Intraoperative Map** and Monitoring Techniques for Intra-Axial Brain Tumors

  • Chapter
  • First Online:
Functional Anatomy of the Brain: A View from the Surgeon’s Eye

Abstract

Surgery for intra-axial tumors necessitates balancing the functional outcomes (neurological and neuropsychological) with the extent of resection. This is even more challenging for tumors close to eloquent regions. Since preoperative imaging-based techniques can be fallacious, intraoperative confirmation of function using map** remains the gold standard. Awake map** using bipolar stimulation was the earliest application of map** techniques in tumor resections. Since then, evolution of the field of intraoperative neurophysiology has expanded the armamentarium of techniques at the disposal of the surgeons. Besides motor, sensory, visual and auditory functions, complex neurocognitive functions can also be assessed intraoperatively. Map** of function is complementary to continuous monitoring of the relevant functions during surgery, both very essential to the eventual goal of achieving the best functional outcomes. This chapter summarizes the various map** and monitoring techniques used (in the awake patient as well as under anesthesia) during surgery for intra-axial supratentorial and brainstem tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 119.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 149.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Berger MS, Deliganis AV, Dobbins J, Keles GE. The effect of extent of resection on recurrence in patients with low grade cerebral hemisphere gliomas. Cancer. 1994;74(6):1784–91.

    Article  CAS  PubMed  Google Scholar 

  2. Keles GE, Lamborn KR, Berger MS. Low-grade hemispheric gliomas in adults: a critical review of extent of resection as a factor influencing outcome. J Neurosurg. 2001 Nov;95(5):735–45.

    Article  CAS  PubMed  Google Scholar 

  3. Duffau H. New concepts in surgery of WHO grade II gliomas: functional brain map**, connectionism and plasticity – a review. J Neuro-Oncol. 2006 Aug;79(1):77–115.

    Article  Google Scholar 

  4. Brett M, Johnsrude IS, Owen AM. The problem of functional localization in the human brain. Nat Rev Neurosci. 2002;3(3):243–9.

    Article  CAS  PubMed  Google Scholar 

  5. Duffau H. Functional recovery after surgical resection of low grade gliomas in eloquent brain: hypothesis of brain compensation. J Neurol Neurosurg Psychiatry. 2003;74(7):901–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Roux F-E, Boulanouar K, Lotterie J-A, Mejdoubi M, LeSage JP, Berry I. Language functional magnetic resonance imaging in preoperative assessment of language areas: correlation with direct cortical stimulation. Neurosurgery. 2003;52(6):1335–47.

    Article  PubMed  Google Scholar 

  7. Aubert A, Costalat R, Duffau H, Benali H. Modeling of pathophysiological coupling between brain electrical activation, energy metabolism and hemodynamics: insights for the interpretation of intracerebral tumor imaging. Acta Biotheor. 2002;50(4):281–95.

    Article  PubMed  Google Scholar 

  8. Folzenlogen Z, Ormond DR. A brief history of cortical functional localization and its relevance to neurosurgery. Neurosurg Focus. 2019;47(3):E2.

    Article  PubMed  Google Scholar 

  9. Loukas M, Pennell C, Groat C, Tubbs RS, Cohen-Gadol AA. Korbinian Brodmann (1868-1918) and his contributions to map** the cerebral cortex. Neurosurgery. 2011;68(1):6–11. discussion 11

    Article  PubMed  Google Scholar 

  10. Fritsch G, Hitzig E. Electric excitability of the cerebrum (Über die elektrische Erregbarkeit des Grosshirns). Epilepsy Behav. 2009;15(2):123–30.

    Article  CAS  PubMed  Google Scholar 

  11. Ferrier D. Experimental researches in cerebral physiology and pathology. J Anat Physiol. 1873;8(Pt 1):152–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Sherrington CS, Grunbaum ASF. An ADDRESS on LOCALISATION in the “MOTOR” CEREBRAL CORTEX: delivered to the pathological Society of London, December 17th, 1901. BMJ. 1901;2(2139):1857–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Molnár C, Nemes C, Szabó S, Fülesdi B. Harvey Cushing, a pioneer of neuroanesthesia. J Anesth. 2008;22(4):483–6.

    Article  PubMed  Google Scholar 

  14. Bartholow R. Experimental investigations into the functions ofthe. Human Erain Am J Med Sci. 1874;67:305–13.

    Article  Google Scholar 

  15. Ladino LD, Rizvi S, Téllez-Zenteno JF. The Montreal procedure: the legacy of the great Wilder Penfield. Epilepsy Behav EB. 2018;83:151–61.

    Article  Google Scholar 

  16. Ojemann GA, Whitaker HA. Language localization and variability. Brain Lang. 1978;6(2):239–60.

    Article  CAS  PubMed  Google Scholar 

  17. Cushing H. A NOTE upon the faradic stimulation of the postcentral gyrus in conscious patients. Brain. 1909;32(1):44–53.

    Article  Google Scholar 

  18. Penfield W. Combined regional and general anesthesia for craniotomy and cortical exploration. I. Neurosurgical considerations. Curr Res Anesth Analg. 1954;33(3):145–55.

    CAS  PubMed  Google Scholar 

  19. Pasquet A. Combined regional and general anesthesia for craniotomy and cortical exploration: part II. Anesthetic considerations. Int Anesthesiol Clin. 1986;24(3):12–20.

    Article  CAS  PubMed  Google Scholar 

  20. Merton PA, Morton HB. Stimulation of the cerebral cortex in the intact human subject. Nature. 1980;285(5762):227.

    Article  CAS  PubMed  Google Scholar 

  21. Taniguchi M, Cedzich C, Taniguchi M, Cedzich C, Schramm J. Modification of cortical stimulation for motor evoked potentials under general anesthesia. Neurosurgery. 1993;32(2):219–26.

    Article  CAS  PubMed  Google Scholar 

  22. Deletis V, Sala F. Intraoperative neurophysiological monitoring of the spinal cord during spinal cord and spine surgery: a review focus on the corticospinal tracts. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2008;119(2):248–64.

    Article  Google Scholar 

  23. Fujiki M, Furukawa Y, Kamida T, Anan M, Inoue R, Abe T, et al. Intraoperative corticomuscular motor evoked potentials for evaluation of motor function: a comparison with corticospinal D and I waves. J Neurosurg. 2006;104(1):85–92.

    Article  PubMed  Google Scholar 

  24. Riva M, Fava E, Gallucci M, Comi A, Casarotti A, Alfiero T, et al. Monopolar high-frequency language map**: can it help in the surgical management of gliomas? A comparative clinical study. J Neurosurg. 2016;124(5):1479–89.

    Article  PubMed  Google Scholar 

  25. Hausmann ON, Min K, Boos N, Ruetsch YA, Erni T, Curt A. Transcranial electrical stimulation: significance of fast versus slow charge delivery for intra-operative monitoring. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2002;113(10):1532–5.

    Article  Google Scholar 

  26. Mortimer JT, Shealy CN, Wheeler C. Experimental nondestructive electrical stimulation of the brain and spinal cord. J Neurosurg. 1970;32(5):553–9.

    Article  CAS  PubMed  Google Scholar 

  27. Pudenz RH, Bullara LA, Dru D, Talalla A. Electrical stimulation of the brain. II. Effects on the blood-brain barrier. Surg Neurol. 1975;4(2):265–70.

    CAS  PubMed  Google Scholar 

  28. Pujol J, Deus J, Acebes JJ, Villanueva A, Aparicio A, Soriano-Mas C, et al. Identification of the sensorimotor cortex with functional MRI: frequency and actual contribution in a neurosurgical context. J Neuroimag Off J Am Soc Neuroimag. 2008;18(1):28–33.

    Article  Google Scholar 

  29. Gregorie EM, Goldring S. Localization of function in the excision of lesions from the sensorimotor region. J Neurosurg. 1984;61(6):1047–54.

    Article  CAS  PubMed  Google Scholar 

  30. Hayashi H, Kawaguchi M. Intraoperative monitoring of flash visual evoked potential under general anesthesia. Korean J Anesthesiol. 2017;70(2):127–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Petrova LD. Brainstem auditory evoked potentials. Am J Electroneurodiagnostic Technol. 2009;49(4):317–32.

    Article  PubMed  Google Scholar 

  32. Britton JW, Frey LC, Hopp JL, Korb P, Koubeissi MZ, Lievens WE, et al. Electroencephalography (EEG). In: St. Louis EK, Frey LC, editors. An introductory text and atlas of Normal and abnormal findings in adults, children, and infants [internet]. Chicago: Am Epilepsy Society; 2016. [cited 2022 Feb 13]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK390354/.

    Google Scholar 

  33. Deletis V, Urriza J, Ulkatan S, Fernandez-Conejero I, Lesser J, Misita D. The feasibility of recording blink reflexes under general anesthesia. Muscle Nerve. 2009;39(5):642–6.

    Article  PubMed  Google Scholar 

  34. Deletis V, Fernández-Conejero I. Intraoperative monitoring and map** of the functional integrity of the brainstem. J Clin Neurol Seoul Korea. 2016;12(3):262–73.

    Article  Google Scholar 

  35. Sinclair CF, Téllez MJ, Tapia OR, Ulkatan S, Deletis V. A novel methodology for assessing laryngeal and vagus nerve integrity in patients under general anesthesia. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2017;128(7):1399–405.

    Article  Google Scholar 

  36. Deletis V, Rogić M, Fernández-Conejero I, Gabarrós A, Jerončić A. Neurophysiologic markers in laryngeal muscles indicate functional anatomy of laryngeal primary motor cortex and premotor cortex in the caudal opercular part of inferior frontal gyrus. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2014;125(9):1912–22.

    Article  Google Scholar 

  37. Deletis V, Fernandez-Conejero I, Ulkatan S, Costantino P. Methodology for intraoperatively eliciting motor evoked potentials in the vocal muscles by electrical stimulation of the corticobulbar tract. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2009;120(2):336–41.

    Article  Google Scholar 

  38. Deletis V, Fernández-Conejero I, Ulkatan S, Rogić M, Carbó EL, Hiltzik D. Methodology for intra-operative recording of the corticobulbar motor evoked potentials from cricothyroid muscles. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2011;122(9):1883–9.

    Article  Google Scholar 

  39. Espadaler J, Rogić M, Deletis V, Leon A, Quijada C, Conesa G. Representation of cricothyroid muscles at the primary motor cortex (M1) in healthy subjects, mapped by navigated transcranial magnetic stimulation (nTMS). Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2012;123(11):2205–11.

    Article  Google Scholar 

  40. Rogić Vidaković M, Jerković A, Jurić T, Vujović I, Šoda J, Erceg N, et al. Neurophysiologic markers of primary motor cortex for laryngeal muscles and premotor cortex in caudal opercular part of inferior frontal gyrus investigated in motor speech disorder: a navigated transcranial magnetic stimulation (TMS) study. Cogn Process. 2016;17(4):429–42.

    Article  PubMed  Google Scholar 

  41. Enatsu R, Matsumoto R, Piao Z, O’Connor T, Horning K, Burgess RC, et al. Cortical negative motor network in comparison with sensorimotor network: a cortico-cortical evoked potential study. Cortex J Devoted Study Nerv Syst Behav. 2013;49(8):2080–96.

    Article  Google Scholar 

  42. Velayutham P, Cherian VT, Rajshekhar V, Babu KS. The effects of propofol and isoflurane on intraoperative motor evoked potentials during spinal cord tumour removal surgery - a prospective randomised trial. Indian J Anaesth. 2019;63(2):92–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rothwell J, Burke D, Hicks R, Stephen J, Woodforth I, Crawford M. Transcranial electrical stimulation of the motor cortex in man: further evidence for the site of activation. J Physiol. 1994;481(Pt 1):243–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Abboud T, Huckhagel T, Stork J-H, Hamel W, Schwarz C, Vettorazzi E, et al. Why does threshold level change in transcranial motor-evoked potentials during surgery for Supratentorial lesions? J Neurosurg Anesthesiol. 2017;29(4):393–9.

    Article  PubMed  Google Scholar 

  45. Okamoto E, Ishikawa E, Yamamoto T, Matsuda M, Nakai K, Matsushita A, et al. Variability in amplitude and stimulation threshold values in motor evoked potential (MEP) monitoring during the resection of brain lesions. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2015;126(6):1271–8.

    Article  Google Scholar 

  46. Kombos T, SĂĽss O, Vajkoczy P. Subcortical map** and monitoring during insular tumor surgery. Neurosurg Focus. 2009;27(4):E5.

    Article  PubMed  Google Scholar 

  47. Tanaka S, Tashiro T, Gomi A, Takanashi J, Ujiie H. Sensitivity and specificity in transcranial motor-evoked potential monitoring during neurosurgical operations. Surg Neurol Int. 2011;2:111.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Nossek E, Korn A, Shahar T, Kanner AA, Yaffe H, Marcovici D, et al. Intraoperative map** and monitoring of the corticospinal tracts with neurophysiological assessment and 3-dimensional ultrasonography-based navigation. Clinical article. J Neurosurg. 2011;114(3):738–46.

    Article  PubMed  Google Scholar 

  49. Prabhu SS, Gasco J, Tummala S, Weinberg JS, Rao G. Intraoperative magnetic resonance imaging-guided tractography with integrated monopolar subcortical functional map** for resection of brain tumors. Clinical article. J Neurosurg. 2011;114(3):719–26.

    Article  PubMed  Google Scholar 

  50. Schucht P, Seidel K, Jilch A, Beck J, Raabe A. A review of monopolar motor map** and a comprehensive guide to continuous dynamic motor map** for resection of motor eloquent brain tumors. Neurochirurgie. 2017;63(3):175–80.

    Article  CAS  PubMed  Google Scholar 

  51. Han SJ, Morshed RA, Troncon I, Jordan KM, Henry RG, Hervey-Jumper SL, et al. Subcortical stimulation map** of descending motor pathways for perirolandic gliomas: assessment of morbidity and functional outcome in 702 cases. J Neurosurg. 2018;131(1):201–8.

    Article  PubMed  Google Scholar 

  52. Raabe A, Beck J, Schucht P, Seidel K. Continuous dynamic map** of the corticospinal tract during surgery of motor eloquent brain tumors: evaluation of a new method. J Neurosurg. 2014;120(5):1015–24.

    Article  PubMed  Google Scholar 

  53. Seidel K, Beck J, Stieglitz L, Schucht P, Raabe A. The warning-sign hierarchy between quantitative subcortical motor map** and continuous motor evoked potential monitoring during resection of supratentorial brain tumors. J Neurosurg. 2013;118(2):287–96.

    Article  PubMed  Google Scholar 

  54. Morota N, Ihara S, Deletis V. Intraoperative neurophysiology for surgery in and around the brainstem: role of brainstem map** and corticobulbar tract motor-evoked potential monitoring. Childs Nerv Syst ChNS Off J Int Soc Pediatr Neurosurg. 2010;26(4):513–21.

    Article  Google Scholar 

  55. Fahlbusch R, Strauss C. Surgical significance of cavernous hemangioma of the brain stem. Zentralbl Neurochir. 1991;52(1):25–32.

    CAS  PubMed  Google Scholar 

  56. Morota N, Deletis V. The importance of brainstem map** in brainstem surgical anatomy before the fourth ventricle and implication for intraoperative neurophysiological map**. Acta Neurochir. 2006;148(5):499–509. discussion 509

    Article  CAS  PubMed  Google Scholar 

  57. Macdonald DB, Skinner S, Shils J, Yingling C, American Society of Neurophysiological Monitoring. Intraoperative motor evoked potential monitoring - a position statement by the American Society of Neurophysiological Monitoring Clin Neurophysiol Off J Int Fed 2013 124(12):2291–2316.

    Google Scholar 

  58. Vincent M, Rossel O, Hayashibe M, Herbet G, Duffau H, Guiraud D, et al. The difference between electrical microstimulation and direct electrical stimulation – towards new opportunities for innovative functional brain map**? Rev Neurosci. 2016;27(3):231–58.

    Article  PubMed  Google Scholar 

  59. Mandonnet E, Winkler PA, Duffau H. Direct electrical stimulation as an input gate into brain functional networks: principles, advantages and limitations. Acta Neurochir. 2010;152(2):185–93.

    Article  PubMed  Google Scholar 

  60. Duffau H. Contribution of cortical and subcortical electrostimulation in brain glioma surgery: methodological and functional considerations. Neurophysiol Clin Neurophysiol. 2007;37(6):373–82.

    Article  CAS  Google Scholar 

  61. Duffau H. What direct electrostimulation of the brain taught us about the human connectome: a three-level model of neural disruption. Front Hum Neurosci. 2020;14:315.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Borchers S, Himmelbach M, Logothetis N, Karnath H-O. Direct electrical stimulation of human cortex - the gold standard for map** brain functions? Nat Rev Neurosci. 2011;13(1):63–70.

    Article  PubMed  Google Scholar 

  63. Duffau H. Contribution of intraoperative electrical stimulations in surgery of low grade gliomas: a comparative study between two series without (1985-96) and with (1996-2003) functional map** in the same institution. J Neurol Neurosurg Psychiatry. 2005;76(6):845–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. De Witt Hamer PC, Robles SG, Zwinderman AH, Duffau H, Berger MS. Impact of intraoperative stimulation brain map** on glioma surgery outcome: a meta-analysis. J Clin Oncol Off J Am Soc Clin Oncol. 2012;30(20):2559–65.

    Article  Google Scholar 

  65. Kim SS, McCutcheon IE, Suki D, Weinberg JS, Sawaya R, Lang FF, et al. Awake craniotomy for brain tumors near eloquent cortex: correlation of intraoperative cortical map** with neurological outcomes in 309 consecutive patients. Neurosurgery. 2009;64(5):836–45. discussion 345–346

    Article  PubMed  Google Scholar 

  66. Penfield W, Boldrey E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain. 1937;60(4):389–443.

    Article  Google Scholar 

  67. Ojemann GA. Individual variability in cortical localization of language. J Neurosurg. 1979;50(2):164–9.

    Article  CAS  PubMed  Google Scholar 

  68. Katayama Y, Tsubokawa T, Maejima S, Hirayama T, Yamamoto T. Corticospinal direct response in humans: identification of the motor cortex during intracranial surgery under general anaesthesia. J Neurol Neurosurg Psychiatry. 1988;51(1):50–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Szelényi A, Bello L, Duffau H, Fava E, Feigl GC, Galanda M, et al. Intraoperative electrical stimulation in awake craniotomy: methodological aspects of current practice. Neurosurg Focus. 2010;28(2):E7.

    Article  PubMed  Google Scholar 

  70. Herbet G, Rigaux-Viodé O, Moritz-Gasser S. Peri- and intraoperative cognitive and language assessment for surgical resection in brain eloquent structures. Neurochirurgie. 2017;63(3):135–41.

    Article  CAS  PubMed  Google Scholar 

  71. Klein M, Duffau H, De Witt Hamer PC. Cognition and resective surgery for diffuse infiltrative glioma: an overview. J Neuro-Oncol. 2012;108(2):309–18.

    Article  Google Scholar 

  72. Lobo FA, Wagemakers M, Absalom AR. Anaesthesia for awake craniotomy. Br J Anaesth. 2016;116(6):740–4.

    Article  CAS  PubMed  Google Scholar 

  73. Frost EAM, Booij LHDJ. Anesthesia in the patient for awake craniotomy. Curr Opin Anaesthesiol. 2007;20(4):331–5.

    Article  PubMed  Google Scholar 

  74. Peruzzi P, Bergese SD, Viloria A, Puente EG, Abdel-Rasoul M, Chiocca EA. A retrospective cohort-matched comparison of conscious sedation versus general anesthesia for supratentorial glioma resection. Clinical article. J Neurosurg. 2011;114(3):633–9.

    Article  PubMed  Google Scholar 

  75. Eseonu CI, ReFaey K, Garcia O, John A, Quiñones-Hinojosa A, Tripathi P. Awake craniotomy anesthesia: a comparison of the monitored anesthesia care and asleep-awake-asleep techniques. World Neurosurg. 2017;104:679–86.

    Article  PubMed  Google Scholar 

  76. Herrick IA, Craen RA, Gelb AW, Miller LA, Kubu CS, Girvin JP, et al. Propofol sedation during awake craniotomy for seizures: patient-controlled administration versus neurolept analgesia. Anesth Analg. 1997;84(6):1285–91.

    Article  CAS  PubMed  Google Scholar 

  77. Tongier WK, Joshi GP, Landers DF, Mickey B. Use of the laryngeal mask airway during awake craniotomy for tumor resection. J Clin Anesth. 2000;12(8):592–4.

    Article  CAS  PubMed  Google Scholar 

  78. Fukaya C, Katayama Y, Yoshino A, Kobayashi K, Kasai M, Yamamoto T. Intraoperative wake-up procedure with propofol and laryngeal mask for optimal excision of brain tumour in eloquent areas. J Clin Neurosci Off J Neurosurg Soc Australas. 2001;8(3):253–5.

    CAS  Google Scholar 

  79. Danks RA, Rogers M, Aglio LS, Gugino LD, Black PM. Patient tolerance of craniotomy performed with the patient under local anesthesia and monitored conscious sedation. Neurosurgery. 1998;42(1):28–34. discussion 34–36

    Article  CAS  PubMed  Google Scholar 

  80. Johnson KB, Egan TD. Remifentanil and propofol combination for awake craniotomy: case report with pharmacokinetic simulations. J Neurosurg Anesthesiol. 1998;10(1):25–9.

    Article  CAS  PubMed  Google Scholar 

  81. Bekker AY, Kaufman B, Samir H, Doyle W. The use of Dexmedetomidine infusion for awake craniotomy. Anesth Analg. 2001;92(5):1251–3.

    Article  CAS  PubMed  Google Scholar 

  82. Hansen E, Seemann M, Zech N, Doenitz C, Luerding R, Brawanski A. Awake craniotomies without any sedation: the awake-awake-awake technique. Acta Neurochir. 2013;155(8):1417–24.

    Article  PubMed  Google Scholar 

  83. Zemmoura I, Fournier E, El-Hage W, Jolly V, Destrieux C, Velut S. Hypnosis for awake surgery of low-grade gliomas. Neurosurgery. 2016;78(1):53–61.

    Article  PubMed  Google Scholar 

  84. Bu L, Lu J, Zhang J, Wu J. Intraoperative cognitive map** tasks for direct electrical stimulation in clinical and neuroscientific contexts. Front Hum Neurosci. 2021;2(15):612891.

    Article  Google Scholar 

  85. Wager M, Rigoard P, Bouyer C, Baudiffier V, Stal V, Bataille B, et al. Operating environment for awake brain surgery – choice of tests. Neurochirurgie. 2017;63(3):150–7.

    Article  CAS  PubMed  Google Scholar 

  86. Fernández Coello A, Moritz-Gasser S, Martino J, Martinoni M, Matsuda R, Duffau H. Selection of intraoperative tasks for awake map** based on relationships between tumor location and functional networks. J Neurosurg. 2013 Dec;119(6):1380–94.

    Article  PubMed  Google Scholar 

  87. Duffau H. New philosophy, clinical pearls, and methods for intraoperative cognition map** and monitoring “à la carte” in brain tumor patients. Neurosurgery. 2021;88(5):919–30.

    Article  PubMed  Google Scholar 

  88. Ius T, Angelini E, Thiebaut de Schotten M, Mandonnet E, Duffau H. Evidence for potentials and limitations of brain plasticity using an atlas of functional resectability of WHO grade II gliomas: Towards a “minimal common brain”. NeuroImage. 2011;56(3):992–1000.

    Article  PubMed  Google Scholar 

  89. Sanai N, Mirzadeh Z, Berger MS. Functional outcome after language map** for glioma resection. N Engl J Med. 2008;358(1):18–27.

    Article  CAS  PubMed  Google Scholar 

  90. Gil-Robles S, Duffau H. Surgical management of World Health Organization grade II gliomas in eloquent areas: the necessity of preserving a margin around functional structures. Neurosurg Focus. 2010;28(2):E8.

    Article  PubMed  Google Scholar 

  91. Skrap M, Marin D, Ius T, Fabbro F, Tomasino B. Brain map**: a novel intraoperative neuropsychological approach. J Neurosurg. 2016;125(4):877–87.

    Article  PubMed  Google Scholar 

  92. Chang W-H, Pei Y-C, Wei K-C, Chao Y-P, Chen M-H, Yeh H-A, et al. Intraoperative linguistic performance during awake brain surgery predicts postoperative linguistic deficits. J Neuro-Oncol. 2018;139(1):215–23.

    Article  Google Scholar 

  93. Bertani G, Fava E, Casaceli G, Carrabba G, Casarotti A, Papagno C, et al. Intraoperative map** and monitoring of brain functions for the resection of low-grade gliomas: technical considerations. Neurosurg Focus. 2009;27(4):E4.

    Article  PubMed  Google Scholar 

  94. Chang EF, Clark A, Smith JS, Polley M-Y, Chang SM, Barbaro NM, et al. Functional map**–guided resection of low-grade gliomas in eloquent areas of the brain: improvement of long-term survival: clinical article. J Neurosurg. 2011;114(3):566–73.

    Article  PubMed  Google Scholar 

  95. Sacko O, Lauwers-Cances V, Brauge D, Sesay M, Brenner A, Roux F-E. Awake craniotomy vs surgery under general anesthesia for resection of supratentorial lesions. Neurosurgery 2011 68(5):1192–8; discussion 1198–1199.

    Google Scholar 

  96. Pinsker M, Nabavi A, Mehdorn H. Neuronavigation and resection of lesions located in eloquent brain areas under local anesthesia and neuropsychological-neurophysiological monitoring. Min - Minim Invasive Neurosurg. 2007;50(5):281–4.

    Article  CAS  PubMed  Google Scholar 

  97. Suarez-Meade P, Marenco-Hillembrand L, Prevatt C, Murguia-Fuentes R, Mohamed A, Alsaeed T, et al. Awake vs. asleep motor map** for glioma resection: a systematic review and meta-analysis. Acta Neurochir. 2020;162(7):1709–20.

    Article  PubMed  Google Scholar 

  98. Nossek E, Matot I, Shahar T, Barzilai O, Rapoport Y, Gonen T, et al. Intraoperative seizures during awake craniotomy: incidence and consequences: analysis of 477 patients. Neurosurgery. 2013;73(1):135–40. discussion 140

    Article  PubMed  Google Scholar 

  99. Gonen T, Grossman R, Sitt R, Nossek E, Yanaki R, Cagnano E, et al. Tumor location and IDH1 mutation may predict intraoperative seizures during awake craniotomy. J Neurosurg. 2014;121(5):1133–8.

    Article  PubMed  Google Scholar 

  100. Rossi M, Fornia L, Puglisi G, Leonetti A, Zuccon G, Fava E, et al. Assessment of the praxis circuit in glioma surgery to reduce the incidence of postoperative and long-term apraxia: a new intraoperative test. J Neurosurg. 2018;130(1):17–27.

    Article  PubMed  Google Scholar 

  101. Taylor MD, Bernstein M. Awake craniotomy with brain map** as the routine surgical approach to treating patients with supratentorial intraaxial tumors: a prospective trial of 200 cases. J Neurosurg. 1999 Jan;90(1):35–41.

    Article  CAS  PubMed  Google Scholar 

  102. Blanshard HJ, Chung F, Manninen PH, Taylor MD, Bernstein M. Awake craniotomy for removal of intracranial tumor: considerations for early discharge. Anesth Analg. 2001 Jan;92(1):89–94.

    Article  CAS  PubMed  Google Scholar 

  103. Kodama K, Javadi M, Seifert V, Szelényi A. Conjunct SEP and MEP monitoring in resection of infratentorial lesions: lessons learned in a cohort of 210 patients. J Neurosurg. 2014 Dec;121(6):1453–61.

    Article  PubMed  Google Scholar 

  104. Slotty PJ, Abdulazim A, Kodama K, Javadi M, Hänggi D, Seifert V, et al. Intraoperative neurophysiological monitoring during resection of infratentorial lesions: the surgeon’s view. J Neurosurg. 2017;126(1):281–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moiyadi, A., Shetty, P., Velayutham, P., Singh, V.K., Jain, K. (2023). Intraoperative Map** and Monitoring Techniques for Intra-Axial Brain Tumors. In: Shah, A., Goel, A., Kato, Y. (eds) Functional Anatomy of the Brain: A View from the Surgeon’s Eye. Springer, Singapore. https://doi.org/10.1007/978-981-99-3412-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-3412-6_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-3411-9

  • Online ISBN: 978-981-99-3412-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation