0610, a bromodomain and extraterminal domain inhibitor (beti), in combination with ruxolitinib, in jak inhibitor (jaki) treatment naïve myelofibrosis patients. Blood. 2019;134(Supplement_1):4164.

    Google Scholar 

  78. Mascarenhas J, Kremyanskaya M, Hoffman R, Bose P, Talpaz M, Harrison CN, et al. MANIFEST, a phase 2 study of cpi-0610, a bromodomain and extraterminal domain inhibitor (beti), as monotherapy or “add-on” to ruxolitinib, in patients with refractory or intolerant advanced myelofibrosis. Blood. 2019;134(Supplement_1):670.

    Google Scholar 

  79. Mascarenhas J, Harrison C, Luptakova K, Christo J, Wang J, Mertz JA, et al. MANIFEST-2, a global, phase 3, randomized, double-blind, active-control study of cpi-0610 and ruxolitinib vs. placebo and ruxolitinib in jak-inhibitor-naive myelofibrosis patients. Blood. 2020;136(Supplement 1):43.

    Google Scholar 

  80. Bose P, Verstovsek S. Investigational histone deacetylase inhibitors (HDACi) in myeloproliferative neoplasms. Expert Opin Investig Drugs. 2016;25(12):1393–403.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Chifotides HT, Bose P, Verstovsek S. Givinostat: an emerging treatment for polycythemia vera. Expert Opin Investig Drugs. 2020;29(6):525–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Mascarenhas J, Sandy L, Lu M, Yoon J, Petersen B, Zhang D, et al. A phase II study of panobinostat in patients with primary myelofibrosis (PMF) and post-polycythemia vera/essential thrombocythemia myelofibrosis (post-PV/ET MF). Leuk Res. 2017;53:13–9.

    CAS  PubMed  Google Scholar 

  83. Rambaldi A, Iurlo A, Vannucchi AM, Martino B, Guarini A, Ruggeri M, et al. Long-term safety and efficacy of givinostat in polycythemia vera: 4-year mean follow up of three phase 1/2 studies and a compassionate use program. Blood Cancer J. 2021;11(3):53.

    PubMed  PubMed Central  Google Scholar 

  84. Rambaldi A, Iurlo A, Vannucchi AM, Noble R, Von Bubnoff N, Guarini A, et al. Safety and efficacy of the maximum tolerated dose of givinostat in polycythemia vera: a two-part phase Ib/II study. Leukemia. 2020;34(8):2234–7.

    PubMed  PubMed Central  Google Scholar 

  85. Mascarenhas J, Marcellino BK, Lu M, Kremyanskaya M, Fabris F, Sandy L, et al. A phase I study of panobinostat and ruxolitinib in patients with primary myelofibrosis (PMF) and post--polycythemia vera/essential thrombocythemia myelofibrosis (post--PV/ET MF). Leuk Res. 2020;88:106272.

    CAS  PubMed  Google Scholar 

  86. Pastore F, Bhagwat N, Pastore A, Radzisheuskaya A, Karzai A, Krishnan A, et al. PRMT5 inhibition modulates E2F1 methylation and gene-regulatory networks leading to therapeutic efficacy in JAK2V617F-mutant MPN. Cancer Discov. 2020;10(11):1742–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Liu F, Zhao X, Perna F, Wang L, Koppikar P, Abdel-Wahab O, et al. JAK2V617F-mediated phosphorylation of PRMT5 downregulates its methyltransferase activity and promotes myeloproliferation. Cancer Cell. 2011;19(2):283–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Petiti J, Lo Iacono M, Rosso V, Andreani G, Jovanovski A, Podestà M, et al. Bcl-xL represents a therapeutic target in Philadelphia negative myeloproliferative neoplasms. J Cell Mol Med. 2020;24(18):10978–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Waibel M, Solomon VS, Knight DA, Ralli RA, Kim S-K, Banks K-M, et al. Combined targeting of JAK2 and Bcl-2/Bcl-xL to cure mutant JAK2-driven malignancies and overcome acquired resistance to JAK2 inhibitors. Cell Rep. 2013;5(4):1047–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Harrison CN, Garcia JS, Mesa RA, Somervaille TCP, Komrokji RS, Pemmaraju N, et al. Results from a phase 2 study of navitoclax in combination with ruxolitinib in patients with primary or secondary myelofibrosis. Blood. 2019;134(Supplement_1):671.

    Google Scholar 

  91. Harrison C, Garcia JS, Mesa R, Somervaille T, Ritchie EK, Komrokji RS, et al. MPN-038: navitoclax in combination with ruxolitinib in patients with primary or secondary myelofibrosis: a phase 2 study. Clin Lymphoma Myeloma Leuk. 2020;20:S325.

    Google Scholar 

  92. Dilley K, Harb J, Jalaluddin M, Hutti JE, Potluri J. A phase 3, open-label, randomized study evaluating the efficacy and safety of navitoclax plus ruxolitinib versus best available therapy in patients with relapsed/refractory myelofibrosis (TRANSFORM-2). Blood. 2020;136(Supplement 1):8.

    Google Scholar 

  93. Boddu P, Carter BZ, Verstovsek S, Pemmaraju N. SMAC mimetics as potential cancer therapeutics in myeloid malignancies. Br J Haematol. 2019;185(2):219–31.

    CAS  PubMed  Google Scholar 

  94. Diaconu C, Gurban P, Mambet C, Chivu-Economescu MG, Necula L, Matei L, et al. Programmed cell death deregulation in BCR-ABL1-negative myeloproliferative neoplasms. IntechOpen; 2020.

    Google Scholar 

  95. Craver BM, Nguyen TK, Nguyen J, Nguyen H, Huynh C, Morse SJ, et al. The SMAC mimetic LCL-161 selectively targets JAK2V617F mutant cells. Exp Hematol Oncol. 2020;9(1):6.

    Google Scholar 

  96. Chang Y-C, Cheung CHA. An updated review of SMAC mimetics, LCL161, Birinapant, and GDC-0152 in cancer treatment. Appl Sci. 2020;11(1):335.

    Google Scholar 

  97. Pemmaraju N, Carter BZ, Kantarjian HM, Cortes JE, Kadia TM, Garcia-Manero G, et al. Results for phase II clinical trial of LCL161, a SMAC mimetic, in patients with primary myelofibrosis (PMF), post-polycythemia vera myelofibrosis (post-PV MF) or post-essential thrombocytosis myelofibrosis (post-ET MF). Blood. 2016;128(22):3105.

    Google Scholar 

  98. Pemmaraju N, Carter BZ, Kantarjian HM, Cortes JE, Bose P, Kadia TM, et al. Final results of phase 2 clinical trial of LCL161, a novel oral SMAC mimetic/IAP antagonist, for patients with intermediate to high risk myelofibrosis. Blood. 2019;134(Supplement_1):555.

    Google Scholar 

  99. Pemmaraju N, Carter BZ, Kantarjian HM, Cortes JE, Kadia TM, Garcia-Manero G, et al. LCL161, an oral SMAC mimetic/IAP antagonist for patients with myelofibrosis (MF): novel translational findings among long-term responders in a phase 2 clinical trial. Blood. 2018;132(Supplement 1):687.

    Google Scholar 

  100. Lu M, **a L, Li Y, Wang X, Hoffman R. The orally bioavailable MDM2 antagonist RG7112 and pegylated interferon α 2a target JAK2V617F-positive progenitor and stem cells. Blood. 2014;124(5):771–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Mascarenhas J, Lu M, Kosiorek H, Virtgaym E, **a L, Sandy L, et al. Oral idasanutlin in patients with polycythemia vera. Blood. 2019;134(6):525–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Marcellino BK, Farnoud N, Cassinat B, Lu M, Verger E, McGovern E, et al. Transient expansion of TP53 mutated clones in polycythemia vera patients treated with idasanutlin. Blood Adv. 2020;4(22):5735–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Yan D, Pomicter AD, Tantravahi S, Mason CC, Senina AV, Ahmann JM, et al. Nuclear–cytoplasmic transport is a therapeutic target in myelofibrosis. Clin Cancer Res. 2019;25(7):2323–35.

    CAS  PubMed  Google Scholar 

  104. Azizian NG, Li Y. XPO1-dependent nuclear export as a target for cancer therapy. J Hematol Oncol. 2020;13(1):61.

    PubMed  PubMed Central  Google Scholar 

  105. Mazzacurati L, Collins RJ, Pandey G, Lambert-Showers QT, Amin NE, Zhang L, et al. The pan-PIM inhibitor INCB053914 displays potent synergy in combination with ruxolitinib in models of MPN. Blood Adv. 2019;3(22):3503–14.

    PubMed  PubMed Central  Google Scholar 

  106. Mazzacurati L, Lambert QT, Pradhan A, Griner LN, Huszar D, Reuther GW. The PIM inhibitor AZD1208 synergizes with ruxolitinib to induce apoptosis of ruxolitinib sensitive and resistant JAK2-V617F-driven cells and inhibit colony formation of primary MPN cells. Oncotarget. 2015;6(37):40141–57.

    PubMed  PubMed Central  Google Scholar 

  107. Koblish H, Li Y-L, Shin N, Hall L, Wang Q, Wang K, et al. Preclinical characterization of INCB053914, a novel pan-PIM kinase inhibitor, alone and in combination with anticancer agents, in models of hematologic malignancies. PLoS One. 2018;13(6):e0199108.

    PubMed  PubMed Central  Google Scholar 

  108. Nath D, Dutta A, Yang Y, Whatcott C, Warner SL, Mohi G. The PIM kinase inhibitor TP-3654 in combination with ruxolitinib exhibits marked improvement of myelofibrosis in murine models. Blood. 2018;132(Supplement 1):54.

    Google Scholar 

  109. Lebedinsky C, Anthony SP, Mohi G, Yang H, Mei J, Braendle E. A phase 1 study of TP-3654, an orally-delivered PIM kinase inhibitor, in patients with Intermediate-2 or high-risk primary or secondary myelofibrosis. Blood. 2020;136(Supplement 1):3–4.

    Google Scholar 

  110. Alkharabsheh O, Frankel AE. Clinical activity and tolerability of SL-401 (tagraxofusp): recombinant diphtheria toxin and Interleukin-3 in hematologic malignancies. Biomedicine. 2019;7(1):6.

    CAS  Google Scholar 

  111. Lasho T, Finke C, Kimlinger TK, Zblewski D, Chen D, Patnaik MM, et al. Expression of CD123 (IL-3R-alpha), a therapeutic target of SL-401, on myeloproliferative neoplasms. Blood. 2014;124(21):5577.

    Google Scholar 

  112. Pemmaraju N, Gupta V, Ali H, Yacoub A, Wang ES, Lee S, et al. Results from a phase 1/2 clinical trial of tagraxofusp (SL-401) in patients with intermediate, or high risk, relapsed/refractory myelofibrosis. Blood. 2019;134(Supplement_1):558.

    Google Scholar 

  113. Krishnan A, Pagane M, Roshal M, McGovern E, Stone-Molloy Z, Chen J, et al. Evaluation of tagraxofusp (SL-401) alone and in combination with ruxolitinib for the treatment of myeloproliferative neoplasms. Blood. 2019;134(Supplement_1):2967.

    Google Scholar 

  114. Sevin M, Girodon F, Garrido C, De Thonel A. HSP90 and HSP70: implication in inflammation processes and therapeutic approaches for myeloproliferative neoplasms. Mediat Inflamm. 2015;2015:1–8.

    Google Scholar 

  115. Fiskus W, Verstovsek S, Manshouri T, Rao R, Balusu R, Venkannagari S, et al. Heat shock protein 90 inhibitor is synergistic with JAK2 inhibitor and overcomes resistance to JAK2-TKI in human myeloproliferative neoplasm cells. Clin Cancer Res. 2011;17(23):7347–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Hobbs GS, Hanasoge Somasundara AV, Kleppe M, Litvin R, Arcila M, Ahn J, et al. Hsp90 inhibition disrupts JAK-STAT signaling and leads to reductions in splenomegaly in patients with myeloproliferative neoplasms. Haematologica. 2018;103(1):e5–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Hobbs G, Litvin R, Ahn J, McKenney AS, Mauro MJ, Tallman MS, et al. AUY922, a heat shock protein 90 (Hsp90) inhibitor, demonstrates activity in patients with myeloproliferative neoplasms (MPNs). Blood. 2015;126(23):4075.

    Google Scholar 

  118. De Almeida S, Regimbeau M, Jego G, Garrido C, Girodon F, Hermetet F. Heat shock proteins and PD-1/PD-L1 as potential therapeutic targets in myeloproliferative neoplasms. Cancers. 2020;12(9):2592.

    PubMed  PubMed Central  Google Scholar 

  119. Sevin M, Kubovcakova L, Pernet N, Causse S, Vitte F, Villeval JL, et al. HSP27 is a partner of JAK2-STAT5 and a potential therapeutic target in myelofibrosis. Nat Commun. 2018;9(1):1431.

    PubMed  PubMed Central  Google Scholar 

  120. Sevin M, Pernet N, Vitte F, Ramla S, Sagot P, Martin L, et al. HSP27: a therapeutic target in myelofibrosis. Blood. 2016;128(22):1963.

    Google Scholar 

  121. Fiskus W, Verstovsek S, Manshouri T, Smith JE, Peth K, Abhyankar S, et al. Dual PI3K/AKT/mTOR inhibitor BEZ235 synergistically enhances the activity of JAK2 inhibitor against cultured and primary human myeloproliferative neoplasm cells. Mol Cancer Ther. 2013;12(5):577–88.

    CAS  PubMed  Google Scholar 

  122. Bartalucci N, Guglielmelli P, Vannucchi AM. Rationale for targeting the PI3K/Akt/mTOR pathway in myeloproliferative neoplasms. Clin Lymphoma Myeloma Leuk. 2013;13(Suppl 2):S307–9.

    PubMed  Google Scholar 

  123. Pandey R, Kapur R. Targeting phosphatidylinositol-3-kinase pathway for the treatment of Philadelphia-negative myeloproliferative neoplasms. Mol Cancer. 2015;14(1):118.

    PubMed  PubMed Central  Google Scholar 

  124. Bartalucci N, Calabresi L, Balliu M, Martinelli S, Rossi MC, Villeval JL, et al. Inhibitors of the PI3K/mTOR pathway prevent STAT5 phosphorylation in JAK2V617F mutated cells through PP2A/CIP2A axis. Oncotarget. 2017;8(57):96710–24.

    PubMed  PubMed Central  Google Scholar 

  125. Hadzijusufovic E, Keller A, Berger D, Greiner G, Wingelhofer B, Witzeneder N, et al. STAT5 is expressed in CD34+/CD38− stem cells and serves as a potential molecular target in Ph-negative myeloproliferative neoplasms. Cancers. 2020;12(4):1021.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Feng Y, Chen X, Cassady K, Zou Z, Yang S, Wang Z, et al. The role of mTOR inhibitors in hematologic disease: from bench to bedside. Front Oncol. 2021;10:611690.

    PubMed  PubMed Central  Google Scholar 

  127. Khan I, Huang Z, Wen Q, Stankiewicz MJ, Gilles L, Goldenson B, et al. AKT is a therapeutic target in myeloproliferative neoplasms. Leukemia. 2013;27(9):1882–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Fu C, Wen QJ, Marinaccio C, Ling T, Chen W, Bulic M, et al. AKT activation is a feature of CALR mutant myeloproliferative neoplasms. Leukemia. 2019;33(1):271–4.

    PubMed  Google Scholar 

  129. Durrant ST, Nagler A, Guglielmelli P, Lavie D, Le Coutre P, Gisslinger H, et al. Results from HARMONY: an open-label, multicenter, 2-arm, phase 1b, dose-finding study assessing the safety and efficacy of the oral combination of ruxolitinib and buparlisib in patients with myelofibrosis. Haematologica. 2019;104(12):e551–e4.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Mead AJ, Mullally A. myeloproliferative neoplasm stem cells. Blood. 2017;129(12):1607–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Curto-Garcia N, Harrison C, McLornan DP. Bone marrow niche dysregulation in myeloproliferative neoplasms. Haematologica. 2020;105(5):1189–200.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Zhan H, Kaushansky K. The hematopoietic microenvironment in myeloproliferative neoplasms: the interplay between nature (stem cells) and nurture (the niche). Springer International Publishing; 2020. p. 135–45.

    Google Scholar 

  133. Jutzi JS, Mullally A. Remodeling the bone marrow microenvironment – a proposal for targeting pro-inflammatory contributors in MPN. Front Immunol. 2020;11:2093.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Agarwal P, Bhatia R. Influence of bone marrow microenvironment on leukemic stem cells. Elsevier; 2015. p. 227–52.

    Google Scholar 

  135. Goulard M, Dosquet C, Bonnet D. Role of the microenvironment in myeloid malignancies. Cell Mol Life Sci. 2018;75(8):1377–91.

    CAS  PubMed  Google Scholar 

  136. Nasillo V, Riva G, Paolini A, Forghieri F, Roncati L, Lusenti B, et al. Inflammatory microenvironment and specific T cells in myeloproliferative neoplasms: immunopathogenesis and novel immunotherapies. Int J Mol Sci. 2021;22(4):1906.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Agarwal A, Morrone K, Bartenstein M, Zhao ZJ, Verma A, Goel S. Bone marrow fibrosis in primary myelofibrosis: pathogenic mechanisms and the role of TGF-β. Stem Cell Investig. 2016;3:5.

    PubMed  PubMed Central  Google Scholar 

  138. Teodorescu P, Pasca S, Jurj A, Gafencu G, Joelsson JP, Selicean S, et al. Transforming growth factor β-mediated micromechanics modulates disease progression in primary myelofibrosis. J Cell Mol Med. 2020;24(19):11100–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Ozono Y, Shide K, Kameda T, Kamiunten A, Tahira Y, Sekine M, et al. Neoplastic fibrocytes play an essential role in bone marrow fibrosis in Jak2V617F-induced primary myelofibrosis mice. Leukemia. 2021;35(2):454–67.

    CAS  PubMed  Google Scholar 

  140. Yao J-C, Abou Ezzi G, Krambs JR, Uttarwar S, Duncavage EJ, Link DC. TGF-β signaling contributes to myelofibrosis and clonal dominance of myeloproliferative neoplasms. Blood. 2019;134(Supplement_1):470.

    Google Scholar 

  141. Yue L, Bartenstein M, Zhao W, Ho W-T, Zhang L, Rapaport F, et al. Preclinical efficacy of TGF-Beta receptor I kinase inhibitor, galunisertib, in myelofibrosis. Blood. 2015;126(23):603.

    Google Scholar 

  142. Mesa RA, Barosi G, Harrison CN, Kiladjian J-J, Gale RP, Laadem A, et al. A phase 2, multicenter, open-label study of the safety and efficacy of luspatercept in subjects with myeloproliferative neoplasm (MPN)-associated myelofibrosis and anemia with or without RBC transfusion dependence. J Clin Oncol. 2018;36(15_suppl):TPS7083–TPS.

    Google Scholar 

  143. Jeremy Wen Q, Yang Q, Goldenson B, Malinge S, Lasho T, Schneider RK, et al. Targeting megakaryocytic-induced fibrosis in myeloproliferative neoplasms by AURKA inhibition. Nat Med. 2015;21(12):1473–80.

    CAS  Google Scholar 

  144. Gangat N, Marinaccio C, Swords R, Watts JM, Gurbuxani S, Rademaker A, et al. Aurora kinase a inhibition provides clinical benefit, normalizes megakaryocytes, and reduces bone marrow fibrosis in patients with myelofibrosis: a phase I trial. Clin Cancer Res. 2019;25(16):4898–906.

    CAS  PubMed  Google Scholar 

  145. Piszczatowski RT, Steidl U. Aurora kinase a inhibition: a mega-hit for myelofibrosis therapy? Clin Cancer Res. 2019;25(16):4868–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Gangat N, Stein BL, Marinaccio C, Swords R, Watts JM, Gurbuxani S, et al. Alisertib (MLN8237), an oral selective inhibitor of aurora kinase a, has clinical activity and restores GATA1 expression in patients with myelofibrosis. Blood. 2018;132(Supplement 1):688.

    Google Scholar 

  147. Verstovsek S, Manshouri T, Pilling D, Bueso-Ramos CE, Newberry KJ, Prijic S, et al. Role of neoplastic monocyte-derived fibrocytes in primary myelofibrosis. J Exp Med. 2016;213(9):1723–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Pilling D, Gomer RH. The development of serum amyloid P as a possible therapeutic. Front Immunol. 2018;9:2328.

    PubMed  PubMed Central  Google Scholar 

  149. Verstovsek S, Hasserjian RP, Pozdnyakova O, Veletic I, Mesa RA, Foltz L, et al. PRM-151 in myelofibrosis: efficacy and safety in an open label extension study. Blood. 2018;132(Supplement 1):686.

    Google Scholar 

  150. Arranz L, Sánchez-Aguilera A, Martín-Pérez D, Isern J, Langa X, Tzankov A, et al. Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms. Nature. 2014;512(7512):78–81.

    CAS  PubMed  Google Scholar 

  151. Herlihy N, Harrison CN, McLornan DP. Exploitation of the neural-hematopoietic stem cell niche axis to treat myeloproliferative neoplasms. Haematologica. 2019;104(4):639–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Drexler B, Passweg JR, Tzankov A, Bigler M, Theocharides AP, Cantoni N, et al. The sympathomimetic agonist mirabegron did not lower JAK2-V617F allele burden, but restored nestin-positive cells and reduced reticulin fibrosis in patients with myeloproliferative neoplasms: results of phase II study SAKK 33/14. Haematologica. 2019;104(4):710–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Drexler B, Passweg J, Bigler M, Theocharides APA, Cantoni N, Keller P, et al. Effects of the sympathicomimetic agonist mirabegron on disease course, mutant allele burden, marrow fibrosis, and nestin positive stem cell niche in patients with JAK2-mutated myeloproliferative neoplasms. a prospective multicenter phase II trial SAKK 33/14. Blood. 2016;128(22):3108.

    Google Scholar 

  154. Braun LM, Zeiser R. Immunotherapy in myeloproliferative diseases. Cells. 2020;9(6):1559.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Masarova L, Bose P, Verstovsek S. The rationale for immunotherapy in myeloproliferative neoplasms. Curr Hematol Malig Rep. 2019;14(4):310–27.

    PubMed  Google Scholar 

  156. Holmström MO, Hasselbalch HC, Andersen MH. The JAK2V617F and CALR exon 9 mutations are shared immunogenic neoantigens in hematological malignancy. OncoImmunology. 2017;6(11):e1358334.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harinder Gill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gill, H., Yung, Y. (2023). In the Pipeline: Emerging Therapy for Classical Ph-Negative MPNs. In: Gill, H., Kwong, YL. (eds) Pathogenesis and Treatment of Leukemia. Springer, Singapore. https://doi.org/10.1007/978-981-99-3810-0_47

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-3810-0_47

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-3809-4

  • Online ISBN: 978-981-99-3810-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation