Impact of White Matter Dissection in Microneurosurgical Procedures

  • Chapter
  • First Online:
Functional Anatomy of the Brain: A View from the Surgeon’s Eye

Abstract

White matter fiber dissection is a technical procedure used in neuroanatomy studies to gain a comprehensive three-dimensional understanding of both gray and white matter anatomy as well as deep nuclei [1]. While difficult and time consuming, this technique is critical for constructing a proper conceptual notion about accurate intrinsic brain anatomy and architecture. This method is the legacy of many early anatomists [2–8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Türe U, Yaşargil MG, Friedman AH, Al-Mefty O. Fiber dissection technique: lateral aspect of the brain. Neurosurgery. 2000;47:417–27.

    Article  PubMed  Google Scholar 

  2. Baur V, Hänggi J, Jäncke L. Volumetric associations between uncinate fasciculus, amygdala, and trait anxiety. BMC Neurosci. 2012;13:4.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bell C. The anatomy of the brain. London: TN Longman; 1802.

    Google Scholar 

  4. Gall FJ, Spurzheim JC. Anatomie et physiologie du systéme nerveux en général, et du cerveau en particulier. Paris: F. Schoell; 1810.

    Google Scholar 

  5. Klingler J. Erleichterung der makroskopischen präparation des gehirn durch den gefrierprozess. Schweiz Arch Neurol Psychiatr. 1935;36:247–56.

    Google Scholar 

  6. Mayo H. A series of engravings intended to illustrate the structure of the brain and spinal cord in man. London: Burgess and Hill; 1827.

    Google Scholar 

  7. Reil JC. Das Balken-System oder die Balken-Organisation im großen Gehirn. Halle: Curtschen Buchhandlung; 1809.

    Google Scholar 

  8. Vieussens R. Neurographia universalis: Hoc est, omnium corporis humani nervorum, simul & cerebri, medullaeque spinalis descriptio anatomica. Lyons: Certe; 1684.

    Google Scholar 

  9. Clarke E, O’Malley CD. The human brain and spinal cord, a historical study illustrated by writing from antiquity to the twentieth century. Berkeley: University of California Press; 1968.

    Google Scholar 

  10. Clarke E, O’Malley CD. The human brain and spinal cord: a historical study illustrated by writings from antiquity to the twentieth century. 2nd ed. San Francisco: Norman Publishing; 1996.

    Google Scholar 

  11. Vesalius A. De Humani Corporis Fabrica. Basilae: Johannis Oporini; 1543.

    Google Scholar 

  12. Willis T. Cerebri Anatome: Cui Accessit Nervorum Descripto Et Usus. London: Jo Martyn & Ja Allestry; 1664.

    Google Scholar 

  13. Marshall LH, Magoun HW. Discoveries in the human brain: neuroscience prehistory, brain structure, and function. Cham: Springer Nature; 1998.

    Book  Google Scholar 

  14. Rolando L. Della struttura degli emisferi cerebrali. Torino: Regia Academia delle Scienze di Torino; 1829.

    Google Scholar 

  15. Motzkin JC, Newman JP, Kiehl KA, Koenigs M. Reduced prefrontal connectivity in psychopathy. J Neurosci. 2011;31:17348–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fernández-Miranda JC, Rhoton AL, Kakizawa Y, Choi C, Álvarez-Linera J. The claustrum and its projection system in the human brain: a microsurgical and tractographic anatomical study. J Neurosurg. 2008;108:764–74.

    Article  PubMed  Google Scholar 

  17. Malpighi M. De Cerebri Cortice. London: Jo Martyn & Ja Allestry; 1669.

    Google Scholar 

  18. Reil JC. Die Sylvische Grube oder das Gestreifte Große Hirnganglium, Dessen Kapsel und die Seitentheile des Großen Gehirns. Halle: Curtschen Buchhandlung; 1809.

    Google Scholar 

  19. Reil JC. Das Hirnschenkel-System oder die Hirnschenkel-Organisation im Großen Gehirn. Halle: Curtschen Buchhandlung; 1809.

    Google Scholar 

  20. Burdach KF. Vom Baue und Leben des Gehirns und Rückenmarks, vol. 3. Leipzig: Dyk’sche Buchhandlung; 1819.

    Google Scholar 

  21. Meyer A. Karl Friedrich Burdach and his place in the history of neuroanatomy. J Neurol Neurosurg Psychiatry. 1970;33:553–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Arnold F. Tabulae anatomicae: quas ad naturam accurate descriptas in lucem edidit (Band 1): Icones cerebri et medullae spinalis: decem tabulae elaboratae et totidem adumbratae. Turici: Impensis Orelli, Fueslini et Sociorum; 1838.

    Google Scholar 

  23. Foville AL. Traité complet de l’anatomie, de la physiologie et de la pathologie du système nerveux cérébro-spinal. Paris: Fortin, Masson; 1844.

    Google Scholar 

  24. Mai JK, Pazinos G, editors. The human nervous system. 3rd ed. London: Elsevier Academic Press; 2012.

    Google Scholar 

  25. Makris N, Pandya DN. The extreme capsule in humans and rethinking of the language circuitry. Brain Struct Funct. 2009;213:343–58.

    Article  PubMed  Google Scholar 

  26. Leuret F, Gratiolet P. Anatomie comparée du système nerveux: considéré dans ses rapports avec l’intelligence. Paris: J-B Baillière et fils; 1839.

    Google Scholar 

  27. Meynert TH. Vom gehirn der säugethiere. In: Stricker S, editor. Handbuch der Lehre von den Geweben des Menschen und dier Thiere. Leipzig: Engelmann; 1872.

    Google Scholar 

  28. Klingler J, Gloor P. The connections of the amygdala and of the anterior temporal cortex in the human brain. J Comp Neurol. 1960;115:333–69.

    Article  CAS  PubMed  Google Scholar 

  29. Ludwig E, Klingler J. Atlas Cerebri Humani: the inner structure of the brain. Little, Brown; 1956.

    Google Scholar 

  30. Yasargil MG, Türe U, Yasargil DCH. Impact of temporal lobe surgery. J Neurosurg. 2004;101:725–38.

    Article  PubMed  Google Scholar 

  31. Baydin S, Yagmurlu K, Tanriover N, Gungor A, Rhoton AL Jr. Microsurgical and fiber tract anatomy of the nucleus accumbens. Oper Neurosurg (Hagerstown). 2016;12:269–88.

    Article  PubMed  Google Scholar 

  32. Fernández-Miranda JC, Rhoton AL Jr, Alvarez-Linera J, Kakizawa Y, Choi C, de Oliveira EP. Three-dimensional microsurgical and tractographic anatomy of the white matter of the human brain. Neurosurgery. 2008;62(6 Suppl 3):989–1026. discussion 1026-1028

    Article  PubMed  Google Scholar 

  33. Güngör A, Baydin S, Middlebrooks EH, Tanriover N, Isler C, Rhoton AL Jr. The white matter tracts of the cerebrum in ventricular surgery and hydrocephalus. J Neurosurg. 2017;126:945–71.

    Article  PubMed  Google Scholar 

  34. Yagmurlu K, Middlebrooks EH, Tanriover N, Rhoton AL Jr. Fiber tracts of the dorsal language stream in the human brain. J Neurosurg. 2016;124:1396–405.

    Article  PubMed  Google Scholar 

  35. Yagmurlu K, Rhoton AL Jr, Tanriover N, Bennett JA. Three-dimensional microsurgical anatomy and the safe entry zones of the brainstem. Neurosurgery. 2014;10(Suppl 4):602–19. discussion 619–620

    PubMed  Google Scholar 

  36. Yagmurlu K, Vlasak AL, Rhoton AL Jr. Three-dimensional topographic fiber tract anatomy of the cerebrum. Neurosurgery. 2015;11(Suppl 2):274–305. discussion 305

    PubMed  Google Scholar 

  37. Peuskens D, van Loon J, Van Calenbergh F, van den Bergh R, Goffin J, Plets C. Anatomy of the anterior temporal lobe and the frontotemporal region demonstrated by fiber dissection. Neurosurgery. 2004;55:1174–84.

    Article  PubMed  Google Scholar 

  38. Kamada K, Todo T, Morita A, Masutani Y, Aoki S, Ino K, Kawai K, Kirino T. Functional monitoring for visual pathway using real-time visual evoked potentials and optic-radiation tractography. Neurosurgery. 2005;57(1 Suppl):121–7. discussion 121-127

    PubMed  Google Scholar 

  39. Koutsarnakis C, Liakos F, Kalyvas AV, Sakas DE, Stranjalis G. A laboratory manual for stepwise cerebral white matter fiber dissection. World Neurosurg. 2015;84:483–93.

    Article  PubMed  Google Scholar 

  40. Kucukyuruk B, Richardson RM, Wen HT, Fernandez-Miranda JC, Rhoton AL Jr. Microsurgical anatomy of the temporal lobe and its implications on temporal lobe epilepsy surgery. Epilepsy Res Treat. 2012;2012:769825.

    PubMed  PubMed Central  Google Scholar 

  41. Shah A, Jhawar S, Goel A, Goel A. Corpus callosum and its connections: a fiber dissection study. World Neurosurg. 2021;151:e1024–35.

    Article  PubMed  Google Scholar 

  42. Von der Heide RJ, Skipper LM, Klobusicky E, Olson IR. Dissecting the uncinate fasciculus: disorders, controversies and a hypothesis. Brain. 2013;136:1692–707.

    Article  PubMed  Google Scholar 

  43. Demirtaş OK, Güngör A, Çeltikçi P, Çeltikçi E, Munoz-Gualan AP, Doğulu FH, Türe U. Microsurgical anatomy and insular connectivity of the cerebral opercula. J Neurosurg. 2022;137:1509–23. https://doi.org/10.3171/2021.12.JNS212297.

    Article  Google Scholar 

  44. Dogan E, Gungor A, Dogulu F, Türe U. The historical evolution of the fornix and its terminology: a review. Neurosurg Rev. 2022;45:979–88.

    Article  PubMed  Google Scholar 

  45. Egemen E, Celtikci P, Dogruel Y, Yakar F, Sahinoglu D, Farouk M, Adiguzel E, Ugur HC, Coskun E, Güngör A. Microsurgical and tractographic anatomical study of transtemporal-transchoroidal fissure approaches to the ambient cistern. Oper Neurosurg (Hagerstown). 2021;20:189–97.

    Article  PubMed  Google Scholar 

  46. Güngör A, Baydın ŞS, Holanda VM, Middlebrooks EH, Isler C, Tugcu B, Foote K, Tanriover N. Microsurgical anatomy of the subthalamic nucleus: correlating fiber dissection results with 3-T magnetic resonance imaging using neuronavigation. J Neurosurg. 2018;130:716–32.

    Article  PubMed  Google Scholar 

  47. Gurses ME, Gungor A, Hanalioglu S, Yaltirik CK, Postuk HC, Berker M, Türe U. Qlone®: a simple method to create 360-degree photogrammetry-based 3-dimensional model of cadaveric specimens. Oper Neurosurg (Hagerstown). 2021;21:E488–93.

    Article  PubMed  Google Scholar 

  48. Gurses ME, Gungor A, Gökalp E, Hanalioglu S, Karatas Okumus SY, Tatar I, Berker M, Cohen-Gadol AA, Türe U. Three-Dimensional Modeling and Augmented and Virtual Reality Simulations of the White Matter Anatomy of the Cerebrum . Operative Neurosurgery. 2022;23(5):355–66.

    Google Scholar 

  49. Gurses ME, Gungor A, Rahmanov S, Gökalp E, Hanalioglu S, Berker M, Cohen-Gadol AA, Türe U. Three-Dimensional Modeling and Augmented Reality and Virtual Reality Simulation of Fiber Dissection of the Cerebellum and Brainstem. Operative Neurosurgery. 2022;23(5):345–54.

    Google Scholar 

  50. Gurses ME, Hanalioglu S, Mignucci-Jiménez G, Gokalp E, Gonzalez-Romo NI, Gungor A, Cohen-Gadol AA, Türe U, Lawton MT, Preul MC. Three-Dimensional Modeling and Extended Reality Simulations of the Cross-Sectional Anatomy of the Cerebrum, Cerebellum, and Brainstem. Operative Neurosurgery. 2023;25(1):3–10.

    Google Scholar 

  51. Şahin MH, Güngör A, Demirtaş OK, Postuk Ç, Fırat Z, Ekinci G, Kadıoğlu HH, Türe U. Microsurgical and fiber tract anatomy of the interthalamic adhesion. Journal of Neurosurgery. 2023;1(aop):1–0.

    Google Scholar 

  52. Demirtaş OK, Güngör A, Çeltikçi P, Çeltikçi E, Munoz-Gualan AP, Doğulu FH, Türe U. Microsurgical anatomy and insular connectivity of the cerebral opercula. Journal of Neurosurgery. 2022;137(5):1509–23.

    Google Scholar 

  53. Hanalioglu S, Romo NG, Mignucci-Jiménez G, Tunc O, Gurses ME, Abramov I, Xu Y, Sahin B, Isikay I, Tatar I, Berker M. Development and validation of a novel methodological pipeline to integrate neuroimaging and photogrammetry for immersive 3D cadaveric neurosurgical simulation. Frontiers in surgery. 2022;9.

    Google Scholar 

  54. Gonzalez-Romo NI, Mignucci-Jiménez G, Hanalioglu S, Gurses ME, Bahadir S, Xu Y, Koskay G, Lawton MT, Preul MC. Virtual neurosurgery anatomy laboratory: A collaborative and remote education experience in the metaverse. Surgical neurology international. 2023;14.

    Google Scholar 

  55. Silva SM, Andrade JP. Neuroanatomy: the added value of the Klingler method. Ann Anat. 2016;208:187–93.

    Article  PubMed  Google Scholar 

  56. Carpenter MB. Core text of neuroanatomy. 2nd ed. Williams & Wilkins; 1978.

    Google Scholar 

  57. Türe U, Yaşargil DC, Al-Mefty O, Yaşargil MG. Topographic anatomy of the insular region. J Neurosurg. 1999;90(4):720–33.

    Article  PubMed  Google Scholar 

  58. De Witt Hamer PC, Hendriks EJ, Mandonnet E, Barkhof F, Zwinderman AH, Duffau H. Resection probability maps for quality assessment of glioma surgery without brain location bias. PLoS One. 2013;8:e73353.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Shekari E, Goudarzi S, Shahriari E, Joghataei MT. Extreme capsule is a bottleneck for ventral pathway. IBRO Neurosci Rep. 2021;10:42–50.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Türe U, Yaşargil MG, Pait TG. Is there a superior occipitofrontal fasciculus? A microsurgical anatomic study. Neurosurgery. 1997;40:1226–32.

    Article  PubMed  Google Scholar 

  61. Cooney RE, Atlas LY, Joormann J, Eugène F, Gotlib IH. Amygdala activation in the processing of neutral faces in social anxiety disorder: is neutral really neutral? Psychiatry Res. 2006;148:55–9.

    Article  PubMed  Google Scholar 

  62. Matsuo K, Mizuno T, Yamada K, Akazawa K, Kasai T, Kondo M, Mori S, Nishimura T, Nakagawa M. Cerebral white matter damage in frontotemporal dementia assessed by diffusion tensor tractography. Neuroradiology. 2008;50:605–11.

    Article  PubMed  Google Scholar 

  63. Tröstl J, Sladky R, Hummer A, Kraus C, Moser E, Kasper S, Lanzenberger R, Windischberger C. Reduced connectivity in the uncinate fiber tract between the frontal cortex and limbic subcortical areas in social phobia. Eur Psychiatry. 2011;26:182.

    Article  Google Scholar 

  64. Standring S, Ellis H, Healy J, Johnson D, Williams A, Collins P, Wigley C. Gray's anatomy: the anatomical basis of clinical practice. Am J Neuroradiol. 2005;26(10):2703.

    Google Scholar 

  65. Herbet G, Zemmoura I, Duffau H. Functional anatomy of the inferior longitudinal fasciculus: from historical reports to current hypotheses. Front Neuroanat. 2018;12:77.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ballantine HT Jr, Cassidy WL, Flanagan NB, Marino R Jr. Stereotaxic anterior cingulotomy for neuropsychiatric illness and intractable pain. J Neurosurg. 1967;26:488–95.

    Article  PubMed  Google Scholar 

  67. Garcia-Bengochea F, Friedman WA. Persistent memory loss following section of the anterior fornix in humans. A historical review. Surg Neurol. 1987;27:361–4.

    Article  CAS  PubMed  Google Scholar 

  68. Hamani C, McAndrews MP, Cohn M, Oh M, Zumsteg D, Shapiro CM, Wennberg RA, Lozano AM. Memory enhancement induced by hypothalamic/fornix deep brain stimulation. Ann Neurol. 2008;63:119–23.

    Article  PubMed  Google Scholar 

  69. Goga C, Türe U. The anatomy of Meyer’s loop revisited: changing the anatomical paradigm of the temporal loop based on evidence from fiber microdissection. J Neurosurg. 2015;122:1253–62.

    Article  PubMed  Google Scholar 

  70. Naidich T, Duvernoy HM, Delman BN, Sorensen AG, Kollias SS, Haacke EM. Duvernoy’s Atlas of the human brain stem and cerebellum: high-field MRI: surface anatomy, internal structure, vascularization and 3D sectional anatomy. Vienna: Springer; 2009.

    Google Scholar 

  71. Bhardwaj N, Yadala S. Neuroanatomy, corticobulbar Ttact. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2022.

    Google Scholar 

  72. Gray H. Anatomy of the human body. 20th ed. Bartlebycom; 2000.

    Google Scholar 

  73. Rea P. Brainstem tracts. In: Rea P, editor. Essential clinical anatomy of the nervous system. Amsterdam: Elsevier; 2015. p. 177–92.

    Chapter  Google Scholar 

  74. Navarro-Orozco D, Bollu PC. Neuroanatomy, medial lemniscus (Reils band, Reils ribbon). Treasure Island (FL): StatPearls Publishing; 2022.

    Google Scholar 

  75. Voogd J. Cerebellum and precerebellar nuclei. In: Paxinos G, Mai JK, Mai JK, editors. The human nervous system. 2nd ed. Elsevier Science; 2004. p. 321–92.

    Chapter  Google Scholar 

  76. Nieuwenhuys R, Voogd J, van Huijzen C. The human central nervous system. 3rd ed. Berlin: Springler; 1988.

    Book  Google Scholar 

  77. Catani M, Howard RJ, Pajevic S, Jones DK. Virtual in vivo interactive dissection of white matter fasciculi in the human brain. NeuroImage. 2002;17:77–94.

    Article  PubMed  Google Scholar 

  78. Mamata H, Mamata Y, Westin C-F, Shenton ME, Kikinis R, Jolesz FA, Maier SE. High-resolution line scan diffusion tensor MR imaging of white matter fiber tract anatomy. AJNR Am J Neuroradiol. 2002;23:67–75.

    PubMed  PubMed Central  Google Scholar 

  79. Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B. 1996;111:209–19.

    Article  CAS  PubMed  Google Scholar 

  80. Hofer S, Frahm J. Topography of the human corpus callosum revisited—comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. NeuroImage. 2006;32:989–94.

    Article  PubMed  Google Scholar 

  81. Duffau H. New concepts in surgery of WHO grade II gliomas: functional brain map**, connectionism and plasticity—a review. J Neuro-Oncol. 2006;79:77–115.

    Article  Google Scholar 

  82. Yaşargil M. Microneurosurgery IVA. New York: Thieme; 1996.

    Google Scholar 

  83. Yaşargil M. Microneurosurgery IVB. New York: Thieme; 1996.

    Google Scholar 

  84. Berman JI, Berger MS, Mukherjee P, Henry RG. Diffusion-tensor imaging-guided tracking of fibers of the pyramidal tract combined with intraoperative cortical stimulation map** in patients with gliomas. J Neurosurg. 2004;101:66–72.

    Article  PubMed  Google Scholar 

  85. Kamada K, Sawamura Y, Takeuchi F, Kawaguchi H, Kuriki S, Todo T, Morita A, Masutani Y, Aoki S, Kirino T. Functional identification of the primary motor area by corticospinal tractography. Neurosurgery. 2005;56(1 Suppl):98–109. discussion 98-109

    PubMed  Google Scholar 

  86. Nimsky C, Ganslandt O, Fahlbusch R. Implementation of fiber tract navigation. Neurosurgery. 2006;58(4 Suppl):ONS-292-303. discussion ONS-303-304

    PubMed  Google Scholar 

  87. Nimsky C, Ganslandt O, Hastreiter P, Wang R, Benner T, Sorensen AG, Fahlbusch R. Intraoperative diffusion-tensor MR imaging: shifting of white matter tracts during neurosurgical procedures—initial experience. Radiology. 2005;234:218–25.

    Article  PubMed  Google Scholar 

  88. Nimsky C, Ganslandt O, Hastreiter P, Wang R, Benner T, Sorensen AG, Fahlbusch R. Preoperative and intraoperative diffusion tensor imaging-based fiber tracking in glioma surgery. Neurosurgery. 2005;56:130–7. discussion 138

    Article  PubMed  Google Scholar 

  89. Kamada K, Todo T, Masutani Y, Aoki S, Ino K, Takano T, Kirino T, Kawahara N, Morita A. Combined use of tractography-integrated functional neuronavigation and direct fiber stimulation. J Neurosurg. 2005;102:664–72.

    Article  PubMed  Google Scholar 

  90. Henry RG, Berman JI, Nagarajan SS, Mukherjee P, Berger MS. Subcortical pathways serving cortical language sites: initial experience with diffusion tensor imaging fiber tracking combined with intraoperative language map**. NeuroImage. 2004;21:616–22.

    Article  PubMed  Google Scholar 

  91. Sporns O, Tononi G, Kötter R. The human connectome: a structural description of the human brain. PLoS Comput Biol. 2005;1:e42.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Toga AW, Clark KA, Thompson PM, Shattuck DW, Van Horn JD. Map** the human connectome. Neurosurgery. 2012;71:1–5.

    Article  PubMed  Google Scholar 

  93. Türe U, Harput MV, Kaya AH, Baimedi P, Firat Z, Türe H, Bingöl CA. The paramedian supracerebellar-transtentorial approach to the entire length of the mediobasal temporal region: an anatomical and clinical study. Laboratory investigation. J Neurosurg. 2012;116:773–91.

    Article  PubMed  Google Scholar 

  94. Türe U, Kaya AH, Bingöl CA. Transsylvian selective amygdalohippocampectomy. In: Cataltepe O, Jallo GI, editors. Pediatric epilepsy surgery: preoperative assessment and surgical treatment. 1st ed. Stuttgart: Thieme; 2010. p. 147–55.

    Google Scholar 

  95. Panteli A, Güngör A, Fırat Z, Sarıtepe F, Türe H, Türe U. The posterior interhemispheric transparieto-occipital fissure approach to the atrium of the lateral ventricle: a fiber microdissection study with case series. Neurosurg Rev. 2022;45:1663–74.

    Article  PubMed  Google Scholar 

  96. Jozefowicz RF. Neurophobia: the fear of neurology among medical students. Arch Neurol. 1994;51:328–9.

    Article  CAS  PubMed  Google Scholar 

  97. Ramos RL, Smith PT. A core neuroanatomy syllabus for diverse student populations. Clin Anat. 2016;29:131.

    Article  PubMed  Google Scholar 

  98. Shah A, Goel A, Jhawar SS, Patil A, Rangnekar R, Goel A. Neural circuitry: architecture and function - a fiber dissection study. World Neurosurg. 2019;125:e620–38.

    Google Scholar 

  99. Shah A, Jhawar SS, Nunez M, Goel A, Goel A. Brainstem anatomy: a study on the basis of the pattern of Fiber organisation. World Neurosurg. 2020;134:e826–46.

    Google Scholar 

  100. Estevez ME, Lindgren KA, Bergethon PR. A novel three-dimensional tool for teaching human neuroanatomy. Anat Sci Educ. 2010;3:309–17.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ius T, Angelini E, de Schotten MT, Mandonnet E, Duffau H. Evidence for potentials and limitations of brain plasticity using an atlas of functional resectability of WHO grade II gliomas: towards a “minimal common brain”. NeuroImage. 2011;56:992–1000.

    Article  PubMed  Google Scholar 

  102. Sanai N, Mirzadeh Z, Berger MS. Functional outcome after language map** for glioma resection. N Engl J Med. 2008;358:18–27.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Güngör, A., Gurses, M.E., Demirtaş, O.K., Rahmanov, S., Türe, U. (2023). Impact of White Matter Dissection in Microneurosurgical Procedures. In: Shah, A., Goel, A., Kato, Y. (eds) Functional Anatomy of the Brain: A View from the Surgeon’s Eye. Springer, Singapore. https://doi.org/10.1007/978-981-99-3412-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-3412-6_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-3411-9

  • Online ISBN: 978-981-99-3412-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation