Leveraging Computer Vision for Precision Viticulture

  • Chapter
  • First Online:
Computer Vision and Machine Learning in Agriculture, Volume 3

Abstract

Economic importance of wine industry globally supports the development of innovative computer vision algorithms towards precision viticulture, aiming to maximize grapes’ quantity and quality while minimizing input costs. Computer vision has the potential to provide inexpensive and non-destructive means to capture and extract precise information about the vineyard. A set of typical viticulture practices have already benefitted from the technical advances in computer vision. This work aims to present a comprehensive review of computer vision applications in precision viticulture. The research focuses on the typical vineyard management calendar, providing frameworks to work activities in the vineyard, by months of the year, based on the annual grapevine growth cycle. Therefore, all typical annual viticulture practices are examined for the first time holistically, revealing the gaps in their automation, posing new challenges and objectives that have not yet been explored. This work intends to deliver a complete guide of the current status of computer vision in viticulture, covering all management practices, such as pruning, binding, shoot thinning, weeding, spraying, leaf thinning, top**, cluster thinning, harvesting, and more. The limitations of current computer vision techniques are analysed, and future potentials are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Creasy GL (2017) Viticulture: grapevines and their management. In: Encyclopedia of applied plant sciences. pp 281–288. Elsevier. https://doi.org/10.1016/B978-0-12-394807-6.00240-9

  2. Seng KP, Ang L-M, Schmidtke LM, Rogiers SY (2018) Computer vision and machine learning for viticulture technology. IEEE Access 6:67494–67510. https://doi.org/10.1109/ACCESS.2018.2875862

    Article  Google Scholar 

  3. Pádua L, Marques P, Hruška J, Adão T, Peres E, Morais R, Sousa J (2018) Multi-temporal vineyard monitoring through UAV-based RGB imagery. Remote Sens 10:1907. https://doi.org/10.3390/rs10121907

    Article  Google Scholar 

  4. Roure F, Moreno G, Soler M, Faconti D, Serrano D, Astolfi P, Bardaro G, Gabrielli A, Bascetta L, Matteucci M (2018) GRAPE: ground robot for vineyard monitoring and protection. In: Advances in intelligent systems and computing, pp 249–260. https://doi.org/10.1007/978-3-319-70833-1_21

  5. Mohimont L, Alin F, Rondeau M, Gaveau N, Steffenel LA (2022) Computer vision and deep learning for precision viticulture. Agronomy 12:2463. https://doi.org/10.3390/agronomy12102463

    Article  Google Scholar 

  6. Gutiérrez-Gamboa G, Zheng W, Martínez de Toda F (2021) Current viticultural techniques to mitigate the effects of global warming on grape and wine quality: a comprehensive review. Food Res Int 139:109946. https://doi.org/10.1016/j.foodres.2020.109946

  7. Allegro G, Martelli R, Valentini G, Pastore C, Mazzoleni R, Pezzi F, Filippetti I (2022) Effects of mechanical winter pruning on vine performances and management costs in a trebbiano romagnolo vineyard: a five-year study. Horticulturae 9:21. https://doi.org/10.3390/horticulturae9010021

    Article  Google Scholar 

  8. The vineyard magazine: mechanical pre pruning. https://www.vineyardmagazine.co.uk/machinery/mechanical-pre-pruning/

  9. Main GL, Morris JR (2008) Impact of pruning methods on yield components and juice and wine composition of Cynthiana grapes. Am J Enol Vitic 59:179–187. https://doi.org/10.5344/ajev.2008.59.2.179

    Article  Google Scholar 

  10. Jackson RS (2014) Vineyard practice. In: Wine science. pp 143–306. Elsevier. https://doi.org/10.1016/B978-0-12-381468-5.00004-X

  11. Andújar D, Dorado J, Fernández-Quintanilla C, Ribeiro A (2016) An approach to the use of depth cameras for weed volume estimation. Sensors 16:972. https://doi.org/10.3390/s16070972

    Article  Google Scholar 

  12. Ogawa Y, Kondo N, Monta M, Shibusawa S (2006) Spraying robot for grape production. In: Field and service robotics, pp 539–548. Springer-Verlag, Berlin/Heidelberg. https://doi.org/10.1007/10991459_52

  13. Ivanišević D, Kalajdžić M, Drenjančević M, Puškaš V, Korać N (2020) The impact of cluster thinning and leaf removal timing on the grape quality and concentration of monomeric anthocyanins in Cabernet-Sauvignon and Probus (Vitis vinifera L.) wines. OENO One, 54:63–74. https://doi.org/10.20870/oeno-one.2020.54.1.2505

  14. Sivilotti P, Falchi R, Herrera JC, Škvarč B, Butinar L, Sternad Lemut M, Bubola M, Sabbatini P, Lisjak K, Vanzo A (2017) Combined effects of early season leaf removal and climatic conditions on aroma precursors in sauvignon blanc grapes. J Agric Food Chem 65:8426–8434. https://doi.org/10.1021/acs.jafc.7b03508

    Article  Google Scholar 

  15. Korkutal İ, Bahar E, Zinni A (2021) Determination the effects of leaf removal and top** at different times on the grape berry. J Inst Sci Technol, pp 1–9. https://doi.org/10.21597/jist.785219

  16. Huffman WE (2014) Agricultural labor: demand for labor. In: Encyclopedia of agriculture and food systems, pp 105–122. Elsevier. https://doi.org/10.1016/B978-0-444-52512-3.00100-5

  17. Botterill T, Paulin S, Green R, Williams S, Lin J, Saxton V, Mills S, Chen X, Corbett-Davies S (2017) A robot system for pruning grape vines. J F Robot 34:1100–1122. https://doi.org/10.1002/rob.21680

    Article  Google Scholar 

  18. Fernandes M, Scaldaferri A, Fiameni G, Teng T, Gatti M, Poni S, Semini C, Caldwell D, Chen F (2021) Grapevine winter pruning automation: on potential pruning points detection through 2D plant modeling using grapevine segmentation. In: 2021 IEEE 11th annual international conference on CYBER technology in automation, control, and intelligent systems (CYBER), pp 13–18. IEEE. https://doi.org/10.1109/CYBER53097.2021.9588303

  19. Yang Q, Yuan Y, Chen Y, Xun Y (2022) Method for detecting 2D grapevine winter pruning location based on thinning algorithm and lightweight convolutional neural network. Int J Agric Biol Eng 15:177–183. https://doi.org/10.25165/j.ijabe.20221503.6750

  20. Majeed Y, Karkee M, Zhang Q, Fu L, Whiting MD (2021) Development and performance evaluation of a machine vision system and an integrated prototype for automated green shoot thinning in vineyards. J F Robot 38:898–916. https://doi.org/10.1002/rob.22013

    Article  Google Scholar 

  21. Majeed Y, Karkee M, Zhang Q, Fu L, Whiting MD (2020) Determining grapevine cordon shape for automated green shoot thinning using semantic segmentation-based deep learning networks. Comput Electron Agric 171:105308. https://doi.org/10.1016/j.compag.2020.105308

    Article  Google Scholar 

  22. Majeed Y, Karkee M, Zhang Q, Fu L, Whiting MD (2019) A study on the detection of visible parts of cordons using deep learning networks for automated green shoot thinning in vineyards. IFAC-PapersOnLine 52:82–86. https://doi.org/10.1016/j.ifacol.2019.12.501

    Article  MathSciNet  Google Scholar 

  23. Kateris D, Kalaitzidis D, Moysiadis V, Tagarakis AC, Bochtis D (2021) Weed map** in vineyards using RGB-D perception. In: The 13th EFITA international conference, p 30. MDPI, Basel Switzerland. https://doi.org/10.3390/engproc2021009030

  24. Vrochidou E, Tziridis K, Nikolaou A, Kalampokas T, Papakostas GA, Pachidis TP, Mamalis S, Koundouras S, Kaburlasos VG (2021) An autonomous grape-harvester robot: integrated system architecture. Electronics 10:1056. https://doi.org/10.3390/electronics10091056

    Article  Google Scholar 

  25. Asefpour Vakilian K, Massah J (2017) A farmer-assistant robot for nitrogen fertilizing management of greenhouse crops. Comput Electron Agric 139:153–163. https://doi.org/10.1016/j.compag.2017.05.012

    Article  Google Scholar 

  26. Vrochidou E, Oustadakis D, Kefalas A, Papakostas GA (2022) Computer vision in self-steering tractors. Machines, 10:129. https://doi.org/10.3390/machines10020129

  27. Reiser D, Sehsah E-S, Bumann O, Morhard J, Griepentrog H (2019) Development of an autonomous electric robot implement for intra-row weeding in vineyards. Agriculture 9:18. https://doi.org/10.3390/agriculture9010018

    Article  Google Scholar 

  28. Pulko B, Frangež M, Valdhuber J (2022) The impact of shoot top** intensity on grape ripening and yield of ‘chardonnay’. Agricultura, 19:29–35. https://doi.org/10.18690/agricultura.19.2.29-35.2022

  29. Vrochidou E, Bazinas C, Manios M, Papakostas GA, Pachidis TP, Kaburlasos VG (2021) Machine vision for ripeness estimation in viticulture automation. Horticulturae 7:282. https://doi.org/10.3390/horticulturae7090282

    Article  Google Scholar 

  30. Guadagna P, Frioni T, Chen F, Delmonte AI, Teng T, Fernandes M, Scaldaferri A, Semini C, Poni S, Gatti M (2021) Fine-tuning and testing of a deep learning algorithm for pruning regions detection in spur-pruned grapevines. In: Precision agriculture’21, pp 147–153. Wageningen Academic Publishers, The Netherlands. https://doi.org/10.3920/978-90-8686-916-9_16

  31. Aguiar AS, Santos FND, De Sousa AJM, Oliveira PM, Santos LC (2020) Visual trunk detection using transfer learning and a deep learning-based coprocessor. IEEE Access 8:77308–77320. https://doi.org/10.1109/ACCESS.2020.2989052

    Article  Google Scholar 

  32. Santos L, Aguiar A, Santos F (2021) VineSet: vine trunk image/annotation dataset. https://zenodo.org/record/5362354#.Y8ElAnZByMo

  33. Badeka E, Kalampokas T, Vrochidou E, Tziridis K, Papakostas GA, Pachidis TP, Kaburlasos VG (2021) Vision-based vineyard trunk detection and its integration into a grapes harvesting robot. Int J Mech Eng Robot Res, pp 374–385. https://doi.org/10.18178/ijmerr.10.7.374-385

  34. Aguiar AS, Monteiro NN, dos Santos FN, Solteiro Pires EJ, Silva D, Sousa AJ, Boaventura-Cunha J (2021) Bringing semantics to the vineyard: an approach on deep learning-based vine trunk detection. Agriculture 11:131. https://doi.org/10.3390/agriculture11020131

    Article  Google Scholar 

  35. Alibabaei K, Assunção E, Gaspar PD, Soares VNGJ, Caldeira JMLP (2022) Real-time detection of vine trunk for robot localization using deep learning models developed for edge TPU devices. Future Internet 14:199. https://doi.org/10.3390/fi14070199

    Article  Google Scholar 

  36. Liu S, Tang J, Cossell S, Whitty M (2015) Detection of shoots in vineyards by unsupervised learning with over the row computer vision system. In: Australasian conference on robotics and automation, ACRA, p 128492

    Google Scholar 

  37. Liu S, Cossell S, Tang J, Dunn G, Whitty M (2017) A computer vision system for early stage grape yield estimation based on shoot detection. Comput Electron Agric 137:88–101. https://doi.org/10.1016/j.compag.2017.03.013

    Article  Google Scholar 

  38. Kalampokas T, Tziridis K, Nikolaou A, Vrochidou E, Papakostas GA, Pachidis T, Kaburlasos VG (2020) Semantic segmentation of vineyard images using convolutional neural networks. In: 21st International conference on engineering applications of neural networks (EANN 2020), pp 292–303. https://doi.org/10.1007/978-3-030-48791-1_22

  39. Shantkumari M, Uma SV (2021) Grape leaf segmentation for disease identification through adaptive Snake algorithm model. Multimed Tools Appl 80:8861–8879. https://doi.org/10.1007/s11042-020-09853-y

    Article  Google Scholar 

  40. Shantkumari M, Uma SV (2019) Adaptive machine learning approach for grape leaf segmentation. In: 2019 International conference on smart systems and inventive technology (ICSSIT), pp 482–487. IEEE. https://doi.org/10.1109/ICSSIT46314.2019.8987971

  41. Pereira CS, Morais R, Reis MJCS (2018) Pixel-based leaf segmentation from natural vineyard images using color model and threshold techniques. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp 96–106. https://doi.org/10.1007/978-3-319-93000-8_12

  42. Tairu Oluwafemi E, PlantVillage dataset. https://www.kaggle.com/datasets/emmarex/plantdisease

  43. Mazhurin A, Kharma N v An image segmentation assessment tool ISAT 1.0. In: Proceedings of the international conference on computer vision theory and applications, pp 436–443. SciTePress—Science and and Technology Publications. https://doi.org/10.5220/0004216404360443

  44. Michels DL, Giesselbach SA, Werner T, Steinhage V (2013) On feature extraction for fingerprinting grapevine leaves. In: Proceedings of the 2013 international conference on image processing, computer vision, and pattern recognition, IPCV 2013, pp 1–6

    Google Scholar 

  45. Marani R, Milella A, Petitti A, Reina G (2019) Deep learning-based image segmentation for grape bunch detection. In: Precision agriculture’19, pp 791–797. Wageningen Academic Publishers, The Netherlands. https://doi.org/10.3920/978-90-8686-888-9_98

  46. Pérez-Zavala R, Torres-Torriti M, Cheein FA, Troni G (2018) A pattern recognition strategy for visual grape bunch detection in vineyards. Comput Electron Agric 151:136–149. https://doi.org/10.1016/j.compag.2018.05.019

    Article  Google Scholar 

  47. Berenstein R, Shahar OB, Shapiro A, Edan Y (2010) Grape clusters and foliage detection algorithms for autonomous selective vineyard sprayer. Intell Serv Robot 3:233–243. https://doi.org/10.1007/s11370-010-0078-z

  48. Škrabanek P, Runarsson TP (2015) Detection of grapes in natural environment using support vector machine classifier. In: Mendel, pp 143–150

    Google Scholar 

  49. Reis MJCS, Morais R, Peres E, Pereira C, Contente O, Soares S, Valente A, Baptista J, Ferreira PJSG, Bulas Cruz J (2012) Automatic detection of bunches of grapes in natural environment from color images. J Appl Log. 10:285–290. https://doi.org/10.1016/j.jal.2012.07.004

  50. Zhao R, Zhu Y, Li Y (2022) An end-to-end lightweight model for grape and picking point simultaneous detection. Biosyst Eng 223:174–188. https://doi.org/10.1016/j.biosystemseng.2022.08.013

    Article  Google Scholar 

  51. Santos T (2019) Embrapa wine grape instance segmentation dataset—Embrapa WGISD. https://zenodo.org/record/3361736#.Y9VVeHZByMo

  52. Santos TT, de Souza LL, dos Santos AA, Avila S (2020) Grape detection, segmentation, and tracking using deep neural networks and three-dimensional association. Comput Electron Agric 170:105247. https://doi.org/10.1016/j.compag.2020.105247

    Article  Google Scholar 

  53. Liu S, Whitty M (2015) Automatic grape bunch detection in vineyards with an SVM classifier. J Appl Log 13:643–653. https://doi.org/10.1016/j.jal.2015.06.001

    Article  MathSciNet  Google Scholar 

  54. Mohimont L, Roesler M, Rondeau M, Gaveau N, Alin F, Steffenel LA (2021) Comparison of machine learning and deep learning methods for grape cluster segmentation. In: Communications in computer and information science, pp 84–102. https://doi.org/10.1007/978-3-030-88259-4_7

  55. Badeka E, Kalabokas T, Tziridis K, Nicolaou A, Vrochidou E, Mavridou E, Papakostas GA, Pachidis T (2019) Grapes visual segmentation for harvesting robots using local texture descriptors. In: 12th International conference on computer vision systems (ICVS 2019), pp 98–109, Thessaloniki. https://doi.org/10.1007/978-3-030-34995-0_9

  56. Chauhan A, Singh M (2022) Computer vision and machine learning based grape fruit cluster detection and yield estimation robot. J Sci Ind Res 81:866–872. https://doi.org/10.56042/jsir.v81i08.57971

  57. Behroozi-Khazaei N, Maleki MR (2017) A robust algorithm based on color features for grape cluster segmentation. Comput Electron Agric 142:41–49. https://doi.org/10.1016/j.compag.2017.08.025

    Article  Google Scholar 

  58. Zhang C, Ding H, Shi Q, Wang Y (2022) Grape cluster real-time detection in complex natural scenes based on YOLOv5s deep learning network. Agriculture 12:1242. https://doi.org/10.3390/agriculture12081242

    Article  Google Scholar 

  59. Aguiar AS, Magalhães SA, dos Santos FN, Castro L, Pinho T, Valente J, Martins R, Boaventura-Cunha J (2021) Grape bunch detection at different growth stages using deep learning quantized models. Agronomy 11:1890. https://doi.org/10.3390/agronomy11091890

    Article  Google Scholar 

  60. Aguir AS (2021) Grape bunch and vine trunk dataset for deep learning object detection. https://zenodo.org/record/5114142#.Y9U-XXZByMo

  61. Sozzi M, Cantalamessa S, Cogato A, Kayad A, Marinello F (2022) Automatic bunch detection in white grape varieties using YOLOv3, YOLOv4, and YOLOv5 deep learning algorithms. Agronomy 12:319. https://doi.org/10.3390/agronomy12020319

    Article  Google Scholar 

  62. Shen L, Su J, Huang R, Quan W, Song Y, Fang Y, Su B (2022) Fusing attention mechanism with mask R-CNN for instance segmentation of grape cluster in the field. Front Plant Sci, 13. https://doi.org/10.3389/fpls.2022.934450

  63. Gonzalez-Marquez MR, Brizuela CA, Martinez-Rosas ME, Cervantes H (2020) Grape bunch detection using a pixel-wise classification in image processing. In: 2020 IEEE international autumn meeting on power, electronics and computing (ROPEC), pp 1–6. IEEE. https://doi.org/10.1109/ROPEC50909.2020.9258707

  64. Wang J, Zhang Z, Luo L, Zhu W, Chen J, Wang W (2021) SwinGD: a robust grape bunch detection model based on swin transformer in complex vineyard environment. Horticulturae 7:492. https://doi.org/10.3390/horticulturae7110492

    Article  Google Scholar 

  65. Lu S, Liu X, He Z, Zhang X, Liu W, Karkee M (2022) Swin-transformer-YOLOv5 for real-time wine grape bunch detection. Remote Sens 14:5853. https://doi.org/10.3390/rs14225853

    Article  Google Scholar 

  66. Liu X, Wine-grape-dataset. https://github.com/Liu**aoYu2030/Wine-Grape-Dataset

  67. Luo L, Tang Y, Zou X, Wang C, Zhang P, Feng W (2016) Robust grape cluster detection in a vineyard by combining the Adaboost framework and multiple color components. Sensors 16:2098. https://doi.org/10.3390/s16122098

    Article  Google Scholar 

  68. Cecotti H, Rivera A, Farhadloo M, Pedroza MA (2020) Grape detection with convolutional neural networks. Expert Syst Appl 159:113588. https://doi.org/10.1016/j.eswa.2020.113588

    Article  Google Scholar 

  69. **ong J, Liu Z, Lin R, Bu R, He Z, Yang Z, Liang C (2018) Green grape detection and picking-point calculation in a night-time natural environment using a charge-coupled device (CCD) vision sensor with artificial illumination. Sensors 18:969. https://doi.org/10.3390/s18030969

    Article  Google Scholar 

  70. Kalampokas Τ, Vrochidou Ε, Papakostas GA, Pachidis T, Kaburlasos VG (2021) Grape stem detection using regression convolutional neural networks. Comput Electron Agric 186:106220. https://doi.org/10.1016/j.compag.2021.106220

    Article  Google Scholar 

  71. Luo L, Tang Y, Zou X, Ye M, Feng W, Li G (2016) Vision-based extraction of spatial information in grape clusters for harvesting robots. Biosyst Eng 151:90–104. https://doi.org/10.1016/j.biosystemseng.2016.08.026

    Article  Google Scholar 

  72. Luo L, Tang Y, Lu Q, Chen X, Zhang P, Zou X (2018) A vision methodology for harvesting robot to detect cutting points on peduncles of double overlap** grape clusters in a vineyard. Comput Ind 99:130–139. https://doi.org/10.1016/j.compind.2018.03.017

    Article  Google Scholar 

  73. **ong J, He Z, Tang L, Lin R, Liu Z (2017) Visual localization of disturbed grape picking point in non-structural environment. Nongye Jixie Xuebao/Trans Chin Soc Agric Mach, issue 4. https://doi.org/10.6041/j.issn.1000-1298.2017.04.003

  74. ** Y, Yu C, Yin J, Yang SX (2022) Detection method for table grape ears and stems based on a far-close-range combined vision system and hand-eye-coordinated picking test. Comput Electron Agric 202:107364. https://doi.org/10.1016/j.compag.2022.107364

    Article  Google Scholar 

  75. Wu Z, Xu D, **a F, Suyin Z (2022) A keypoint-based method for grape stems identification. SSRN Electron J. https://doi.org/10.2139/ssrn.4199859

  76. Rasool A, Mansoor S, Bhat KM, Hassan GI, Baba TR, Alyemeni MN, Alsahli AA, El-Serehy HA, Paray BA, Ahmad P (2020) Mechanisms underlying graft union formation and rootstock scion interaction in horticultural plants. Front Plant Sci, vol 11. https://doi.org/10.3389/fpls.2020.590847

  77. Sun X, Fang W, Gao C, Fu L, Majeed Y, Liu X, Gao F, Yang R, Li R (2022) Remote estimation of grafted apple tree trunk diameter in modern orchard with RGB and point cloud based on SOLOv2. Comput Electron Agric 199:107209. https://doi.org/10.1016/j.compag.2022.107209

    Article  Google Scholar 

  78. Whalley J, Shanmuganathan S (2013) Applications of image processing in viticulture: a review. In: Piantadosi J, Anderssen RS, Boland J (eds) MODSIM2013, 20th International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand (MSSANZ), Inc. https://doi.org/10.36334/modsim.2013.B1.whalley

  79. Cuq S, Lemetter V, Kleiber D, Levasseur-Garcia C (2020) Assessing macro- (P, K, Ca, Mg) and micronutrient (Mn, Fe, Cu, Zn, B) concentration in vine leaves and grape berries of vitis vinifera by using near-infrared spectroscopy and chemometrics. Comput Electron Agric 179:105841. https://doi.org/10.1016/j.compag.2020.105841

    Article  Google Scholar 

  80. Anderson G, van Aardt J, Bajorski P, Vanden Heuvel J (2016) Detection of wine grape nutrient levels using visible and near infrared 1nm spectral resolution remote sensing. Presented at the May 17. https://doi.org/10.1117/12.2227720

  81. Rangel BMS, Fernandez MAA, Murillo JC, Pedraza Ortega JC, Arreguin JMR (2016) KNN-based image segmentation for grapevine potassium deficiency diagnosis. In: 2016 International conference on electronics, communications and computers (CONIELECOMP), pp 48–53. IEEE. https://doi.org/10.1109/CONIELECOMP.2016.7438551

  82. Moghimi A, Pourreza A, Zuniga-Ramirez G, Williams LE, Fidelibus MW (2020) A novel machine learning approach to estimate grapevine leaf nitrogen concentration using aerial multispectral imagery. Remote Sens 12:3515. https://doi.org/10.3390/rs12213515

    Article  Google Scholar 

  83. Ukaegbu U, Tartibu L, Laseinde T, Okwu M, Olayode I (2020) A deep learning algorithm for detection of potassium deficiency in a red grapevine and spraying actuation using a raspberry pi3. In: 2020 International conference on artificial intelligence, big data, computing and data communication systems (icABCD), pp 1–6. IEEE. https://doi.org/10.1109/icABCD49160.2020.9183810

  84. Kalampokas T, Vrochidou E, Papakostas GA (2022) Machine vision for grape cluster quality assessment. In: 2022 International conference on applied artificial intelligence and computing (ICAAIC), pp 916–921. IEEE. https://doi.org/10.1109/ICAAIC53929.2022.9792817

  85. Palacios D (2019) Tardaguila: a non-invasive method based on computer vision for grapevine cluster compactness assessment using a mobile sensing platform under field conditions. Sensors 19:3799. https://doi.org/10.3390/s19173799

    Article  Google Scholar 

  86. Ohana-Levi N, Zachs I, Hagag N, Shemesh L, Netzer Y (2022) Grapevine stem water potential estimation based on sensor fusion. Comput Electron Agric 198:107016. https://doi.org/10.1016/j.compag.2022.107016

    Article  Google Scholar 

  87. Bellvert J, Zarco-Tejada PJ, Girona J, Fereres E (2014) Map** crop water stress index in a ‘Pinot-noir’ vineyard: comparing ground measurements with thermal remote sensing imagery from an unmanned aerial vehicle. Precis Agric 15:361–376. https://doi.org/10.1007/s11119-013-9334-5

    Article  Google Scholar 

  88. Matese A, Baraldi R, Berton A, Cesaraccio C, Di Gennaro S, Duce P, Facini O, Mameli M, Piga A, Zaldei A (2018) Estimation of water stress in grapevines using proximal and remote sensing methods. Remote Sens 10:114. https://doi.org/10.3390/rs10010114

    Article  Google Scholar 

  89. Poblete T, Ortega-Farías S, Ryu D (2018) Automatic coregistration algorithm to remove canopy shaded pixels in UAV-borne thermal images to improve the estimation of crop water stress index of a drip-irrigated cabernet sauvignon vineyard. Sensors 18:397. https://doi.org/10.3390/s18020397

    Article  Google Scholar 

  90. Zovko M, Žibrat U, Knapič M, Kovačić MB, Romić D (2019) Hyperspectral remote sensing of grapevine drought stress. Precis Agric 20:335–347. https://doi.org/10.1007/s11119-019-09640-2

    Article  Google Scholar 

  91. Dwivedi R, Dey S, Chakraborty C, Tiwari S (2021) Grape disease detection network based on multi-task learning and attention features. IEEE Sens J 21:17573–17580. https://doi.org/10.1109/JSEN.2021.3064060

    Article  Google Scholar 

  92. Shruthi U, Nagaveni V, Raghavendra BK (2019) A review on machine learning classification techniques for plant disease detection. In: 2019 5th International conference on advanced computing & communication systems (ICACCS), pp 281–284. IEEE. https://doi.org/10.1109/ICACCS.2019.8728415

  93. Hasan RI, Yusuf SM, Alzubaidi L (2020) Review of the state of the art of deep learning for plant diseases: a broad analysis and discussion. Plants 9:1302. https://doi.org/10.3390/plants9101302

    Article  Google Scholar 

  94. Rajpal N (2020) Black rot disease detection in grape plant (vitis vinifera) using colour based segmentation & machine learning. In: 2020 2nd International conference on advances in computing, communication control and networking (ICACCCN), pp 976–979. IEEE. https://doi.org/10.1109/ICACCCN51052.2020.9362812

  95. Zhu J, Wu A, Wang X, Zhang H (2020) Identification of grape diseases using image analysis and BP neural networks. Multimed Tools Appl 79:14539–14551. https://doi.org/10.1007/s11042-018-7092-0

    Article  Google Scholar 

  96. Gutiérrez S, Hernández I, Ceballos S, Barrio I, Díez-Navajas AM, Tardaguila J (2021) Deep learning for the differentiation of downy mildew and spider mite in grapevine under field conditions. Comput Electron Agric 182:105991. https://doi.org/10.1016/j.compag.2021.105991

    Article  Google Scholar 

  97. de Castro AI, Peña JM, Torres-Sánchez J, Jiménez-Brenes F, López-Granados F (2017) Map** Cynodon dactylon in vineyards using UAV images for site-specific weed control. Adv Anim Biosci 8:267–271. https://doi.org/10.1017/S2040470017000826

    Article  Google Scholar 

  98. Jiménez-Brenes FM, López-Granados F, Torres-Sánchez J, Peña JM, Ramírez P, Castillejo-González IL, de Castro AI (2019) Automatic UAV-based detection of Cynodon dactylon for site-specific vineyard management. PLoS ONE. https://doi.org/10.1371/journal.pone.0218132

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleni Vrochidou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vrochidou, E., Papakostas, G.A. (2023). Leveraging Computer Vision for Precision Viticulture. In: Bansal, J.C., Uddin, M.S. (eds) Computer Vision and Machine Learning in Agriculture, Volume 3. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-99-3754-7_13

Download citation

Publish with us

Policies and ethics

Navigation