Thermal Properties of Nanofillers

  • Living reference work entry
  • First Online:
Handbook of Nanofillers

Abstract

Nanofillers, also known as nanoparticles or nanomaterials, have revolutionized various industries by offering unique properties and opening up new possibilities for technological advancements. This manuscript explores the thermal properties of nanofillers and their influence on matrix materials. Incorporating nanofillers into polymers, ceramics, metals, and composites has led to unprecedented enhancements in mechanical, thermal, and electrical properties. These advancements have enabled the development of advanced structural components, flexible electronics, and energy storage devices. The manuscript highlights the significance of nanofillers in improving thermal resistance and energy efficiency in materials for high-temperature environments. Furthermore, role of nanofillers in thermal interface materials (TIMs) for efficient heat dissipation in electronic devices. This chapter provides insights into the specific heat and thermal conductivity of various nanofillers, highlighting the impact of particle size, shape, and density on their thermal properties. The measurement techniques, such as differential scanning calorimetry (DSC), guarded hot plate method, transient hot-wire technique, and transient plane source method, are discussed to accurately determine specific heat and thermal conductivity values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abu-Nada E et al (2010) Effect of nanofluid variable properties on natural convection in enclosures. Int J Therm Sci 49(3):479–491

    Article  CAS  Google Scholar 

  • Adun H et al (2021) Synthesis of Fe3O4 -Al2O3 -ZnO/water ternary hybrid nanofluid: investigating the effects of temperature, volume concentration and mixture ratio on specific heat capacity, and development of hybrid machine learning for prediction. J Energy Storage:41

    Google Scholar 

  • Ahmad H, Hussain T, Salamat S (2022) Effect of different dielectric and magnetic nanoparticles on the electrical, mechanical, and thermal properties of unidirectional carbon fiber-reinforced composites. Int J Polymer Sci

    Google Scholar 

  • Ahmadi Nadooshan A, Eshgarf H, Afrand M (2018) Measuring the viscosity of Fe3O4-MWCNTs/EG hybrid nanofluid for evaluation of thermal efficiency: Newtonian and non-Newtonian behavior. J Mol Liq 253:169–177

    Article  CAS  Google Scholar 

  • Ahmadi M, Ansari R, Hassanzadeh-Aghdam MK (2019) Finite element analysis of thermal conductivities of unidirectional multiphase composites. Compos Interfaces 26(12):1035–1055

    Article  CAS  Google Scholar 

  • Al-Safy R et al (2012) Experimental investigation on the thermal and mechanical properties of nanoclay-modified adhesives used for bonding CFRP to concrete substrates. Constr Build Mater 28:769–778

    Article  Google Scholar 

  • Araby S et al (2014) Electrically and thermally conductive elastomer/graphene nanocomposites by solution mixing. Polymer 55(1):201–210

    Article  CAS  Google Scholar 

  • Azizian R et al (2014) Effect of magnetic field on laminar convective heat transfer of magnetite nanofluids. Int J Heat Mass Transf 68:94–109

    Article  Google Scholar 

  • Bankvall C (1973) Guarded hot plate apparatus for the investigation of thermal insulations. Laboratory methods and devices. Mater Constr 6:39–47

    Article  Google Scholar 

  • Barea R et al (2003) Thermal conductivity of Al2O3/SiC platelet composites. J Eur Ceram Soc 23(11):1773–1778

    Article  CAS  Google Scholar 

  • Chockalingam S et al (2017) A comparative investigation of Al2O3/H2O, SiO2/H2O and ZrO2/H2O nanofluid for heat transfer applications. Dig J Nanomater Biostruct 12:255–263

    Google Scholar 

  • Chopkar M et al (2008) Effect of particle size on thermal conductivity of Nanofluid. Metall Mater Trans A 39(7):1535–1542

    Article  Google Scholar 

  • Chow TT (2010) A review on photovoltaic/thermal hybrid solar technology. Appl Energy 87(2):365–379

    Article  CAS  Google Scholar 

  • Cui W et al (2011) Improving thermal conductivity while retaining high electrical resistivity of epoxy composites by incorporating silica-coated multi-walled carbon nanotubes. Carbon 49(2):495–500

    Article  CAS  Google Scholar 

  • Czichos H, Saito T, Smith L (2007) Springer handbook of materials measurement methods. Springer handbooks. Springer, Berlin/Heidelberg

    Google Scholar 

  • Dan Z et al (2020) Heat transfer performance and friction factor of various nanofluids in a double-tube counter flow heat exchanger. Therm Sci 24(6):3601–3612

    Google Scholar 

  • Ding P et al (2014) Highly thermal conductive composites with polyamide-6 covalently-grafted graphene by an in situ polymerization and thermal reduction process. Carbon 66:576–584

    Article  CAS  Google Scholar 

  • Droval G et al (2008) Conductive polymer composites with double percolated architecture of carbon nanoparticles and ceramic microparticles for high heat dissipation and sharp PTC switching. Smart Mater Struct 17(2):025011

    Article  Google Scholar 

  • Elango T, Kannan A, Kalidasa Murugavel K (2015) Performance study on single basin single slope solar still with different water nanofluids. Desalination 360:45–51

    Article  CAS  Google Scholar 

  • Ghandehari MA, Masoodi AR, Panda SK (2023) Thermal frequency analysis of double CNT-reinforced polymeric straight beam. J Vibration Eng Technol

    Google Scholar 

  • Han Z, Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci 36(7):914–944

    Article  CAS  Google Scholar 

  • Jalal SK, Mawlood S (2020) Size dependent thermodynamic properties of nanoparticles. Int J Thermodyn 23

    Google Scholar 

  • Kausar A (2019) Thermally conducting polymer/nanocarbon and polymer/inorganic nanoparticle nanocomposite: a review. Polymer-Plastics Technol Mater

    Google Scholar 

  • Kausar A (2020) Thermally conducting polymer/nanocarbon and polymer/inorganic nanoparticle nanocomposite: a review. Polym-Plastics Technol Mater 59(8):895–909

    Article  CAS  Google Scholar 

  • Kiani Y (2017) Thermal buckling of temperature-dependent FG-CNT-reinforced composite skew plates. J Therm Stresses 40(11):1442–1460

    Article  Google Scholar 

  • Kwon H, Bradbury CR, Leparoux M (2011) Fabrication of functionally graded carbon nanotube-reinforced aluminum matrix composite. Adv Eng Mater 13(4):325–329

    Article  CAS  Google Scholar 

  • Lee SW et al (2011) Investigation of viscosity and thermal conductivity of SiC nanofluids for heat transfer applications. Int J Heat Mass Transf 54(1):433–438

    Article  CAS  Google Scholar 

  • Marconnet AM et al (2011) Thermal conduction in aligned carbon nanotube–polymer nanocomposites with high packing density. ACS Nano 5(6):4818–4825

    Article  CAS  Google Scholar 

  • Numan Y (2016) The review of some commonly used methods and techniques to measure the thermal conductivity of insulation materials. In: Amjad A, Asaad A (eds) Insulation materials in context of sustainability. IntechOpen, Rijeka. p. Ch. 6

    Google Scholar 

  • Park SS, Kim NJ (2014) Influence of the oxidation treatment and the average particle diameter of graphene for thermal conductivity enhancement. J Ind Eng Chem 20(4):1911–1915

    Article  CAS  Google Scholar 

  • Pil Jang S, Choi SUS (2006) Effects of various parameters on Nanofluid thermal conductivity. J Heat Transf 129(5):617–623

    Article  Google Scholar 

  • Qi WH (2005) Size effect on melting temperature of nanosolids. Phys B Condens Matter 368(1):46–50

    Article  CAS  Google Scholar 

  • Shen H-S, **ang Y (2013) Nonlinear analysis of nanotube-reinforced composite beams resting on elastic foundations in thermal environments. Eng Struct 56:698–708

    Article  Google Scholar 

  • Song ZG, Zhang LW, Liew KM (2016) Vibration analysis of CNT-reinforced functionally graded composite cylindrical shells in thermal environments. Int J Mech Sci 115–116:339–347

    Article  Google Scholar 

  • Wang J et al (2021) Effect of various surfactants on stability and thermophysical properties of nanofluids. J Therm Anal Calorim 143(6):4057–4070

    Article  CAS  Google Scholar 

  • Xu Z, Huang Q (2019) Vibro-acoustic analysis of functionally graded graphene-reinforced nanocomposite laminated plates under thermal-mechanical loads. Eng Struct 186:345–355

    Article  Google Scholar 

  • Yang J et al (2022) Review on thermal performance of nanofluids with and without magnetic fields in heat exchange devices. Front Energy Res 10

    Google Scholar 

  • Yao Y et al (2018) Vertically aligned and interconnected SiC nanowire networks leading to significantly enhanced thermal conductivity of polymer composites. ACS Appl Mater Interfaces 10(11):9669–9678

    Article  CAS  Google Scholar 

  • Yas MH, Rahimi S (2020) Thermal vibration of functionally graded porous nanocomposite beams reinforced by graphene platelets. Appl Math Mech 41(8):1209–1226

    Article  Google Scholar 

  • Yas MH, Samadi N (2012) Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation. Int J Press Vessel Pip 98:119–128

    Article  CAS  Google Scholar 

  • Yilmaz B, Özdemir AM, Gürbüz HE (2023) Assessment of thermal properties of nanoclay-modified bitumen. Arab J Sci Eng 48:4595–4607

    Article  CAS  Google Scholar 

  • Yorifuji D, Ando S (2011) Enhanced thermal conductivity over percolation threshold in polyimide blend films containing ZnO nano-pyramidal particles: advantage of vertical double percolation structure. J Mater Chem 21(12):4402–4407

    Article  CAS  Google Scholar 

  • Yüksel N (2010) The investigation of structure and operating parameters effect on the heat transfer coefficient in porous structures. Uludag University

    Google Scholar 

  • Yüksel N, Avci A, Kılıç M (2012) The effective thermal conductivity of insulation materials reinforced with aluminium foil at low temperatures. Heat Mass Transf 48:1569–1574

    Article  Google Scholar 

  • Zheng M et al (2020) Effect of Al2O3/water nanofluid on heat transfer of turbulent flow in the inner pipe of a double-pipe heat exchanger. Heat Mass Transf 56(4):1127–1140

    Article  CAS  Google Scholar 

  • Zheng D et al (2021) Analyses of thermal performance and pressure drop in a plate heat exchanger filled with ferrofluids under a magnetic field. Fuel 293:120432

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir R. Masoodi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Masoodi, A.R., Ghandehari, M.A. (2024). Thermal Properties of Nanofillers. In: Mallakpour, S., Hussain, C.M. (eds) Handbook of Nanofillers. Springer, Singapore. https://doi.org/10.1007/978-981-99-3516-1_30-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-3516-1_30-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-3516-1

  • Online ISBN: 978-981-99-3516-1

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Navigation