Cultivation, Growth Physiology, and Chemotaxonomy of Nitrite-Oxidizing Bacteria

  • Chapter
  • First Online:
Anammox Technology in Industrial Wastewater Treatment

Abstract

Nitrite-oxidizing bacteria (NOB) are a small group of Gram-negative, obligate aerobes and are primarily organo and/or chemoautotrophs. They oxidize nitrite to nitrate, which is the second step of the biogeochemical nitrogen (N) cycle. Because of this characteristic, it helps in removing toxic nitrite, which is harmful to living organisms. Recent studies on obligate nitrifiers have made valuable discoveries demonstrating alternative energy metabolisms, such as the oxidation of hydrogen, sulfur, formate, and other organic compounds. NOB have different lifestyles, such as heterotrophic, lithoautotrophic, and mixotrophic, and easily adapt to large and variable environments. Besides the richness of these bacteria in moderate habitats, NOB have also been detected in extreme ecosystems, such as geothermal springs, alkaline soils, and sediments. The growth of NOB has also been observed in anaerobic environments (in the absence of nitrates or oxygen), such as deep in sludge in wastewater reservoirs or in the presence of significant concentrations of sulfur. Recognizing the natural diversity of NOB is important to understand its effects on N-cycling in natural and engineered ecosystems and to reduce greenhouse gas emissions from sewage treatment plants. Despite their huge ecological importance, we have limited knowledge of the microbiology and ecology of NOB. Their activities as the main contributors and scavengers of nitric oxides in the biosphere and their key roles in the nitrification cycle have made researchers focus again on NOB; however, develo** and sustaining the growth of NOB in vitro are challenging. This section summarizes the cultivation, growth physiology, and chemotaxonomy of NOB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 171.19
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 171.19
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alawi, M., Lipski, A., Sanders, T., & Spieck, E. (2007). Cultivation of a novel cold-adapted nitrite oxidizing betaproteobacterium from the Siberian Arctic. The ISME Journal, 1(3), 256–264. https://doi.org/10.1038/ismej.2007.34

    Article  CAS  Google Scholar 

  • Bock, E., & Wagner, M. (2006). Oxidation of inorganic nitrogen compounds as an energy source. In M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, e. stackebrandt (eds.), the prokaryotes, volume 2: ecophysiology and Biochemistry. New York, pp. 457–495. https://doi.org/10.1007/0-387-30742-7_16

  • Boddicker, A. M. (2017). Cultivation and genomic sequencing of novel nitrite-oxidizing bacteria. Master's Thesis. University of Colorado at Denver, pp. 1–47.

    Google Scholar 

  • Boddicker, A. M., & Mosier, A. C. (2018). Genomic profiling of four cultivated Candidatus Nitrotoga spp. predicts broad metabolic potential and environmental distribution. The ISME Journal, 12(12), 2864–2882. https://doi.org/10.1038/s41396-018-0240-8

  • Cai, M., Ng, S. K., Lim, C. K., Lu, H., Jia, Y., & Lee, P. K. (2018). Physiological and metagenomic characterizations of the synergistic relationships between ammonia-and nitrite-oxidizing bacteria in freshwater nitrification. Frontiers in Microbiology, 9, 280. https://doi.org/10.3389/fmicb.2018.00280

    Article  Google Scholar 

  • Daims, H., Lebedeva, E. V., Pjevac, P., Han, P., Herbold, C., Albertsen, M., & Wagner, M. (2015). Complete nitrification by Nitrospira bacteria. Nature, 528(7583), 504–509. https://doi.org/10.1038/nature16461

    Article  CAS  Google Scholar 

  • Daims, H., Lücker, S., & Wagner, M. (2016). A new perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends in Microbiology, 24(9), 699–712. https://doi.org/10.1016/j.tim.2016.05.004

    Article  CAS  Google Scholar 

  • Daims, H., & Wagner, M. (2018). Nitrospira. Trends in Microbiology, 26(5), 462–463. https://doi.org/10.1016/j.tim.2018.02.001

    Article  CAS  Google Scholar 

  • Füssel, J., Lücker, S., Yilmaz, P., Nowka, B., van Kessel, M. A., Bourceau, P., & Lam, P. (2017). Adaptability as the key to success for the ubiquitous marine nitrite oxidizer Nitrococcus. Science Advances, 3(11), e1700807. https://doi.org/10.1126/sciadv.1700807

    Article  CAS  Google Scholar 

  • He, M., **ong, Y., & Cheng, K. (2021). Characters of a nitrobacter enrichment culture from a freshwater aquaculture pond. Biotechnology and Biotechnological Equipment, 35(1), 1343–1352. https://doi.org/10.1080/13102818.2021.1974944

    Article  CAS  Google Scholar 

  • Hüpeden, J., Wegen, S., Off, S., Lücker, S., Bedarf, Y., Daims, H., & Spieck, E. (2016). Relative abundance of Nitrotoga spp. in a biofilter of a cold-freshwater aquaculture plant appears to be stimulated by slightly acidic pH. Applied and Environmental Microbiology, 82(6), 1838–1845. https://doi.org/10.1128/AEM.03163-15

  • Ishii, K., Fujitani, H., Soh, K., Nakagawa, T., Takahashi, R., & Tsuneda, S. (2017). Enrichment and physiological characterization of a cold-adapted nitrite-oxidizing Nitrotoga sp. from an eelgrass sediment. Applied and Environmental Microbiology, 83(14), e00549–17. https://doi.org/10.1128/AEM.00549-17

  • Ishii, K., Fujitani, H., Sekiguchi, Y., & Tsuneda, S. (2020). Physiological and genomic characterization of a new ‘Candidatus Nitrotoga’isolate. Environmental Microbiology, 22(6), 2365–2382. https://doi.org/10.1111/1462-2920.15015

    Article  CAS  Google Scholar 

  • Jacob, J., Nowka, B., Merten, V., Sanders, T., Spieck, E., & Dähnke, K. (2017). Oxidation kinetics and inverse isotope effect of marine nitrite-oxidizing isolates. Aquatic Microbial Ecology, 80(3), 289–300. https://doi.org/10.3354/ame01859

    Article  Google Scholar 

  • Keuter, S., Kruse, M., Lipski, A., & Spieck, E. (2011). Relevance of Nitrospira for nitrite oxidation in a marine recirculation aquaculture system and physiological features of a Nitrospira marina-like isolate. Environmental Microbiology, 13(9), 2536–2547. https://doi.org/10.1111/j.1462-2920.2011.02525.x

    Article  CAS  Google Scholar 

  • Kitzinger, K., Koch, H., Lücker, S., Sedlacek, C. J., Herbold, C., Schwarz, J., & Daims, H. (2018). Characterization of the first “Candidatus Nitrotoga” isolate reveals metabolic versatility and separate evolution of widespread nitrite-oxidizing bacteria. Mbio, 9(4), e01186-e1218. https://doi.org/10.1128/mBio.01186-18

    Article  CAS  Google Scholar 

  • Koch, H., Lücker, S., Albertsen, M., Kitzinger, K., Herbold, C., Spieck, E., & Daims, H. (2015). Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira. Proceedings of the National Academy of Sciences, 112(36), 11371–11376. https://doi.org/10.1073/pnas.1506533112

    Article  CAS  Google Scholar 

  • Lantz, M. A., Boddicker, A. M., Kain, M. P., Berg, O. M., Wham, C. D., & Mosier, A. C. (2021). Physiology of the nitrite-oxidizing bacterium Candidatus Nitrotoga sp. CP45 enriched from a Colorado river. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.709371

  • Lebedeva, E. V., Alawi, M., Maixner, F., Jozsa, P. G., Daims, H., & Spieck, E. (2008). Physiological and phylogenetic characterization of a novel lithoautotrophic nitrite-oxidizing bacterium, ‘Candidatus Nitrospira bockiana.’ International Journal of Systematic and Evolutionary Microbiology, 58(1), 242–250. https://doi.org/10.1099/ijs.0.65379-0

    Article  CAS  Google Scholar 

  • Liu, H., Li, J., Zhao, Y., **e, K., Tang, X., Wang, S., & Li, Y. (2018). Ammonia oxidizers and nitrite-oxidizing bacteria respond differently to long-term manure application in four paddy soils of south of China. Science of the Total Environment, 633, 641–648. https://doi.org/10.1016/j.scitotenv.2018.03.108

    Article  CAS  Google Scholar 

  • Lücker, S., Nowka, B., Rattei, T., Spieck, E., & Daims, H. (2013). The genome of Nitrospina gracilis illuminates the metabolism and evolution of the major marine nitrite oxidizer. Frontiers in Microbiology, 4, 27. https://doi.org/10.3389/fmicb.2013.00027

    Article  Google Scholar 

  • Ma, B., Bao, P., Wei, Y., Zhu, G., Yuan, Z., & Peng, Y. (2015). Suppressing nitrite-oxidizing bacteria growth to achieve nitrogen removal from domestic wastewater via anammox using intermittent aeration with low dissolved oxygen. Scientific Reports, 5(1), 1–9. https://doi.org/10.1038/srep13048

    Article  Google Scholar 

  • Mehrani, M. J., Sobotka, D., Kowal, P., Ciesielski, S., & Makinia, J. (2020). The occurrence and role of Nitrospira in nitrogen removal systems. Bioresource Technology, 303, 122936. https://doi.org/10.1016/j.biortech.2020.122936

    Article  CAS  Google Scholar 

  • Mellbye, B. L., Bottomley, P. J., & Sayavedra-Soto, L. A. (2015). Nitrite-oxidizing bacterium Nitrobacter winogradskyi produces N-acyl-homoserine lactone autoinducers. Applied and Environmental Microbiology, 81(17), 5917–5926. https://doi.org/10.1128/AEM.01103-15

  • Mueller, A. J., Jung, M. Y., Strachan, C. R., Herbold, C. W., Kirkegaard, R. H., Wagner, M., & Daims, H. (2021). Genomic and kinetic analysis of novel Nitrospinae enriched by cell sorting. The ISME Journal, 15(3), 732–745. https://doi.org/10.1038/s41396-020-00809-6

    Article  CAS  Google Scholar 

  • Mundinger, A. B., Lawson, C. E., Jetten, M. S., Koch, H., & Lücker, S. (2019). Cultivation and transcriptional analysis of a canonical Nitrospira under stable growth conditions. Frontiers in Microbiology, 10, 1325. https://doi.org/10.3389/fmicb.2019.01325

    Article  Google Scholar 

  • Ngugi, D. K., Blom, J., Stepanauskas, R., & Stingl, U. (2016). Diversification and niche adaptations of Nitrospina-like bacteria in the polyextreme interfaces of Red Sea brines. The ISME Journal, 10(6), 1383–1399. https://doi.org/10.1038/ismej.2015.214

    Article  CAS  Google Scholar 

  • Nowka, B., Daims, H., & Spieck, E. (2015). Comparison of oxidation kinetics of nitrite-oxidizing bacteria: Nitrite availability as a key factor in niche differentiation. Applied and Environmental Microbiology, 81(2), 745–753. https://doi.org/10.1128/AEM.02734-14

    Article  CAS  Google Scholar 

  • Off, S., Alawi, M., & Spieck, E. (2010). Enrichment and physiological characterization of a novel Nitrospira-like bacterium obtained from a marine sponge. Applied and Environmental Microbiology, 76(14), 4640–4646. https://doi.org/10.1128/AEM.00320-10

    Article  CAS  Google Scholar 

  • Park, S. J., Andrei, A. Ş, Bulzu, P. A., Kavagutti, V. S., Ghai, R., & Mosier, A. C. (2020). Expanded diversity and metabolic versatility of marine nitrite-oxidizing bacteria revealed by cultivation-and genomics-based approaches. Applied and Environmental Microbiology, 86(22), e01667-e1720. https://doi.org/10.1128/AEM.01667-20

    Article  CAS  Google Scholar 

  • Pester, M., Maixner, F., Berry, D., Rattei, T., Koch, H., Lücker, S., & Daims, H. (2014). NxrB encoding the beta subunit of nitrite oxidoreductase as functional and phylogenetic marker for nitrite-oxidizing Nitrospira. Environmental Microbiology, 16(10), 3055–3071. https://doi.org/10.1111/1462-2920.12300

    Article  CAS  Google Scholar 

  • Ruiz-Martínez, A., Claros, J., Serralta, J., Bouzas, A., & Ferrer, J. (2018). Modeling the decay of nitrite oxidizing bacteria under different reduction potential conditions. Process Biochemistry, 71, 159–165. https://doi.org/10.1016/j.procbio.2018.05.021

    Article  CAS  Google Scholar 

  • Shah, M. P. (2020). Microbial bioremediation and biodegradation. Springer.

    Book  Google Scholar 

  • Shah, M. P. (2021). Removal of refractory pollutants from wastewater treatment plants. CRC Press.

    Book  Google Scholar 

  • Sorokin, D. Y., Lücker, S., Vejmelkova, D., Kostrikina, N. A., Kleerebezem, R., Rijpstra, W. I. C., & Daims, H. (2012). Nitrification expanded: Discovery, physiology and genomics of a nitrite-oxidizing bacterium from the phylum Chloroflexi. The ISME Journal, 6(12), 2245–2256. https://doi.org/10.1038/ismej.2012.70

    Article  CAS  Google Scholar 

  • Sorokin, D. Y., Vejmelkova, D., Lücker, S., Streshinskaya, G. M., Rijpstra, W. I. C., Damste, J. S. S., & Daims, H. (2014). Nitrolancea hollandica gen. nov., sp. nov., a chemolithoautotrophic nitrite-oxidizing bacterium isolated from a bioreactor belonging to the phylum Chloroflexi. International Journal of Systematic and Evolutionary Microbiology, 64(Pt_6), 1859–1865. https://doi.org/10.1099/ijs.0.062232-0

  • Sorokin, D. Y., Lücker, S., & Daims, H. (2018). “Nitrolancea”, In W. B. Whitman, F. Rainey, P. Kämpfer, M. Trujillo, J. Chun, P. DeVos et al. (Eds.), Bergey’s manual of systematics of Archaea and Bacteria. Wiley, pp. 1–6. https://doi.org/10.1002/9781118960608.gbm01563

  • Spieck E., & Bock E. (2005). The lithoautotrophic nitrite-oxidizing bacteria. In D. J. Brenner, N. R. Krieg, J. T. Staley, & G. M. Garrity (Eds.), Bergey’s manual® of systematic bacteriology. Springer. https://doi.org/10.1007/0-387-28021-9_19

  • Spieck, E., & Lipski, A. (2011). Cultivation, growth physiology, and chemotaxonomy of nitrite-oxidizing bacteria. Methods in Enzymology, 486, 109–130. https://doi.org/10.1016/B978-0-12-381294-0.00005-5

    Article  CAS  Google Scholar 

  • Spieck, E., Keuter, S., Wenzel, T., Bock, E., & Ludwig, W. (2014). Characterization of a new marine nitrite oxidizing bacterium, Nitrospina watsonii sp. nov., a member of the newly proposed phylum “Nitrospinae”. Systematic and Applied Microbiology, 37(3), 170–176. https://doi.org/10.1016/j.syapm.2013.12.005

  • Spieck, E., Sass, K., Keuter, S., Hirschmann, S., Spohn, M., Indenbirken, D., & Giaveno, A. (2020). Defining culture conditions for the hidden nitrite-oxidizing bacterium Nitrolancea. Frontiers in Microbiology, 11, 1522. https://doi.org/10.3389/fmicb.2020.01522

    Article  Google Scholar 

  • Spieck, E., Wegen, S., & Keuter, S. (2021). Relevance of Candidatus Nitrotoga for nitrite oxidation in technical nitrogen removal systems. Applied Microbiology and Biotechnology, 105(19), 7123–7139. https://doi.org/10.1007/s00253-021-11487-5

    Article  CAS  Google Scholar 

  • Starkenburg, S. R., Chain, P. S., Sayavedra-Soto, L. A., Hauser, L., Land, M. L., Larimer, F. W., & Hickey, W. J. (2006). Genome sequence of the chemolithoautotrophic nitrite-oxidizing bacterium Nitrobacter winogradskyi Nb-255. Applied and Environmental Microbiology, 72(3), 2050–2063. https://doi.org/10.1128/AEM.72.3.2050-2063.2006

    Article  CAS  Google Scholar 

  • Starkenburg, S. R., Larimer, F. W., Stein, L. Y., Klotz, M. G., Chain, P. S., Sayavedra-Soto, L. A., & Bottomley, P. J. (2008). Complete genome sequence of Nitrobacter hamburgensis X14 and comparative genomic analysis of species within the genus Nitrobacter. Applied and Environmental Microbiology, 74(9), 2852–2863. https://doi.org/10.1128/AEM.02311-07

  • Starkenburg, S. R., Spieck, E., & Bottomley, P. J. (2011). Metabolism and genomics of nitrite-oxidizing bacteria: emphasis on studies of pure cultures and of Nitrobacter species. Nitrification, 265–293. https://doi.org/10.1128/9781555817145.ch11

  • Sun, X., Kop, L. F., Lau, M. C., Frank, J., Jayakumar, A., Lücker, S., & Ward, B. B. (2019). Uncultured Nitrospina-like species are major nitrite oxidizing bacteria in oxygen minimum zones. The ISME Journal, 13(10), 2391–2402. https://doi.org/10.1038/s41396-019-0443-7

    Article  CAS  Google Scholar 

  • Ushiki, N., Fujitani, H., Aoi, Y., & Tsuneda, S. (2013). Isolation of Nitrospira belonging to sublineage II from a wastewater treatment plant. Microbes and Environments, ME13042. https://doi.org/10.1264/jsme2.ME13042

  • Yepsen, D. V., Levipan, H. A., & Molina, V. (2019). Nitrospina bacteria in a rocky intertidal habitat (Quintay Bay, central Chile). Microbiology Open, 8(3), e00646. https://doi.org/10.1002/mbo3.646

    Article  CAS  Google Scholar 

  • Yao, Q., & Peng, D. C. (2017). Nitrite oxidizing bacteria (NOB) dominating in nitrifying community in full-scale biological nutrient removal wastewater treatment plants. AMB Express, 7(1), 1–11. https://doi.org/10.1186/s13568-017-0328-y

    Article  CAS  Google Scholar 

  • Zhang, Y., Zhang, Y., Gao, J., Shen, Q., Bai, Z., Zhuang, X., & Zhuang, G. (2018). Optimization of the medium for the growth of Nitrobacter winogradskyi by statistical method. Letters in Applied Microbiology, 67(3), 306–313. https://doi.org/10.1111/lam.13036

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pınar Şanlıbaba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Atasoy, G., Şentürk, E., Şanlıbaba, P. (2023). Cultivation, Growth Physiology, and Chemotaxonomy of Nitrite-Oxidizing Bacteria. In: Shah, M.P. (eds) Anammox Technology in Industrial Wastewater Treatment. Springer, Singapore. https://doi.org/10.1007/978-981-99-3459-1_5

Download citation

Publish with us

Policies and ethics

Navigation