The Effect of Nanofillers in Pollution and Environment

  • Living reference work entry
  • First Online:
Handbook of Nanofillers

Abstract

The environmental challenges have been a long-standing concern and have caused severe damages up until now. Wastewater management and the emission of greenhouse gases are among these challenges. Impure and contaminated water can cause danger to both human lives and the ecosystem. Greenhouse gas emission has also been a crucial reason for changes in atmospheric dynamics and the increase of pollution in the environment. The rate of population increase has caused an increasing demand for fresh air and fresh water. Polymer nanocomposite membranes have been developed to overcome these challenges and facilitate the separation process for wastewater treatment and gas separation. Restrictions for polymeric membranes, such as compromise among water permeability, solute selectivity, and low resistance to fouling, have led to development of next-generation membranes that can possess these properties altogether. These nanocomposite membranes are incorporated with nanofillers, which introduce exceptional abilities to the membranes. This chapter presents a comprehensive analysis of the latest advancements in water treatment and gas separation for environmental applications, highlighting the recent advancements in membrane manufacturing technology. In this chapter, the focus is on how nanofillers, such as carbon nanotubes (CNTs), graphene oxide (GO), and titanium dioxide (TiO2), impact the performance of membranes and improve their properties. This area is also examined regarding its challenges and opportunities, along with an investigation into potential future directions for using these materials in environmental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abdel-Karim A, Ismail SH, Bayoumy AM, Ibrahim M, Mohamed GG (2021) Antifouling PES/Cu@Fe3O4 mixed matrix membranes: quantitative structure–activity relationship (QSAR) modeling and wastewater treatment potentiality. Chem Eng J 407(126):501

    Google Scholar 

  • Agboola O, Fayomi OSI, Ayodeji A, Ayeni AO, Alagbe EE, Sanni SE, Okoro EE, Moropeng L, Sadiku R, Kupolati KW (2021) A review on polymer nanocomposites and their effective applications in membranes and adsorbents for water treatment and gas separation. Membranes 11:139

    Article  CAS  Google Scholar 

  • Al Aani S, Wright CJ, Atieh MA, Hilal N (2017) Engineering nanocomposite membranes: addressing current challenges and future opportunities. Desalination 401:1–15

    Article  Google Scholar 

  • Ali M, Aslam M, Khan A, Gilani MA, Khan AL (2019) Mixed matrix membranes incorporated with sonication-assisted ZIF-8 nanofillers for hazardous wastewater treatment. Environ Sci Pollut Res 26:35,913–35,923

    Article  CAS  Google Scholar 

  • Asghari M, Sheikh M, Dehghani M (2018) Comparison of ZnO nanofillers of different shapes on physical, thermal and gas transport properties of peba membrane: experimental testing and molecular simulation. J Chem Technol Biotechnol 93:2602–2616

    Article  CAS  Google Scholar 

  • Asghari M, Saadatmandi S, Parnian MJ (2021) Polypyrrole-aided surface decoration of graphene oxide Nanosheets as fillers for poly (ether-b-amid) mixed matrix membranes to enhance CO2 capture. Int J Energy Res 45:10,843–10,857

    Article  CAS  Google Scholar 

  • Azad H, Mohsennia M (2020) A novel free-standing polyvinyl butyral-polyacrylonitrile/Znal-layered double hydroxide nanocomposite membrane for enhanced heavy metal removal from wastewater. J Membr Sci 615(118):487

    Google Scholar 

  • Daraei P, Ghaemi N (2019) Synergistic effect of Cloisite 15A and 30B Nanofillers on the characteristics of nanocomposite polyethersulfone membrane. Appl Clay Sci 172:96–105

    Article  CAS  Google Scholar 

  • Dehghankar M, Mohammadi T, Tavakolmoghadam M, Tofighy MA (2021) Polyvinylidene fluoride/nanoclays (cloisite 30B and palygorskite) mixed matrix membranes with improved performance and antifouling properties. Ind Eng Chem Res 60:12,078–12,091

    Article  CAS  Google Scholar 

  • Deng J, Dai Z, Hou J, Deng L (2020) Morphologically tunable MOF nanosheets in mixed matrix membranes for CO2 separation. Chem Mater 32:4174–4184

    Article  CAS  Google Scholar 

  • Duan K, Wang J, Zhang Y, Liu J (2019) Covalent organic frameworks (COFs) functionalized mixed matrix membrane for effective CO2/N2 separation. J Membr Sci 572:588–595

    Article  CAS  Google Scholar 

  • Duong PHH, Kuehl VA, Mastorovich B, Hoberg JO, Parkinson BA, Li-Oakey KD (2019) Carboxyl-functionalized covalent organic framework as a two-dimensional nanofiller for mixed-matrix ultrafiltration membranes. J Membr Sci 574:338–348

    Article  CAS  Google Scholar 

  • Esfahani MR, Tyler JL, Stretz HA, Wells MJM (2015) Effects of a dual nanofiller, nano-TiO2 and MWCNT, for polysulfone-based nanocomposite membranes for water purification. Desalination 372:47–56

    Article  CAS  Google Scholar 

  • Fajrina N, Yusof N, Ismail A, Jaafar J, Aziz F, Salleh W, Nordin N (2021) MgAl-CO3 layered double hydroxide as potential filler in substrate layer of composite membrane for enhanced carbon dioxide separation. J Environ Chem Eng 9(106):164

    Google Scholar 

  • Ganjali MR, Badiei A, Mouradzadegun A, Vatanpour V, Khadem SSM, Munir MT, Habibzadeh S, Saeb MR, Koyuncu I (2020) Erbium (III) molybdate as a new nanofiller for fabrication of antifouling polyethersulfone membranes. Mater Today Comm 25(101):379

    Google Scholar 

  • Gao X, Li Y, Yang X, Shang Y, Wang Y, Gao B, Wang Z (2017) Highly permeable and antifouling reverse osmosis membranes with acidified graphitic carbon nitride nanosheets as nanofillers. J Mater Chem A 5:19,875–19,883

    Article  CAS  Google Scholar 

  • Ge M, Wang X, Wu S, Long Y, Yang Y, Zhang J (2021) Highly antifouling and chlorine resistance polyamide reverse osmosis membranes with g-C3N4 nanosheets as nanofiller. Sep Purif Technol 258(117):980

    Google Scholar 

  • Gholami F, Zinadini S, Zinatizadeh AA (2020) Preparation of high performance CuBTC/PES ultrafiltration membrane for oily wastewater separation; a good strategy for advanced separation. J Environ Chem Eng 8(104):482

    Google Scholar 

  • Han Y, Zhang Z (2019) Nanostructured membrane materials for CO2 capture: a critical review. J Nanosci Nanotechnol 19:3173–3179

    Article  CAS  Google Scholar 

  • Hou T, Shu L, Guo K, Zhang X-F, Zhou S, He M, Yao J (2020) Cellulose membranes with polyethylenimine-modified graphene oxide and zinc ions for promoted gas separation. Cellulose 27:3277–3286

    Article  CAS  Google Scholar 

  • Jamil N, Othman NH, Alias NH, Shahruddin MZ, Roslan RA, Lau WJ, Ismail AF (2019) Mixed matrix membranes incorporated with reduced graphene oxide (RGO) and zeolitic imidazole framework-8 (ZIF-8) nanofillers for gas separation. J Solid State Chem 270:419–427

    Article  CAS  Google Scholar 

  • Jhaveri JH, Murthy ZVP (2016) A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes. Desalination 379:137–154

    Article  CAS  Google Scholar 

  • Jusoh N, Yeong YF, Cheong WL, Lau KK, Shariff AM (2016a) Facile fabrication of mixed matrix membranes containing 6FDA-durene polyimide and ZIF-8 nanofillers for CO2 capture. J Ind Eng Chem 44:164–173

    Article  CAS  Google Scholar 

  • Jusoh N, Yeong YF, Lau KK, Shariff AM (2016b) Mixed matrix membranes comprising of ZIF-8 nanofillers for enhanced gas transport properties. Procedia Eng 148:1259–1265

    Article  CAS  Google Scholar 

  • Kallem P, Ibrahim Y, Hasan SW, Show PL, Banat F (2021) Fabrication of novel polyethersulfone (PES) hybrid ultrafiltration membranes with superior permeability and antifouling properties using environmentally friendly sulfonated functionalized polydopamine nanofillers. Sep Purif Technol 261(118):311

    Google Scholar 

  • Kamari S, Shahbazi A (2020) Biocompatible Fe3O4@SiO2-NH2 nanocomposite as a green nanofiller embedded in PES–nanofiltration membrane matrix for salts, heavy metal ion and dye removal: long–term operation and reusability tests. Chemosphere 243(125):282

    Google Scholar 

  • Kardani R, Asghari M, Hamedani NF, Afsari M (2020) Mesoporous copper zinc bimetallic imidazolate Mof as Nanofiller to improve gas separation performance of peba-based membranes. J Ind Eng Chem 83:100–110

    Article  CAS  Google Scholar 

  • Khan A, Elsharif AM, Helal A, Yamani ZH, Saeed Hakeem A, Yusuf Khan M (2021) Mixed dimensional nanostructure (UiO-66-decorated MWCNT) as a nanofiller in mixed-matrix membranes for enhanced CO2/CH4 separation. Chem Eur J 27:11,132–11,140

    Article  CAS  Google Scholar 

  • Khodakarami M, Bagheri M (2021) Recent advances in synthesis and application of polymer nanocomposites for water and wastewater treatment. J Clean Prod 296(126):404

    Google Scholar 

  • Kim E-S, Hwang G, Gamal El-Din M, Liu Y (2012) Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment. J Membr Sci 394–395:37–48

    Article  Google Scholar 

  • Lai GS, Yusob MHM, Lau WJ, Gohari RJ, Emadzadeh D, Ismail AF, Goh PS, Isloor AM, Arzhandi MR-D (2017) Novel mixed matrix membranes incorporated with dual-nanofillers for enhanced oil-water separation. Sep Purif Technol 178:113–121

    Article  CAS  Google Scholar 

  • Lai YS, Yang J, Mou CY (2021) Mesoporous silica thin films incorporated chitosan mixed matrix nanofiltration membranes for textile wastewater treatment. J Chin Chem Soc 68:451–461

    Article  CAS  Google Scholar 

  • Lee B, Baek Y, Lee M, Jeong DH, Lee HH, Yoon J, Kim YH (2015) A carbon nanotube wall membrane for water treatment. Nat Commun 6:7109

    Article  CAS  Google Scholar 

  • Li N, Wang Z, Wang M, Gao M, Wu H, Zhao S, Wang J (2021) Swelling-controlled positioning of nanofillers through a polyamide layer in thin-film nanocomposite membranes for CO2 separation. J Membr Sci 624(119):095

    Google Scholar 

  • Lin Y, Wu H-C, Yasui T, Yoshioka T, Matsuyama H (2019) Development of an Hkust-1 nanofiller-templated poly(ether sulfone) mixed matrix membrane for a highly efficient ultrafiltration process. ACS Appl Mater Interfaces 11:18,782–18,796

    Article  CAS  Google Scholar 

  • Ma C, Li X, Zhang J, Liu Y, Urban JJ (2020) Pyrazine-fused porous graphitic framework-based mixed matrix membranes for enhanced gas separations. ACS Appl Mater Interfaces 12:16,922–16,929

    Article  CAS  Google Scholar 

  • Makwana D, Polisetti V, Castaño J, Ray P, Bajaj HC (2020) Mg-Fe layered double hydroxide modified montmorillonite as hydrophilic nanofiller in polysulfone-polyvinylpyrrolidone blend ultrafiltration membranes: separation of oil-water mixture. Appl Clay Sci 192(105):636

    Google Scholar 

  • Nawaz H, Umar M, Ullah A, Razzaq H, Zia KM, Liu X (2021) Polyvinylidene fluoride nanocomposite super hydrophilic membrane integrated with polyaniline-graphene oxide nano fillers for treatment of textile effluents. J Hazard Mater 403(123):587

    Google Scholar 

  • Pang WY, Ahmad AL, Zaulkiflee ND (2019) Antifouling and antibacterial evaluation of ZnO/MWCNT dual nanofiller polyethersulfone mixed matrix membrane. J Environ Manag 249(109):358

    Google Scholar 

  • Rahimi Z, Zinatizadeh AA, Zinadini S, Van Loosdrecht M (2021) A hydrophilic and antifouling nanofiltration membrane modified by citric acid functionalized tannic acid (Ca-F-Ta) nanocomposite for dye removal from biologically treated Baker’s yeast wastewater. J Environ Chem Eng 9(104):963

    Google Scholar 

  • Rahman MM, Filiz V, Khan MM, Gacal BN, Abetz V (2015) Functionalization of POSS nanoparticles and fabrication of block copolymer nanocomposite membranes for CO2 separation. React Funct Polym 86:125–133

    Article  CAS  Google Scholar 

  • Rajabi H, Ghaemi N, Madaeni SS, Daraei P, Astinchap B, Zinadini S, Razavizadeh SH (2015) Nano-ZnO embedded mixed matrix Polyethersulfone (PES) membrane: influence of nanofiller shape on characterization and fouling resistance. Appl Surf Sci 349:66–77

    Article  CAS  Google Scholar 

  • Rao PS, Wey M-Y, Tseng H-H, Kumar IA, Weng T-H (2008) A comparison of carbon/nanotube molecular sieve membranes with polymer blend carbon molecular sieve membranes for the gas permeation application. Microporous Mesoporous Mater 113:499–510

    Article  CAS  Google Scholar 

  • Raza A, Farrukh S, Hussain A, Khan IU, Noor T, Othman MHD, Yousaf MF (2020) Development of high performance amine functionalized zeolitic imidazolate framework (ZiF-8)/cellulose triacetate mixed matrix membranes for CO2/CH4 separation. Int J Energy Res 44:7989–7999

    Article  CAS  Google Scholar 

  • Regmi C, Ashtiani S, Hrdlička Z, Friess K (2021) CO2/CH4 and H2/CH4 gas separation performance of CTA-TNT@ CNT hybrid mixed matrix membranes. Membranes 11:862

    Article  CAS  Google Scholar 

  • Saeed M, Deng L (2016) Carbon nanotube enhanced PVA-mimic enzyme membrane for post-combustion CO2 capture. International Journal Of Greenhouse Gas Control 53:254–262

    Article  CAS  Google Scholar 

  • Salahshoor Z, Shahbazi A, Maddah S (2021) Magnetic field–influenced Nanofiltration membrane blended by CS–EDTA–MgO as multi–functionality green modifier to enhance Nanofiltration performance, efficient removal of Na2SO4/Pb2+/RR195 and cyclic wastewater treatment. Chemosphere 278(130):379

    Google Scholar 

  • Salleh W, Ismail AF (2015) Carbon membranes for gas separation processes: recent progress and future perspective. J Membr Sci Res 1:2–15

    Google Scholar 

  • Sarmadi R, Salimi M, Pirouzfar V (2020) The assessment of honeycomb structure UiO-66 and amino functionalized UiO-66 metal–organic frameworks to modify the morphology and performance of Pebax® 1657-based gas separation membranes for CO2 capture applications. Environ Sci Pollut Res 27:40,618–40,632

    Article  CAS  Google Scholar 

  • Sasikumar B, Bisht S, Arthanareeswaran G, Ismail AF, Othman MHD (2021) Performance of Polysulfone hollow fiber membranes encompassing ZIF-8, SiO2/ZIF-8, and amine-modified SiO2/ZIF-8 Nanofillers for CO2/CH4 and CO2/N2 gas separation. Sep Purif Technol 264(118):471

    Google Scholar 

  • Sheikh M, Pazirofteh M, Dehghani M, Asghari M, Rezakazemi M, Valderrama C, Cortina J-L (2020) Application of ZnO nanostructures in ceramic and polymeric membranes for water and wastewater technologies: a review. Chem Eng J 391(123):475

    Google Scholar 

  • Shen Y, Wang H, Liu J, Zhang Y (2015) Enhanced performance of a novel polyvinyl amine/chitosan/graphene oxide mixed matrix membrane for CO2 capture. ACS Sustain Chem Eng 3:1819–1829

    Article  CAS  Google Scholar 

  • Shen Y, Wang H, Zhang X, Zhang Y (2016) MoS2 nanosheets functionalized composite mixed matrix membrane for enhanced CO2 capture via surface drop-coating method. ACS Appl Mater Interfaces 8:23,371–23,378

    Article  CAS  Google Scholar 

  • Shin JE, Lee SK, Cho YH, Park HB (2019) Effect of PEG-MEA and graphene oxide additives on the performance of Pebax® 1657 mixed matrix membranes for CO2 separation. J Membr Sci 572:300–308

    Article  CAS  Google Scholar 

  • Tajuddin MH, Yusof N, Abdullah N, Abidin MNZ, Salleh WNW, Ismail AF, Matsuura T, Hairom NHH, Misdan N (2019) Incorporation of layered double hydroxide nanofillers in polyamide nanofiltration membrane for high performance of salts rejections. J Taiwan Inst Chem Eng 97:1–11

    Article  CAS  Google Scholar 

  • Vahid Vatanpour SP (2021) A melamine-based covalent organic framework nanomaterial as a nanofiller in polyethersulfone mixed matrix membranes to improve separation and antifouling performance. J Appl Polym Sci 139:1–17

    Google Scholar 

  • Wan Ikhsan SN, Yusof N, Aziz F, Misdan N, Ismail AF, Lau W-J, Jaafar J, Wan Salleh WN, Hayati Hairom NH (2018) Efficient separation of oily wastewater using polyethersulfone mixed matrix membrane incorporated with halloysite nanotube-hydrous ferric oxide nanoparticle. Sep Purif Technol 199:161–169

    Article  CAS  Google Scholar 

  • Wang J, Zhang P, Liang B, Liu Y, Xu T, Wang L, Cao B, Pan K (2016) Graphene oxide as an effective barrier on a porous Nanofibrous membrane for water treatment. ACS Appl Mater Interfaces 8:6211–6218

    Article  CAS  Google Scholar 

  • Wang H, Lu X, Lu X, Wang Z, Ma J, Wang P (2017) Improved surface hydrophilicity and antifouling property of polysulfone ultrafiltration membrane with poly(ethylene glycol) methyl ether methacrylate grafted graphene oxide nanofillers. Appl Surf Sci 425:603–613

    Article  CAS  Google Scholar 

  • Wong KC, Goh PS, Ismail AF (2017) Highly permeable and selective graphene oxide-enabled thin film nanocomposite for carbon dioxide separation. Int J Greenh Gas Control 64:257–266

    Article  CAS  Google Scholar 

  • Wu H, Tang B, Wu P (2010) Mwnts/polyester thin film nanocomposite membrane: an approach to overcome the trade-off effect between permeability and selectivity. J Phys Chem C 114:16,395–16,400

    Article  CAS  Google Scholar 

  • Xue T, Gao Y, Zhang Z, Umar A, Yan X, Zhang X, Guo Z, Wang Q (2014) Adsorption of acid red from dye wastewater by Zn2Al-NO3 LDHs and the resource of adsorbent sludge as Nanofiller for polypropylene. J Alloys Compd 587:99–104

    Article  CAS  Google Scholar 

  • Yin J, Deng B (2015) Polymer-matrix nanocomposite membranes for water treatment. J Membr Sci 479:256–275

    Article  CAS  Google Scholar 

  • Yun TS, Oh PC, Toh MJ, Yap YK, Te QY (2022) Xylem-inspired hydrous manganese dioxide/aluminum oxide/polyethersulfone mixed matrix membrane for oily wastewater treatment. Membranes 12:860

    Article  CAS  Google Scholar 

  • Zhang N, Peng D, Wu H, Ren Y, Yang L, Wu X, Wu Y, Qu Z, Jiang Z, Cao X (2018) Significantly enhanced CO2 capture properties by synergy of zinc ion and sulfonate in pebax-pitch hybrid membranes. J Membr Sci 549:670–679

    Article  CAS  Google Scholar 

  • Zhang G, Zhou M, Xu Z, Jiang C, Shen C, Meng Q (2019) Guanidyl-functionalized graphene/polysulfone mixed matrix ultrafiltration membrane with superior permselective, antifouling and antibacterial properties for water treatment. J Colloid Interface Sci 540:295–305

    Article  CAS  Google Scholar 

  • Zhao D, Ren J, Li H, Li X, Deng M (2014) Gas separation properties of poly(Amide-6-B-ethylene oxide)/amino modified multi-walled carbon nanotubes mixed matrix membranes. J Membr Sci 467:41–47

    Article  CAS  Google Scholar 

  • Zhao C, Lv J, Xu X, Zhang G, Yang Y, Yang F (2017) Highly antifouling and antibacterial performance of poly (vinylidene fluoride) ultrafiltration membranes blending with copper oxide and graphene oxide nanofillers for effective wastewater treatment. J Colloid Interface Sci 505:341–351

    Article  CAS  Google Scholar 

  • Zhao M, Wang S, Wang H, Qin P, Yang D, Sun Y, Kong F (2019) Application of sodium titanate nanofibers as constructed wetland fillers for efficient removal of heavy metal ions from wastewater. Environ Pollut 248:938–946

    Article  CAS  Google Scholar 

  • Zhou F, Tien HN, Dong Q, Xu WL, Li H, Li S, Yu M (2019) Ultrathin, ethylenediamine-functionalized graphene oxide membranes on hollow fibers for CO2 capture. J Membr Sci 573:184–191

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sepideh Amjad-Iranagh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Amjad-Iranagh, S., Mahimani, P. (2024). The Effect of Nanofillers in Pollution and Environment. In: Mallakpour, S., Hussain, C.M. (eds) Handbook of Nanofillers. Springer, Singapore. https://doi.org/10.1007/978-981-99-3516-1_59-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-3516-1_59-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-3516-1

  • Online ISBN: 978-981-99-3516-1

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Navigation