Basics of Density Functional Theory, Molecular Dynamics, and Monte Carlo Simulation Techniques in Materials Science

  • Chapter
  • First Online:
Coating Materials

Abstract

Materials science is an important part of engineering to discover new materials for various applications. Computational techniques are the essential tool to identify and analyze various engineering materials. Every computational technique has its pro and cons. There are many scales of computational techniques, e.g., nanoscale, microscale, mesoscale simulations, etc. To identify different aspects of engineering materials, all these techniques are important. In this chapter, the authors tried to explain the pros and cons of some nanoscale simulation techniques. In addition to this, the authors also tried to explain the fundamental concepts of these nanoscale simulation techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 96.29
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 126.59
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee JG (2016) Computational materials science, 2nd edn. CRC Press, Taylor & Francis, Boca Raton

    Google Scholar 

  2. Singh SK, Parashar A (2021) Defect dynamics and uniaxial tensile deformation of equi and non-equi-atomic configuration of multi-elemental alloys. Mater Chem Phys 266:124549

    Article  CAS  Google Scholar 

  3. Murty BS, Yeh JW, Ranganathan S (2014) Alloy Design in the twenty-first century. High Entropy Alloys. Elsevier, pp 57–76

    Google Scholar 

  4. Zhao W, Li W, Li X, Gong S, Vitos L, Sun Z (2019) Thermo-mechanical properties of Ni-Mo solid solutions: a first-principles study. Comput Mater Sci 158:140–148

    Article  CAS  Google Scholar 

  5. Sharma AK, Sharma SS, Singh SK, Parashar A (2021) Atomistic simulations to study the effect of helium nanobubble on the shear deformation of nickel crystal. J Nucl Mater 557:153245

    Article  CAS  Google Scholar 

  6. Singh SK, Parashar A (2022) Effect of lattice distortion and grain size on the crack tip behaviour in Co-Cr-Cu-Fe-Ni under mode-I and mode-II loading. Eng Fract Mech 274:108809

    Article  Google Scholar 

  7. Grubmüller H, Heller H, Windemuth A, Schulten K (1991) Generalized Verlet algorithm for efficient molecular dynamics simulations with long-range interactions. Mol Simul 6:121–142

    Article  Google Scholar 

  8. Chaturvedi S, Verma A, Singh SK, Ogata S (2022) EAM inter-atomic potential—its implication on nickel, copper, and aluminum (and their alloys). In: Forcefields for atomistic-scale simulations: materials and applications. Springer, Singapore, pp 133–156

    Google Scholar 

  9. Verma A, Parashar A, Singh SK, Jain N, Sanjay SM, Siengchin S (2020) Modeling and simulation in polymer coatings. In: Polymer coatings. CRC Press, pp 309–324

    Google Scholar 

  10. Kumar Singh S, Chaurasia A, Parashar A (2022) Atomistic simulations to study shock and ultrashort pulse response of high entropy alloy. Mater. Today Proc

    Google Scholar 

  11. Grujicic M, Zhou XW (1995) Atomistic simulation of thermally activated glide of dislocations in FeNiCrN austenite. 190

    Google Scholar 

  12. Kumar Singh S, Parashar A (2021) Atomistic simulations to study crack tip behaviour in multi-elemental alloys. Eng Fract Mech 243:107536

    Article  Google Scholar 

  13. Singh SK, Parashar A (2022) Shock resistance capability of multi-principal elemental alloys as a function of lattice distortion and grain size. J Appl Phys 132:095903

    Article  CAS  Google Scholar 

  14. Chaurasia A, Kumar Singh S, Parashar A (2022) Atomistic scale insight to investigate the strain rate effect on mechanical response of boron nitride nanosheet reinforced nanocomposites. Mater. Today Proc

    Google Scholar 

  15. Kumar Singh S, Parashar A (2022) Effect of lattice distortion and nanovoids on the shock compression behavior of (Co-Cr-Cu-Fe-Ni) high entropy alloy. Comput Mater Sci 209:111402

    Article  CAS  Google Scholar 

  16. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    Article  CAS  Google Scholar 

  17. Koči L, Bringa EM, Ivanov DS, Hawreliak J, McNaney J, Higginbotham A, Zhigilei LV, Belonoshko AB, Remington BA, Ahuja R (2006) Simulation of shock-induced melting of Ni using molecular dynamics coupled to a two-temperature model. Phys Rev B Condens Matter Mater Phys 74:012101

    Google Scholar 

  18. Byggmästar J, Nordlund K, Djurabekova F (2022) Simple machine-learned interatomic potentials for complex alloys. Phys Rev Mater 6:083801

    Article  Google Scholar 

  19. Zhang L, Qian K, Schuller BW, Shibuta Y (2021) Prediction on mechanical properties of non-equiatomic high-entropy alloy by atomistic simulation and machine learning. Metals (Basel) 11

    Google Scholar 

  20. Wang H, Zhang L, Han J, Weinan E (2018) DeePMD-kit: a deep learning package for many-body potential energy representation and molecular dynamics. Comput Phys Commun 228:178–184

    Google Scholar 

  21. Esfandiarpour A, Alvarez-Donado R, Papanikolaou S, Alava M (2022) Atomistic simulations of dislocation plasticity in concentrated VCoNi medium entropy alloys: effects of lattice distortion and short range order. Front Mater 9

    Google Scholar 

  22. Liu S, Tian Z, Shen L, Qiu M, Gao X (2021) Monte Carlo simulation of ceramic grain growth during laser ablation processing. Optik (Stuttg) 227:165569

    Google Scholar 

  23. Gervasio M, Lu K 2019 Monte Carlo simulation modeling of nanoparticle–polymer cosuspensions. Langmuir 35:61–70

    Google Scholar 

  24. Pineda M, Stamatakis M (2022) Kinetic Monte Carlo simulations for heterogeneous catalysis: fundamentals, current status, and challenges J Chem Phys 156:120902

    Google Scholar 

  25. Wu Y, Bönisch M, Alkan S, Abuzaid W, Sehitoglu H (2018) Experimental determination of latent hardening coefficients in FeMnNiCoCr. Int J Plast 105:239–260

    Google Scholar 

  26. Shaginyan LR, Britun VF, Krapivka NA, Firstov SA, Kotko AV, Gorban VF (2018) The properties of Cr–Co–Cu–Fe–Ni Alloy films deposited by magnetron sputtering powder. Metall Met Ceram 57:293–300

    Article  CAS  Google Scholar 

  27. Yeh JW (2016) Physical metallurgy. High-entropy alloys: fundamentals and applications. pp 51–113

    Google Scholar 

  28. Divinski SV, Pokoev AV, Esakkiraja N, Paul A (2018) A Mystery of “sluggish diffusion” in high-entropy alloys: the truth or a myth? Diffus Found 17:69–104

    Article  CAS  Google Scholar 

  29. Zhao S, Stocks GM, Zhang Y (2016) Defect energetics of concentrated solid-solution alloys from ab initio calculations: Ni0.5Co0.5, Ni0.5Fe0.5, Ni0.8Fe0.2 and Ni0.8Cr0.2. Phys Chem Chem Phys 18:24043–24056

    Article  CAS  Google Scholar 

  30. Huang X, Liu L, Duan X, Liao W, Huang J, Sun H, Yu C (2021) Atomistic simulation of chemical short-range order in HfNbTaZr high entropy alloy based on a newly-developed interatomic potential. Mater Des 202:109560

    Article  CAS  Google Scholar 

  31. Lokman Ali M, Shinzato S, Wang V, Shen Z, Du JP, Ogata S (2020) An atomistic modeling study of the relationship between critical resolved shear stress and atomic structure distortion in FcC high entropy alloys ® relationship in random solid solution and chemical-short-range-order alloys ®. Mater Trans 61:605–609

    Article  Google Scholar 

  32. Jian WR, Wang L, Bi W, Xu S, Beyerlein IJ (2021) Role of local chemical fluctuations in the melting of medium entropy alloy CoCrNi Appl. Phys Lett 119:121904

    CAS  Google Scholar 

  33. **e Z, Jian WR, Xu S, Beyerlein IJ, Zhang X, Wang Z, Yao X (2021) Role of local chemical fluctuations in the shock dynamics of medium entropy alloy. CoCrNi Acta Mater 221:117380

    Google Scholar 

  34. Liu D, Wang Q, Wang J, Chen XF, Jiang P, Yuan FP, Cheng ZY, Ma E, Wu XL (2021) Chemical short-range order in Fe50Mn30Co10Cr10 high-entropy alloy. Mater Today Nano 16:100139

    Article  CAS  Google Scholar 

  35. Najafabadi R, Wang HY, Srolovitz DJ, LeSar R (1991) A new method for the simulation of alloys: application to interfacial segregation, vol 39

    Google Scholar 

  36. Purton JA, Barrera GD, Allan NL, Blundy JD (1998) Monte Carlo and hybrid Monte Carlo/molecular dynamics approaches to order−disorder in alloys, oxides, and silicates. J Phys Chem B 102:5202–5207

    Article  CAS  Google Scholar 

  37. Deji R, Verma A, Kaur N, Choudhary BC, Sharma RK (2022) Density functional theory study of carbon monoxide adsorption on transition metal doped armchair graphene nanoribbon. Mater Today: Proc 54:771–776

    CAS  Google Scholar 

  38. Deji R, Verma A, Choudhary BC, Sharma RK (2022) New insights into NO adsorption on alkali metal and transition metal doped graphene nanoribbon surface: a DFT approach. J Mol Graph Model 111:108109

    Article  Google Scholar 

  39. Verma A, Jain N, Parashar A, Singh VK, Sanjay MR, Siengchin S (2020) Lightweight graphene composite materials. In: Lightweight polymer composite structures. CRC Press, pp 1–20

    Google Scholar 

  40. Verma A, Parashar A (2020) Characterization of 2D nanomaterials for energy storage. In: Recent advances in theoretical, applied, computational and experimental mechanics. Springer, Singapore, pp 221–226

    Google Scholar 

  41. Deji R, Jyoti R, Verma A, Choudhary BC, Sharma RK (2022) A theoretical study of HCN adsorption and width effect on co-doped armchair graphene nanoribbon. Comput Theor Chem 1209:113592

    Article  Google Scholar 

  42. Verma A, Parashar A, Packirisamy M (2019) Effect of grain boundaries on the interfacial behaviour of graphene-polyethylene nanocomposite. Appl Surf Sci 470:1085–1092

    Article  CAS  Google Scholar 

  43. Deji R, Verma A, Kaur N, Choudhary BC, Sharma RK (2022) Adsorption chemistry of co-doped graphene nanoribbon and its derivatives towards carbon based gases for gas sensing applications: quantum DFT investigation. Mater Sci Semicond Process 146:106670

    Article  Google Scholar 

  44. Verma A, Jain N, Sethi SK (2022) Modeling and simulation of graphene-based composites. In: Innovations in graphene-based polymer composites. Woodhead Publishing, pp 167–198

    Google Scholar 

  45. Verma A, Parashar A, van Duin AC (2022) Graphene-reinforced polymeric membranes for water desalination and gas separation/barrier applications. In: Innovations in graphene-based polymer composites. Woodhead Publishing, pp. 133–165

    Google Scholar 

  46. Verma A, Parashar A (2017) The effect of STW defects on the mechanical properties and fracture toughness of pristine and hydrogenated graphene. Phys Chem Chem Phys 19(24):16023–16037

    Article  CAS  Google Scholar 

  47. Verma A, Parashar A (2018) Molecular dynamics based simulations to study failure morphology of hydroxyl and epoxide functionalised graphene. Comput Mater Sci 143:15–26

    Article  CAS  Google Scholar 

  48. Verma A, Parashar A (2018) Molecular dynamics based simulations to study the fracture strength of monolayer graphene oxide. Nanotechnology 29(11):115706

    Article  Google Scholar 

  49. Verma A, Parashar A (2018) Structural and chemical insights into thermal transport for strained functionalised graphene: a molecular dynamics study. Mater Res Express 5(11):115605

    Article  Google Scholar 

  50. Verma A, Parashar A, Packirisamy M (2018) Tailoring the failure morphology of 2D bicrystalline graphene oxide. J Appl Phys 124(1):015102

    Article  Google Scholar 

  51. Verma A, Parashar A (2018) Reactive force field based atomistic simulations to study fracture toughness of bicrystalline graphene functionalised with oxide groups. Diam Relat Mater 88:193–203

    Article  CAS  Google Scholar 

  52. Singla V, Verma A, Parashar A (2018) A molecular dynamics based study to estimate the point defects formation energies in graphene containing STW defects. Mater Res Express 6(1):015606

    Article  Google Scholar 

  53. Verma A, Parashar A, Packirisamy M (2019) Role of chemical adatoms in fracture mechanics of graphene nanolayer. Mater Today: Proc 11:920–924

    CAS  Google Scholar 

  54. Verma A, Parashar A, Packirisamy M (2018) Atomistic modeling of graphene/hexagonal boron nitride polymer nanocomposites: a review. Wiley Interdiscip Rev: Comput Mol Sci 8(3):e1346

    Google Scholar 

  55. Verma A, Kumar R, Parashar A (2019) Enhanced thermal transport across a bi-crystalline graphene–polymer interface: an atomistic approach. Phys Chem Chem Phys 21(11):6229–6237

    Article  CAS  Google Scholar 

  56. Verma A, GaurA, Singh VK (2017) Mechanical properties and microstructure of starch and sisal fiber biocomposite modified with epoxy resin mechanical properties and microstructure modified with epoxy resin. 6(1):500–520

    Google Scholar 

  57. Verma A, Parashar A, Jain N, Singh VK, Rangappa SM, Siengchin S (2020) Surface modification techniques for the preparation of different novel biofibers for composites. In: Biofibers and biopolymers for biocomposites. Springer, Cham, pp 1–34

    Google Scholar 

  58. Verma A, Singh VK (2016) Experimental investigations on thermal properties of coconut shell particles in DAP solution for use in green composite applications. J Mater Sci Eng 5(3):1000242

    Google Scholar 

  59. Singh K, Jain N, Verma A, Singh VK, Chauhan S (2020) Functionalized graphite–reinforced cross-linked poly (vinyl alcohol) nanocomposites for vibration isolator application: Morphology, mechanical, and thermal assessment. Mater Perform Charact 9(1):215–230

    Google Scholar 

  60. Verma A, Singh VK, Arif M (2016) Study of flame retardant and mechanical properties of coconut shell particles filled composite. Res Rev J Mater Sci 4(3):1–5

    Google Scholar 

  61. Verma A, Jain N, Rastogi S, Dogra V, Sanjay SM, Siengchin S, Mansour R (2020) Mechanism, anti-corrosion protection and components of anti-corrosion polymer coatings. In: Polymer coatings. CRC Press, pp 53–66

    Google Scholar 

  62. Chaudhary A, Sharma S, Verma A (2022) WEDM machining of heat treated ASSAB’88 tool steel: a comprehensive experimental analysis. Mater Today: Proc 50:946–951

    CAS  Google Scholar 

  63. Bisht N, Verma A, Chauhan S, Singh VK (2021) Effect of functionalized silicon carbide nano-particles as additive in cross-linked PVA based composites for vibration dam** application. J Vinyl Add Tech 27(4):920–932

    Article  CAS  Google Scholar 

  64. Verma A, Jain N, Parashar A, Singh VK, Sanjay MR, Siengchin S (2020) Design and modeling of lightweight polymer composite structures. In: Lightweight Polymer composite structures. CRC Press, pp 193–224

    Google Scholar 

  65. Dogra V, Kishore C, Verma A, Rana AK, Gaur A (2021) Fabrication and experimental testing of hybrid composite material having biodegradable bagasse fiber in a modified epoxy resin: evaluation of mechanical and morphological behavior. Appl Sci Eng Progress 14(4):661–667

    Google Scholar 

  66. Verma A, Baurai K, Sanjay MR, Siengchin S (2020) Mechanical, microstructural, and thermal characterization insights of pyrolyzed carbon black from waste tires reinforced epoxy nanocomposites for coating application. Polym Compos 41(1):338–349

    Article  CAS  Google Scholar 

  67. Verma A, Budiyal L, Sanjay MR, Siengchin S (2019) Processing and characterization analysis of pyrolyzed oil rubber (from waste tires)-epoxy polymer blend composite for lightweight structures and coatings applications. Polym Eng Sci 59(10):2041–2051

    Article  CAS  Google Scholar 

  68. Verma A, Negi P, Singh VK (2019) Experimental analysis on carbon residuum transformed epoxy resin: chicken feather fiber hybrid composite. Polym Compos 40(7):2690–2699

    Article  CAS  Google Scholar 

  69. Verma A, Singh VK (2018) Mechanical, microstructural and thermal characterization of epoxy-based human hair–reinforced composites. J Test Eval 47(2):1193–1215

    Google Scholar 

  70. Jain N, Verma A, Ogata S, Sanjay MR, Siengchin S (2022) Application of machine learning in determining the mechanical properties of materials. In: Machine learning applied to composite materials. Springer, Singapore, pp 99–113

    Google Scholar 

  71. Verma A, Singh VK, Verma SK, Sharma A (2016) Human hair: a biodegradable composite fiber–a review. Int J Waste Resour 6(206):1000206

    Google Scholar 

  72. Kataria A, Verma A, Sanjay MR, Siengchin S, Jawaid M (2022) Physical, morphological, structural, thermal, and tensile properties of coir fibers. In: Coir fiber and its composites. Woodhead Publishing, pp 79–107

    Google Scholar 

  73. Jain N, Verma A, Singh VK (2019) Dynamic mechanical analysis and creep-recovery behaviour of polyvinyl alcohol based cross-linked biocomposite reinforced with basalt fiber. Mater Res Express 6(10):105373

    Article  CAS  Google Scholar 

  74. Chaurasia A, Verma A, Parashar A, Mulik RS (2019) Experimental and computational studies to analyze the effect of h-BN nanosheets on mechanical behavior of h-BN/polyethylene nanocomposites. J Phys Chem C 123(32):20059–20070

    Article  CAS  Google Scholar 

  75. Verma A, Negi P, Singh VK (2018) Physical and thermal characterization of chicken feather fiber and crumb rubber reformed epoxy resin hybrid composite. Adv Civ Eng Mater 7(1):538–557

    CAS  Google Scholar 

  76. Bharath KN, Madhu P, Gowda TG, Verma A, Sanjay MR, Siengchin S (2020) A novel approach for development of printed circuit board from biofiber based composites. Polym Compos 41(11):4550–4558

    Article  CAS  Google Scholar 

  77. Verma A, Joshi K, Gaur A, Singh VK (2018) Starch-jute fiber hybrid biocomposite modified with an epoxy resin coating: fabrication and experimental characterization. J Mech Behav Mater 27(5–6):20182006

    Article  CAS  Google Scholar 

  78. Verma A, Singh C, Singh VK, Jain N (2019) Fabrication and characterization of chitosan-coated sisal fiber–Phytagel modified soy protein-based green composite. J Compos Mater 53(18):2481–2504

    Article  CAS  Google Scholar 

  79. Rastogi S, Verma A, Singh VK (2020) Experimental response of nonwoven waste cellulose fabric–reinforced epoxy composites for high toughness and coating applications. Mater Perform Charact 9(1):151–172

    Google Scholar 

  80. Verma A, Zhang W, Van Duin AC (2021) ReaxFF reactive molecular dynamics simulations to study the interfacial dynamics between defective h-BN nanosheets and water nanodroplets. Phys Chem Chem Phys 23(18):10822–10834

    Article  CAS  Google Scholar 

  81. Verma A, Jain N, Parashar A, Gaur A, Sanjay MR, Siengchin S (2021) Lifecycle assessment of thermoplastic and thermosetting bamboo composites. In: Bamboo fiber composites. Springer, Singapore, pp 235–246

    Google Scholar 

  82. Arpitha GR, Verma A, Sanjay MR, Siengchin S (2021) Preparation and experimental investigation on mechanical and tribological performance of hemp-glass fiber reinforced laminated composites for lightweight applications. Adv Civil Eng Mater 10(1):427–439

    CAS  Google Scholar 

  83. Verma A, Samant SS (2016) Inspection of hydrodynamic lubrication in infinitely long journal bearing with oscillating journal velocity. J Appl Mech Eng 5(3):1–7

    Google Scholar 

  84. Verma A, Jain N, Rangappa SM, Siengchin S, Jawaid M (2021) Natural fibers based bio-phenolic composites. In: Phenolic polymers based composite materials. Springer, Singapore, pp 153–168

    Google Scholar 

  85. Arpitha, G.R., Jain, N., Verma, A. and Madhusudhan, M., 2022. Corncob bio-waste and boron nitride particles reinforced epoxy-based composites for lightweight applications: fabrication and characterization. Biomass Convers Biorefinery 1–8. https://doi.org/10.1007/s13399-022-03717-1

  86. Verma A, Singh VK Experimental characterization of modified epoxy resin assorted with almond shell particles. ESSENCE-Int J Environ Rehabil Conserv 7(1):36–44

    Google Scholar 

  87. Verma A (2022) A perspective on the potential material candidate for railway sector applications: PVA based functionalized graphene reinforced composite. Appl Sci Eng Prog 15(2):5727–5727

    Google Scholar 

  88. Verma A, Jain N, Singh K, Singh VK, Rangappa SM, Siengchin S (2022) PVA-based blends and composites. In: Biodegradable polymers, blends and composites. Woodhead Publishing, pp 309–326

    Google Scholar 

  89. Raja S, Verma A, Rangappa SM, Siengchin S (2022) Development and experimental analysis of polymer based composite bipolar plate using Aquila Taguchi optimization: design of experiments. Polym Compos 43(8):5522–5533

    Article  CAS  Google Scholar 

  90. Prabhakaran S, Sharma S, Verma A, Rangappa SM, Siengchin S (2022) Mechanical, thermal, and acoustical studies on natural alternative material for partition walls: a novel experimental investigation. Polym Compos 43(7):4711–4720

    Article  CAS  Google Scholar 

  91. Sethi SK, Gogoi R, Verma A, Manik G (2022) How can the geometry of a rough surface affect its wettability?-a coarse-grained simulation analysis. Prog Org Coat 172:107062

    Article  CAS  Google Scholar 

  92. Chaudhary A, Sharma S, Verma A (2022) Optimization of WEDM process parameters for machining of heat treated ASSAB’88 tool steel using response surface methodology (RSM). Mater Today: Proc 50:917–922

    CAS  Google Scholar 

  93. Verma A, Jain N, Sanjay MR, Siengchin S Viscoelastic properties of completely biodegradable polymer-based composites. In: Vibration and dam** behavior of biocomposites. CRC Press, pp 173–188

    Google Scholar 

  94. Verma A, Jain N, Mishra RR (2022) Applications and drawbacks of epoxy/natural fiber composites. In: Handbook of epoxy/fiber composites. Singapore, Springer Singapore, pp 1–15

    Google Scholar 

  95. Lila MK, Verma A, Bhurat SS (2022) Impact behaviors of epoxy/synthetic fiber composites. In: Handbook of epoxy/fiber composites. Singapore, Springer Singapore, pp. 1–18

    Google Scholar 

  96. Kumar G, Mishra RR, Verma A (2022) Introduction to molecular dynamics simulations. In: Forcefields for atomistic-scale simulations: materials and applications. Springer, Singapore, pp 1–19. https://doi.org/10.1007/978-981-19-3092-8_1

  97. Verma A, Sharma S (2022) Atomistic simulations to study thermal effects and strain rate on mechanical and fracture properties of graphene like BC3. In: Forcefields for atomistic-scale simulations: materials and applications. Springer, Singapore, pp 237–252

    Google Scholar 

  98. Chaturvedi S, Verma A, Sethi SK, Ogata S (2022) Defect energy calculations of nickel, copper and aluminium (and their alloys): molecular dynamics approach. In: Forcefields for atomistic-scale simulations: materials and applications. Springer, Singapore, pp 157–186

    Google Scholar 

  99. Shankar U, Gogoi R, Sethi SK, Verma A (2022) Introduction to materials studio software for the atomistic-scale simulations. In: Forcefields for atomistic-scale simulations: materials and applications. Springer, Singapore, pp 299–313

    Google Scholar 

  100. Shankar U, Sethi SK, Verma A (2022) Forcefields and modeling of polymer coatings and nanocomposites. In: Forcefields for atomistic-scale simulations: materials and applications. Springer, Singapore, pp 81–98

    Google Scholar 

  101. Verma A, Ogata S (2022) Computational modelling of deformation and failure of bone at molecular scale. In: Forcefields for atomistic-scale simulations: materials and applications. Springer, Singapore, pp 253–268

    Google Scholar 

  102. Homer ER, Verma A, Britton D, Johnson OK, Thompson GB (2022) Simulated migration behavior of metastable Σ3 (11 8 5) incoherent twin grain boundaries. IOP Conf Ser Mater Sci Eng 1249(1):012019

    Google Scholar 

  103. Chaturvedi S, Verma A, Sethi SK, Rangappa SM, Siengchin S (2022) Stalk fibers (rice, wheat, barley, etc.) composites and applications. In: Plant fibers, their composites, and applications. Woodhead Publishing, pp 347–362

    Google Scholar 

  104. Arpitha GR, Verma A, Sanjay MR, Gorbatyuk S, Khan A, Sobahi TR, Asiri AM, Siengchin S (2022) Bio-composite film from corn starch based vetiver cellulose. J Nat Fibers 19(16):14634–14644

    Google Scholar 

  105. Thimmaiah SH, Narayanappa K, Thyavihalli Girijappa Y, Gulihonenahali Rajakumara A, Hemath M, Thiagamani SMK, Verma A (2022) An artificial neural network and Taguchi prediction on wear characteristics of Kenaf-Kevlar fabric reinforced hybrid polyester composites. Polym Compos 44(1):261–273

    Article  Google Scholar 

  106. Kataria A, Verma A, Sethi SK, Ogata S (2022) Introduction to interatomic potentials/forcefields. In: Forcefields for atomistic-scale simulations: materials and applications. Springer, Singapore, pp 21–49

    Google Scholar 

  107. Kataria A, Verma A, Sanjay MR, Siengchin S (2022) Molecular modeling of 2D graphene grain boundaries: mechanical and fracture aspects. Mater Today Proc 52:2404–2408

    Article  CAS  Google Scholar 

  108. Verma A, Ogata S (2023) Magnesium based alloys for reinforcing biopolymer composites and coatings: a critical overview on biomedical materials. Adv Ind Eng Polym Res. https://doi.org/10.1016/j.aiepr.2023.01.002

    Article  Google Scholar 

  109. Bharath KN, Madhu P, Gowda TY, Verma A, Sanjay MR, Siengchin S (2021) Mechanical and chemical properties evaluation of sheep wool fiber–reinforced vinylester and polyester composites. Mater Perform Charact 10(1):99–109

    CAS  Google Scholar 

  110. Kataria A, Chaturvedi S, Chaudhary V, Verma A, Jain N, Rangappa SM, Siengchin S (2023) Cellulose fiber-reinforced composites—history of evolution, chemistry, and structure. In: Cellulose fibre reinforced composites. Woodhead Publishing, pp 1–22. https://doi.org/10.1016/B978-0-323-90125-3.00012-4

  111. Chaturvedi S, Kataria A, Chaudhary V, Verma A, Jain N, Rangappa SM, Siengchin S (2023) Bionanocomposites reinforced with cellulose fibers and agro-industrial wastes. In: Cellulose fibre reinforced composites. Woodhead Publishing, pp 1–22. https://doi.org/10.1016/B978-0-323-90125-3.00017-3

  112. Arpitha GR, Mohit H, Madhu P, Verma* A (2023) Effect of sugarcane bagasse and alumina reinforcements on physical, mechanical, and thermal characteristics of epoxy composites using artificial neural networks and response surface methodology. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-023-03886-7

Download references

Acknowledgements

Corresponding Author “Akarsh Verma” is grateful to the monetary support provided by the University of Petroleum and Energy Studies (UPES)-SEED Grant program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akarsh Verma .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

“There are no conflicts of interest to declare by the authors.”

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, S.K., Chaurasia, A., Verma, A. (2023). Basics of Density Functional Theory, Molecular Dynamics, and Monte Carlo Simulation Techniques in Materials Science. In: Verma, A., Sethi, S.K., Ogata, S. (eds) Coating Materials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-99-3549-9_5

Download citation

Publish with us

Policies and ethics

Navigation