Virtual Reality Surgical Simulation and Planning

  • Chapter
  • First Online:
Functional Anatomy of the Brain: A View from the Surgeon’s Eye
  • 343 Accesses

Abstract

At present, a vast amount and wide variety of medical images are used for surgical assessment. Before surgery, neurosurgeons must carefully read a vast amount of such image data and generate three-dimensional images by fusing the data in their heads to evaluate the applicability of surgery. In association with these tasks, the recent advances in computer technology have led to many studies on virtual reality surgical simulation using medical fusion three-dimensional computer graphics (medical fusion 3DCG), which fuses multiple medical image data to visualize them as three-dimensional images (Fig. 1). This article reviews the technology, clinical usefulness, and issues of virtual reality surgical simulation using medical fusion 3DCG. Meanwhile, the scope of this article is restricted to the clinical application of virtual reality surgical simulation. The educational objectives and basic research of this procedure are not discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mitsuru S, Kensuke T, Hidetoshi M, et al. Three-dimensional multimodality fusion imaging as an educational and planning tool for deep-seated meningiomas. Br J Neurosurg. 2018;32(5):509–15.

    Article  Google Scholar 

  2. So F, Keisuke T, Taichi K, et al. Three-dimensional angioarchitecture and microsurgical treatment of arteriovenous fistulas at the craniocervical junction. J Clin Neurosci. 2018;53:140–6.

    Article  Google Scholar 

  3. Tae-Bin W, Peter H, Hyun LJ, et al. Early experience with a patient-specific virtual surgical simulation for rehearsal of endoscopic skull-base surgery. Int Forum Allergy Rhinol. 2017;8(1):54–63.

    Google Scholar 

  4. Rotariu DI, Ziyad F, Budu A, Poeata I, et al. The role of OsiriX based virtual endoscopy in planning endoscopic Transsphenoidal surgery for pituitary adenoma. Turk Neurosurg. 2017;27(3):339–45.

    PubMed  Google Scholar 

  5. Lukas G, Christoph K, Jan B, et al. Microsurgery simulator of cerebral aneurysm clip** with interactive cerebral deformation featuring a virtual arachnoid. World Neurosurg. 2018;120:1163–70.

    Google Scholar 

  6. Shu**g Y, Jiashu Z, Yining Z, et al. Multimodal image-based virtual reality Presurgical simulation and evaluation for trigeminal neuralgia and Hemifacial spasm. World Neurosurg. 2018;113:499–507.

    Article  Google Scholar 

  7. Mark N, Roman R, Gergely Z, et al. A pipeline for 3D multimodality image integration and computer-assisted planning in epilepsy surgery. J Visualized Exp. 2016;111:e53450.

    Google Scholar 

  8. Keisuke O, Toshihiro M, Keiji O, et al. Preoperative three-dimensional diagnosis of neurovascular relationships at the root exit zones during microvascular decompression for Hemifacial spasm. World Neurosurg. 2016;92:171–8.

    Article  Google Scholar 

  9. Yoshino M, Kin T, Hara T. Usefulness of high-resolution three-dimensional multi-fusion medical imaging for preoperative planning in patients with cerebral arteriovenous malformation. World Neurosurg. 2019;124:e755–63.

    Article  PubMed  Google Scholar 

  10. Wang B, Chen Y, Gai S, et al. Preoperative evaluation of neurovascular relationships for microvascular decompression: visualization using Brainvis in patients with idiopathic trigeminal neuralgia. Clin Neurol Neurosurg. 2021;210:106957.

    Article  PubMed  Google Scholar 

  11. Steineke TC, Barbery D. Microsurgical clip** of middle cerebral artery aneurysms: preoperative planning using virtual reality to reduce procedure time. Neurosurg Focus. 2021;51(2):E12.

    Article  PubMed  Google Scholar 

  12. Hasegawa H, Shin M, Kin T, et al. Fully endoscopic minimally invasive tumor resection for cystic cerebellar Hemangioblastoma. World Neurosurg. 2019;126:484–90.

    Article  PubMed  Google Scholar 

  13. Uchida T, Kin T, Koike T, et al. Identification of the facial colliculus in two-dimensional and three-dimensional images. Neurol Med Chir (Tokyo). 2021;61(6):376–84.

    Article  PubMed  Google Scholar 

  14. Koike T, Tanaka S, Kin T, et al. Accurate preoperative identification of motor speech area as termination of arcuate fasciculus depicted by Q-ball imaging tractography. World Neurosurg. 2022;164:S1878–8750.

    Article  PubMed  Google Scholar 

  15. de Oliveira F, Bruno S, da Costa S, Devanir M, Silva CR, et al. Clinical application of an open-source 3D volume rendering software to neurosurgical approaches. World Neurosurg. 2017;110:864–72.

    Google Scholar 

  16. Ye L, Yining Z, Jiashu Z, et al. Low-cost interactive image-based virtual endoscopy for the diagnosis and surgical planning of Suprasellar arachnoid cysts. World Neurosurg. 2016;88:76–82.

    Article  Google Scholar 

  17. Lukas A, Jan G, Andres Robert H, et al. Stereolithographic models in the interdisciplinary planning of treatment for complex intracranial aneurysms. Acta Neurochir. 2016;158:1711–20.

    Article  Google Scholar 

  18. Eleftherios A, Eike S, Michael K, et al. A modified microsurgical endoscopic-assisted Transpedicular Corpectomy of the thoracic spine based on virtual 3-dimensional planning. World Neurosurg. 2016;91:424–33.

    Article  Google Scholar 

  19. Liang W, Xun Y, Qiang H, et al. Three-dimensional intracranial middle cerebral artery aneurysm models for aneurysm surgery and training. J Clin Neurosci. 2018;50:77–82.

    Article  Google Scholar 

  20. Liang W, Xun Y, Qiang H, et al. Comparison of two three-dimensional printed models of complex intracranial aneurysms for surgical simulation. World Neurosurg. 2017;103:671–9.

    Article  Google Scholar 

  21. **ang L, Wanchun Z, **tao H, et al. Application of computer assisted three-dimensional simulation operation and biomechanics analysis in the treatment of sagittal craniosynostosis. J Clin Neurosci. 2017;44:323–9.

    Article  Google Scholar 

  22. Makoto I, Takafumi N, Norio I, et al. A surgical strategy using a fusion image constructed from 11C-methionine PET, 18F-FDG-PET and MRI for glioma with no or minimum contrast enhancement. J Neuro-Oncol. 2018;138(3):537–48.

    Article  Google Scholar 

  23. Eastwood Kyle W, Bodani Vivek P, Drade JM. Three-dimensional simulation of collision-free paths for combined endoscopic third Ventriculostomy and pineal region tumor biopsy: implications for the design specifications of future flexible endoscopic instruments. Oper Neurosurg. 2016;12:231–8.

    Article  CAS  Google Scholar 

  24. Naoyuki S, Taichi K, Seiji N. et al, Microsurgery simulator of cerebral aneurysm clip** with interactive cerebral deformation featuring a virtual arachnoid. Oper Neurosurg. 14(5):579–89.

    Google Scholar 

  25. Tel A, Bagatto D, Tuniz F, et al. The evolution of craniofacial resection: a new workflow for virtual planning in complex craniofacial procedures. J Craniomaxillofac Surg. 2019;47(9):1475–83.

    Article  PubMed  Google Scholar 

  26. Kin T(correspondence), Nakatomi H, Shono N, Nomura S, Saito T, Oyama H, Saito N. Neurosurgical virtual reality simulation for brain tumor using high-definition computer graphics: a review of the literature. Neurol Med Chir (Tokyo). 2017;57(10):513–20.

    Article  Google Scholar 

  27. Gosal JS, Tiwari S, Sharma T, et al. Simulation of surgery for supratentorial gliomas in virtual reality using a 3D volume rendering technique: a poor man’s neuronavigation. Neurosurg Focus. 2021;51(2):E23.

    Article  PubMed  Google Scholar 

  28. Alsofy SZ, Sakellaropoulou I. Stroop Ralf: evaluation of surgical approaches for tumor resection in the deep Infratentorial region and impact of virtual reality technique for the surgical planning and strategy. J Craniofac Surg. 2020;31(7):1865–9.

    Article  Google Scholar 

  29. Sugiyama T, Clapp T, Nelson J, et al. Immersive 3-dimensional virtual reality modeling for case-specific Presurgical discussions in cerebrovascular neurosurgery. Oper Neurosurg. 2021;20(3):289–99.

    Article  Google Scholar 

  30. Perin A, Galbiati TF, Roberta A, et al. Informed consent through 3D virtual reality: a randomized clinical trial. Acta Neurochir. 2020;163(2):301–8.

    Article  PubMed  Google Scholar 

  31. Alsofy SZ, Sakellaropoulou I, Nakamura M, et al. Impact of virtual reality in arterial anatomy detection and surgical planning in patients with Unruptured anterior communicating artery aneurysms. Brain Sci. 2020;10(12):963.

    Article  Google Scholar 

  32. Uzunoglu I, Kizmazoglu C, Husemoglu RB, et al. Three-dimensional printing assisted preoperative surgical planning for cerebral arteriovenous malformation. J Korean Neurosurg Soc. 2021;64(6):882–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Alsofy SZ, Nakamura M, Suleiman A, et al. Cerebral anatomy detection and surgical planning in patients with anterior Skull Base Meningiomas using a virtual reality technique. J Clin Med. 2021;10(10):681–95.

    Article  Google Scholar 

  34. Filimonov A, Zeiger J, Goldrich D, et al. Virtual reality surgical planning for endoscopic endonasal approaches to the craniovertebral junction. Am J Otolaryngol. 2022;43(1):103219.

    Article  PubMed  Google Scholar 

  35. Yoshino M, Nakatomi H, Kin T, Saito T, Shono N, Nomura S, Nakagawa D, Takayanagi S, Imai H, Oyama H, Saito N. Usefulness of high-resolution 3D multifusion medical imaging for preoperative planning in patients with posterior fossa hemangioblastoma: technical note. J Neurosurg. 2017;127:139–47.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taichi Kin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kin, T. (2023). Virtual Reality Surgical Simulation and Planning. In: Shah, A., Goel, A., Kato, Y. (eds) Functional Anatomy of the Brain: A View from the Surgeon’s Eye. Springer, Singapore. https://doi.org/10.1007/978-981-99-3412-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-3412-6_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-3411-9

  • Online ISBN: 978-981-99-3412-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation