Next-Generation Crop Breeding Approaches for Improving Disease Resistance in Groundnut (Arachis hypogaea L.)

  • Chapter
  • First Online:
Diseases in Legume Crops

Abstract

Breeding programs across the globe focus on improving the groundnut/peanut yield, quality, and resistance to abiotic and biotic stresses. Diseases are widespread across the groundnut growing regions reducing the pod yield and impairing the kernel and haulm quality and are therefore economically important. Development of disease-tolerant/resistant cultivars for major groundnut diseases was achieved through breeding that used disease-resistant sources or its derivative as one of the parents, and “disease screening” to advance the selected breeding populations to next generation based on the disease reaction. Therefore, a reliable and repeatable disease screening protocol is critical to make progress for improvement of disease resistance. However, owing to the changing climatic scenario, and with challenges in disease screening, it may be difficult to improve genetic resistance for diseases with breeding methods that rely only on disease screening. Genomic tools enable selection of the disease-resistant/moderately resistant phenotype by the use of DNA markers thus circumvent the need to screen large number of “selection candidates.” Moreover, with the recent advances in -omics technologies and sequencing of peanut genomes, it is possible to identify the genomic regions governing resistance to diseases. This chapter describes the major diseases of groundnut, genetics, and sources of host resistance and the new breeding technologies that can be implemented in breeding disease resistance which is critical in attenuating disease-incurred damage and progress toward making groundnut varieties more resilient to disease outbreaks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbai R, Singh VK, Nachimuthu VV, Sinha P, Selvaraj R, Vipparla AK, Singh AK, Singh UM, Varshney RK, Kumar A (2019) Haplotype analysis of key genes governing grain yield and quality traits across 3 K RG panel reveals scope for the development of tailor-made rice with enhanced genetic gains. Plant Biotechnol J 17(8):1612–1622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abdou YAM, Gregory WC, Cooper WE (1974) Sources and nature of resistance to Cercospora arachidicola Hori and Cercosporodium personatum (Beck & Curtis) Deighton in Arachis species. Peanut Sci 13:6–11

    Article  Google Scholar 

  • Agarwal G, Clevenger J, Kale SM, Wang H, Pandey MK, Choudhary D, Yuan M, Wang X, Culbreath AK, Holbrook CC, Liu X, Varshney RK, Guo B (2019) A recombination bin-map identified a major QTL for resistance to tomato spotted wilt virus in peanut (Arachis hypogaea L.). Sci Rep 9:18246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agmon S, Kunta S, Dafny Yelin M, Moy J, Ibdah M, Harel A, Rabinovitch O, Levy Y, Hovav R (2022) Map** of stem rot resistance in peanut indicates significant effect for plant architecture locus. Crop Sci 62(6):2197–2211

    Article  CAS  Google Scholar 

  • Ahmad S, Nawade B, Sangh C, Mishra GP, Bosamia TC, Kumar N, Dobaria JR, Gajera HP (2020) Identification of novel QTLs for late leaf spot resistance and validation of a major rust QTL in peanut (Arachis hypogaea L.). 3 Biotech 10:1–3

    Google Scholar 

  • Harde AL, Perane RR, Shinde VS, Sakore GD (2019) Biochemical defense mechanism in groundnut genotypes against rust caused by Puccinia arachidis Speg. Int J Chem Stud 7:834–841

    CAS  Google Scholar 

  • Ali Q, Yu C, Hussain A, Ali M, Ahmar S, Sohail MA, Riaz M, Ashraf MF, Abdalmegeed D, Wang X, Imran M, Manghwar H, Zhou L (2022) Genome engineering Technology for Durable Disease Resistance: recent Progress and future outlooks for sustainable agriculture. Front Plant Sci 13:860281

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson EJ, Ali S, Byamukama E, Yen Y, Nepal MP (2018) Disease resistance mechanisms in plants. Gene 9:1–10

    Google Scholar 

  • Anderson WF, Patanothai A, Wynne JC, Gibbons RW (1990) Assessment of a diallele cross for multiple foliar pest resistance in peanut the international crops research for the semi-arid tropics (ICRI-SAT), Hyderabad. India Oleagineux 45(8–9):373–378

    Google Scholar 

  • Anderson WF, Wynne JC, Green CC (1986) Potential for incorporation of early and late leaf spot resistance in peanut. Plant Breed 97:163–170

    Article  Google Scholar 

  • Arias RS, Dang PM, Sobolev VS (2015) RNAi-mediated control of aflatoxins in peanut: method to analyze mycotoxin production and transgene expression in the peanut/aspergillus pathosystem. J Vis Exp 106:e53398

    Google Scholar 

  • Aulakh KS, Sandhu RS (1970) Reactions of groundnut varieties against aspergillus Niger. Plant Dis Rep 54:337

    Google Scholar 

  • Basra RK, Kaur S, Dhillon M (1985) Anatomical and biochemical studies of the resistance and susceptibility of groundnut varieties to Cercospora leaf spot. Ann Biol 1:7–12

    CAS  Google Scholar 

  • Bera SK, Kamdar JH, Kasundra SV, Thirumalaisamy PP (2016) Identification of groundnut genotypes and wild species resistant to stem rot using an efficient field screening technique. Electron J Plant Breed 7:61–70

    Article  Google Scholar 

  • Bera SK, Kasundra SV, Kamdar JH, BC A, Lal C, Thirumalasmy PP, Dash P, Maurya AK (2014) Variable response of interspecific breeding lines of groundnut to Sclerotium rolfsii infection under field and laboratory conditions. Electron J Plant Breed 5:22–29

    Google Scholar 

  • Bera SK, Rani K, Kamdar JH, Pandey MK, Desmae H, Holbrook CC, Burow MD, Manivannan N, Bhat RS, Jasani MD, Bera SS (2022) Genomic designing for biotic stress resistant Peanut in genomic designing for biotic stress resistant oilseed crops. Springer International Publishing, Cham, pp 137–214

    Book  Google Scholar 

  • Bertioli DJ, Cannon SB, Froenicke L, Huang G, Farmer AD, Cannon EK, Liu X, Gao D, Clevenger J, Dash S, Ren L, Moretzsohn MC, Shirasawa K, Huang W, Vidigal B, Abernathy B, Chu Y, Niederhuth CE, Umale P, Araujo AC, Kozik A, Kim KD, Burow MD, Varshney RK, Wang X, Zhang X, Barkley N, Guimaraes PM, Isobe S, Guo B, Liao B, Stalker HT, Schmitz RJ, Scheffler BE, Leal-Bertioli SC, Xun X, Jackson SA, Michelmore R, Ozias-Akins P (2016) The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet 48(4):438–446

    Article  CAS  PubMed  Google Scholar 

  • Bertioli DJ, Jenkins J, Clevenger J, Dudchenko O, Gao D, Seijo G, Samoluk SS (2019) The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nat Genet 51:877

    Article  CAS  PubMed  Google Scholar 

  • Bertioli S, José AC, Alves-Freitas DM, Moretzsohn MC, Guimarães PM, Nielen S, Vidigal BS, Pereira RW, Pike J, Fávero AP, Parniske M (2009) Identification of candidate genome regions controlling disease resistance in Arachis. BMC Plant Biol 9:1–2

    Google Scholar 

  • Beute MK (1980) Cylindrocladium black rot (CBR) disease of peanut (Arachis hypogaea). In: International Workshop on Groundnuts, p s

    Google Scholar 

  • Beute MK, Wynne JC, Emery DA (1976) Registration of NC 3033 Peanut germplasm 1 (Reg. No. GP 9). Crop Sci 16:881–887

    Article  Google Scholar 

  • Bhat JA, Yu D, Bohra A, Ganie SA, Varshney RK (2021) Features and applications of haplotypes in crop breeding. Commun Biol 4:1–12

    Article  Google Scholar 

  • Bhatnagar-Mathur P, Sunkara S, Bhatnagar-Panwar M, Waliyar F, Sharma KK (2015) Biotechnological advances for combating Aspergillus flavus and aflatoxin contamination in crops. Plant Sci 234:119–132

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar-Mathur P, Yogendra K, Parankusam S, Sanivarapu H, Prasad K, Lingampali SB, Sharma KK (2021) Comparative proteomics provide insights on the basis of resistance to aspergillus flavus infection and aflatoxin production in peanut (Arachis hypogea L.). J Plant Interact 16(1):494–509

    Article  CAS  Google Scholar 

  • Bosamia TC, Dodia SM, Mishra GP, Ahmad S, Joshi B, Thirumalaisamy PP, Kumar N, Rathnakumar AL, Sangh C, Kumar A, Thankappan R (2020) Unraveling the mechanisms of resistance to Sclerotium rolfsii in peanut (Arachis hypogaea L.) using comparative RNA-Seq analysis of resistant and susceptible genotypes. PLoS One 15(8):e0236823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Branch WD (1996) Registration of ‘Georgia Green’ peanut. Crop Sci 36:806

    Article  Google Scholar 

  • Branch WD (1998) Registration of 'Georgia Bold' peanut. Crop Sci 38:895–896

    Article  Google Scholar 

  • Branch WD (2000) Registration of Georgia hi-O/L peanut. Crop Sci 40:1823–1824

    Article  Google Scholar 

  • Branch WD, Brenneman TB (2012) New sources of Cylindrocladium black rot resistance among runner-type Peanut cultivars. Peanut Sci 39:38–42

    Article  Google Scholar 

  • Burow MD, Leal-Bertioli SC, Simpson CE, Ozias-Akins P, Chu Y (2013) Marker-assisted selection for biotic stress resistance in peanut. In: Varshney RK, Tuberosa R (eds) Translational genomics for crop breeding, volume I: biotic stresses, 1st edn. Wiley, New York, pp 125–150. (Chapter 13)

    Chapter  Google Scholar 

  • Chapu I, Okello DK, Okello RCO, Odong TL, Sarkar S, Balota M (2022) Exploration of alternative approaches to phenoty** of late leaf spot and groundnut rosette virus disease for groundnut breeding. Front Plant Sci 13:912332

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaudhari S, Khare D, Patil SC, Sundravadana S, Variath MT, Sudini HK, Manohar SS, Bhat RS, Pasupuleti J (2019) Genotype × environment studies on resistance to late leaf spot and rust in genomic selection training population of peanut (Arachis hypogaea L.). front. Plant Sci 10:1338

    Google Scholar 

  • Chen CQ, Belanger RR, Benhamou N, Paulitz TC (2000) Defense enzymes induced in cucumber roots by treatment with plant growth-promoting rhizobacteria (PGPR) and Pythium aphanidermatum. Physiol Mol Plant Pathol 56:13–23

    Article  CAS  Google Scholar 

  • Chen K, Gao C (2013) Targeted genome modification technologies and their applications in crop improvements. Plant Cell Rep 33:575–583

    Article  PubMed  Google Scholar 

  • Chen X, Li H, Pandey MK, Yang Q, Wang X, Garg V, Li H, Chi X, Doddamani D, Hong Y, Upadhyaya HD, Guo H, Khan AW, Zhu F, Zhang X, Pan L, Pierce GJ, Zhou G, Krishnamohan KAVS, Chen M, Zhong N, Agarwal G, Li S, Chitikineni A, Zhang G, Sharma S, Chen N, Liu N, Janila P, Li S, Wang M, Wang T, Sun J, Li X, Li C, Wang M, Yu L, Wen S, Singh S, Yang Z, Zhao J, Zhang C, Yu Y, Bi J, Zhang X, Liu Z, Paterson AH, Wang S, Liang X, Varshney RK, Yu S (2016) Draft genome of the peanut A-genome progenitor (Arachis duranensis) provides insights into geocarpy, oil biosynthesis, and allergens. Proc Natl Acad Sci U S A 113:6785–6790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Lu Q, Liu H, Zhang J, Hong Y, Lan H, Li H, Wang J, Liu H, Li H, Pandey MK, Zhang Z, Zhou G, Yu J, Zhang G, Yuan J, Li X, Wen S, Meng F, Yu S, Wang X, Siddique KHM, Liu Z-J, Paterson AH, Varshney RK, Liang X (2019a) Sequencing of cultivated peanut, Arachis hypogaea, yields insights into genome evolution and oil improvement. Mol Plant 12(7):920–934

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Zhang Q, Wang CC, Liu ZX, Jiang YJ, Zhai LY, Zheng TQ (2019b) Genetic dissection of seedling vigour in a diverse panel from the 3,000 Rice (Oryza sativa L.) Genome Project. Sci Rep 9:4804

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi SH, Green SK, Lee DR, Yoon JY (1989) Incompletely dominant single resistance gene for peanut stripe virus in soybean line AGS 129. Euphytica 40:193–196

    Article  Google Scholar 

  • Chu Y, Chee P, Culbreath A, Isleib TG, Holbrook CC, Ozias-Akins P (2019) Major QTLs for resistance to early and late leaf spot diseases are identified on chromosomes 3 and 5 in Peanut (Arachis hypogaea L.). Front Plant Sci 10:883

    Article  PubMed  PubMed Central  Google Scholar 

  • Clevenger J, Chu Y, Chavarro C, Agarwal G, Bertioli DJ, Leal-Bertioli SC, Pandey MK, Vaughn J, Abernathy B, Barkley NA, Hovav R (2017) Genome-wide SNP genoty** resolves signatures of selection and tetrasomic recombination in peanut. Mol Plant 10:309–322

    Article  CAS  PubMed  Google Scholar 

  • Clevenger J, Chu Y, Scheffler B, Ozias-Akins P (2016) A developmental transcriptome map for allotetraploid Arachis hypogaea. Front Plant Sci 7:1446

    Article  PubMed  PubMed Central  Google Scholar 

  • Coffelt TA, Garren KH (1982) Screening for resistance to Cylindrocladium black rot in peanuts (Arachis hypogaea L.). Peanut Sci 9:1–5

    Article  Google Scholar 

  • Coffelt TA, Porter DM (1982) Screening peanuts for resistance to Sclerotinia blight. Plant Dis 66:385–387

    Article  Google Scholar 

  • Coffelt TA, Porter DM (1986) Field screening of reciprocal Chico x Florigiant peanut populations for resistance to leafspot in Virginia. Peanut Sci 13:57–60

    Article  Google Scholar 

  • Cook M (1981) Susceptibility of peanut leaves to Cercosporidium personatum. Phytopathology 71:787–791

    Article  Google Scholar 

  • Cui M, Han S, Wang D, Haider MS, Guo J, Zhao Q, Du P, Sun Z, Qi F, Zheng Z, Huang B (2022) Gene co-expression network analysis of the comparative transcriptome identifies hub genes associated with resistance to Aspergillus flavus L. in cultivated peanut (Arachis hypogaea L.). Front Plant Sci 13:899177

    Article  PubMed  PubMed Central  Google Scholar 

  • Cui R, Clevenger J, Chu Y, Brenneman T, Isleib TG, Holbrook CC, Ozias-Akins P (2020) Quantitative trait loci sequencing-derived molecular markers for selection of stem rot resistance in peanut. Crop Sci 60:2008–2018

    Article  CAS  Google Scholar 

  • Culbreath AK, Todd JW, Brown SL (2003) Epidemiology and management of tomato spotted wilt in peanut. Annu Rev Phytopathol 41:53–75

    Article  CAS  PubMed  Google Scholar 

  • Culver JN, Sherwood JL, Melouk HA (1987) Resistance to peanut stripe virus in Arachis germplasm. Plant Dis 71:1080–1082

    Article  Google Scholar 

  • Dang PM, Lamb MC, Bowen KL, Chen CY (2019) Identification of expressed R-genes associated with leaf spot diseases in cultivated peanut. Mol Biol Rep 46:225–239

    Article  CAS  PubMed  Google Scholar 

  • Dang PM, Lamb MC, Chen CY (2021) Association of differentially expressed R-gene candidates with leaf spot resistance in peanut (Arachis hypogaea L.). Mol Biol Rep 48:323–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dasgupta S, Raj SK (1997) Screening of groundnut germplasm for resistance to seed rot and collar rot diseases caused by Aspergillus niger. Int J Arachis Newsl 17:11–13

    Google Scholar 

  • Deshmukh DB, Marathi B, Sudini HK, Variath MT, Chaudhari S, Manohar SS, Rani CV, Pandey MK, Pasupuleti J (2020) Combining high oleic acid trait and resistance to late leaf spot and rust diseases in groundnut (Arachis hypogaea L.). Front Genet 11:514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desmae H, Janila P, Okori P, Pandey MK, Motagi BN, Monyo E, Mponda O, Okello D, Sako D, Echeckwu C, Oteng-Frimpong R (2019) Genetics, genomics and breeding of groundnut (Arachis hypogaea L.). Plant Breed 138:425–444

    Article  PubMed  Google Scholar 

  • Ding Y, Qiu X, Luo H, Huang L, Guo J, Yu B, Sudini H, Pandey M, Kang Y, Liu N, Zhou X (2022) Comprehensive evaluation of Chinese peanut mini-mini core collection and QTL map** for aflatoxin resistance. BMC Plant Biol 22(1):207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinglasan E, Godwin I, Mortlock M, Hickey L (2016) Resistance to yellow spot in wheat grown under accelerated growth conditions. Euphytica 209:693–707

    Article  Google Scholar 

  • Dodia SM, Joshi B, Gangurde S, Thirumalaisamy PP, Mishra GP, Kumar N, Soni P, Rathnakumar AL, Dobariya JR, Sangh C, Chitikineni A, Chanda SV, Pandey MK, Varshney RK, Radhakrishnan T (2019) Genoty**-by-sequencing based genetic map** reveals large number of epistatic interactions for stem rot resistance in groundnut. Theor Appl Genet 132(4):1001–1016

    Article  PubMed  Google Scholar 

  • Dodo HW, Konan KN, Chen FC, Egnin M, Viquez OM (2008) Alleviating peanut allergy using genetic engineering: the silencing of the immunodominant allergen Ara h 2 leads to its significant reduction and a decrease in peanut allergenicity. Plant Biotechnol J 6:135–145

    Article  CAS  PubMed  Google Scholar 

  • Duan NX, Peng Z, Tan YJ, Jiang HF (1994). Preliminary studies on the biochemical mechanisms of resistance to Pseudomonas solanacearum in groundnut

    Google Scholar 

  • Dwivedi SL, Pande S, Rao JN, Nigam SN (2002) Components of resistance to late leaf spot and rust among interspecific derivatives and their significance in a foliar disease resistance breeding in groundnut (Arachis hypogaea L.). Euphytica 125:81–88

    Article  CAS  Google Scholar 

  • Elmore JM, Griffin BD, Walley JW (2021) Advances in functional proteomics to study plant-pathogen interactions. Curr Opin Plant Biol 1(63):102061

    Article  Google Scholar 

  • Essandoh DA, Odong T, Okello DK, Fonceka D, Nguepjop J, Sambou A, Ballén-Taborda C, Chavarro C, Bertioli DJ, Leal-Bertioli SC (2022) Quantitative trait analysis shows the potential for alleles from the wild species Arachis batizocoi and A. duranensis to improve groundnut disease resistance and yield in East Africa. Agron J 12:2202

    Google Scholar 

  • Essandoh DA (2021) Performance of interspecific derivatives of Arachis species in Uganda and identification of quantitative trait loci associated with resistance to groundnut rosette and late leaf spot. (Doctoral dissertation,. Makerere University

    Google Scholar 

  • FAO (2021) Food and Agriculture Organization of the United Nations-Statistic Division https://www.fao.org/faostat/en/#data

  • Foster DJ, Stalker HT, Wynne JC, Beute MK (1981) Resistance of Arachis hypogaea L. and wild relatives to Cercospora arachidicola Hori. Oieagineux 36:139–143

    Google Scholar 

  • Foster DJ, Wynne JC, Beute MK (1980) Evaluation of detached leaf culture for screening peanuts for leaf spot resistance. Peanut Sci 7:98–100

    Article  Google Scholar 

  • Fry WE (1982) Principles of plant disease management. Academic Press, New York, p 378

    Google Scholar 

  • Gai Y, Deng Q, Pan R, Chen X, Deng M (2012) First report of Cylindrocladium black rot of peanut caused by Cylindrocladium parasiticum (teleomorph Calonectria ilicicola) in Jiangxi Province. China Plant Dis 96:586

    Article  CAS  PubMed  Google Scholar 

  • Gangurde SS, Nayak SN, Joshi P, Purohit S, Sudini HK, Chitikineni A, Hong Y, Guo B, Chen X, Pandey MK, Varshney RK (2021) Comparative transcriptome analysis identified candidate genes for late leaf spot resistance and cause of defoliation in groundnut. Int J Mol Sci 22(9):4491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia LE, Brandenburg RL, Bailey JE (2000) Incidence of tomato spotted wilt virus (Bunyaviridae) and tobacco thrips in Virginia-type peanuts in North Carolina. Plant Dis 84:459–464

    Article  CAS  PubMed  Google Scholar 

  • Gaurav A, Josh C, Hui W, Divya C, Mei Y, **ngjun W, Corley Jr HC, **n L, Baozhu G (2019) A recombination bin-map facilitates identification of major QTL on chromosome A01 and potential candidate genes for resistance to tomato spotted wilt virus in peanut (Arachis hypogaea L.)

    Google Scholar 

  • Girdthai T, Jogloy S, Vorasoot N, Akkasaeng C, Wongkaew S, Holbrook CC, Patanothai A (2010) Associations between physiological traits for drought tolerance and aflatoxin contamination in peanut genotypes under terminal drought. Plant Breed 129:693–699

    Article  CAS  Google Scholar 

  • Gong L, Han S, Yuan M, Ma X, Hagan A, He G (2020) Transcriptomic analyses reveal the expression and regulation of genes associated with resistance to early leaf spot in peanut. BMC Res Notes 13:1–6

    Article  Google Scholar 

  • Gopal K, Jagadeswar R, Babu GP, Upadhyaya HD (2004) Sources of resistance to bud necrosis disease in groundnut. Pathology 24:1–10

    Google Scholar 

  • Gowda MV, Motagi BN, Naidu GK, Diddimani SB, Sheshagiri R (2002) GPBD 4: a spanish bunch groundnut genotype resistant to rust and late leaf spot

    Google Scholar 

  • Graves PR, Haystead TA (2002) Molecular biologist's guide to proteomics. Microbiol Mol Biol Rev 66:39–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green CC, Wynne JC (1986) Diallel and generation means analyses for the components of resistance to Cercospora arachidicola in peanut. Theor Appl Genet 73:228–235

    Article  CAS  PubMed  Google Scholar 

  • Green CC, Wynne JC, Beute MK (1983) Genetic variability and heritability in early generation crosses of large-seeded Virginia-type peanuts with lines resistant to Cylindrocladium black rot. Peanut Sci 10:47–51

    Article  Google Scholar 

  • Guan R, Qu Y, Guo Y, Yu L, Liu Y (2014) Salinity tolerance in soybean is modulated by natural variation in GmSALT3. Plant J 80:937–950

    Article  CAS  PubMed  Google Scholar 

  • Guo B, Wang H, Yaduru S, Pandey MK, Zhao C, Culbreath AK, Holbrook CC, Wang X, Varshney RK (2018) Development of a next-generation, multi-parent advanced generation intercross (MAGIC), fine-map** population for advancing genetics and genomics studies in peanut. In: Proceedings of international conference on advances in Arachis genomics & biotechnology (AAGB), Senegal

    Google Scholar 

  • Hadley BA, Beute MK, Wynne JC (1979) Heritability of Cylindrocladium black rot resistance in peanut. Peanut Sci 6:51–54

    Article  Google Scholar 

  • Hamid MA, Isleib TG, Wynne JC, Green CC (1981) Combining ability analysis of Cercospora leaf spot resistance and agronomic traits in Arachis hypogaea L. Oleagineux 36:605–612

    Google Scholar 

  • Hammons RO, Bell DK, Sobers EK (1981) Evaluating peanuts for resistance to Cylindrocladium black rot. Peanut Sci 8:117–120

    Article  Google Scholar 

  • Han S, Yuan M, Clevenger JP, Li C, Hagan A, Zhang X, Chen C, He G (2018) A SNP-based linkage map revealed QTLs for resistance to early and late leaf spot diseases in peanut (Arachis hypogaea L.). front. Plant Sci 9:1012

    Google Scholar 

  • Harris NE, Beute MK (1980) Histological responses of peanut germplasm resistant and susceptible to Cylindrocladium crotalariae in relationship to inoculum density. (Doctoral dissertation,. North Carolina State University

    Google Scholar 

  • Hickey LT, Dieters MJ, DeLacy IH, Christopher MJ, Kravchuk OY, Banks PM (2010) Screening for grain dormancy in segregating generations of dormant× non-dormant crosses in white-grained wheat (Triticum aestivum L.). Euphytica 172(2):183–195

    Article  Google Scholar 

  • Hickey LT, Dieters MJ, DeLacy IH, Kravchuk OY, Mares DJ, Banks PM (2009) Grain dormancy in fixed lines of white-grained wheat (Triticum aestivum L.) grown under controlled environmental conditions. Euphytica 168(3):303–310

    Article  CAS  Google Scholar 

  • Hickey LT, Germán SE, Pereyra SA, Diaz JE, Ziems LA, Fowler RA, Platz GJ, Franckowiak JD, Dieters MJ (2017) Speed breeding for multiple disease resistance in barley. Euphytica 213(3):1–4

    Article  Google Scholar 

  • Hickey LT, Wilkinson PM, Knight CR, Godwin ID, Kravchuk OY, Aitken EAB, Bansal UK, Bariana HS, DeLacy IH, Dieters MJ (2012) Rapid phenoty** for adult-plant resistance to stripe rust in wheat. Plant Breed 131:54–61

    Article  Google Scholar 

  • Higgins CM, Hall RM, Mitter N, Cruickshank A, Dietzgen RG (2004) Peanut stripe potyvirus resistance in peanut (Arachis hypogaea L.) plants carrying viral coat protein gene sequences. Transgenic Res 13:59–67

    Article  CAS  PubMed  Google Scholar 

  • Higgs J (2003) The beneficial role of peanuts in the diet-part 2. Nutr Food Sci 33(2):56–64

    Article  Google Scholar 

  • Hobbs H, Reddy D, Rajeshwari R, Reddy A (1987) Use of direct antigen coating and protein a coating ELISA procedures. Plant Dis 71:747–749

    Article  Google Scholar 

  • Holbrook CC, Isleib TG, Ozias-Akins P, Chu Y, Knapp SJ, Tillman B, Guo B, Gill R, Burow MD (2013) Development and phenoty** of recombinant inbred line (RIL) populations for peanut (Arachis hypogaea). Peanut Sci 40:89–94

    Article  Google Scholar 

  • Holbrook CC, Ozias-Akins P, Chu Y, Lamon S, Bertioli DJ, Leal-Bertioli SC, Culbreath AK, Godoy I (2022) Registration of TifGP-3 and TifGP-4 peanut germplasm lines. J Plant Regist 16(1):120–123

    Article  Google Scholar 

  • Hood MI, Skaar EP (2012) Nutritional immunity: transition metals at the pathogen-host interface. Nat Rev Microbiol 10:525–537

    Article  CAS  PubMed  Google Scholar 

  • Jadhav Y, Manohar SS, Sunkad G, Kannalli VP, Pandey MK, Variath MT, Yaduru S, Kona P, Varshney RK, Pasupuleti J (2019) Genomic regions associated with resistance to peanut bud necrosis disease (PBND) in a recombinant inbred line (RIL) population. Plant Breed 138:748–760

    Article  CAS  Google Scholar 

  • Jamshidi Goharrizi K, Fatehi F, Nazari M, Salehi F, Maleki M (2020) Assessment of changes in the content of sulforaphane and expression levels of CYP79F1 and myrosinase genes and proteomic profile of Lepidium draba plant under water-deficit stress induced by polyethylene glycol. Acta Physiol Plant 42:1–18

    Article  Google Scholar 

  • Janila P, Nigam SN, Pandey MK, Nagesh P, Varshney RK (2013) Groundnut improvement: use of genetic and genomic tools. Front Plant Sci 4:23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janila P, Pandey MK, Manohar SS, Variath MT, Nallathambi P, Nadaf HL, Sudini H, Varshney RK (2016a) Foliar fungal disease-resistant introgression lines of groundnut (Arachis hypogaea L.) record higher pod and haulm yield in multilocation testing. Plant Breed 135:355–366

    Article  Google Scholar 

  • Janila P, Variath MT, Pandey MK, Desmae H, Motagi B, Okori P, Manohar SS, Rathnakumar AL, Radhakrishnan T, Liao B, Varshney RK (2016b) Genomic tools in groundnut breeding program: status and perspectives. Front Plant Sci 7:289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jasani MD, Kamdar JH, Bera S, Sunkad G, Bera SK (2021) Novel and stable major QTLs conferring resistance to peanut bud necrosis disease and identification of resistant high yielding peanut breeding lines. Euphytica 217(6):1–3

    Article  Google Scholar 

  • Jogi A, Kerry JW, Brenneman TB, Leebens-Mack JH, Gold SE (2016) Identification of genes differentially expressed during early interactions between the stem rot fungus (Sclerotium rolfsii) and peanut (Arachis hypogaea L.) cultivars with increasing disease resistance levels. Microbiol Res 184:1–2

    Article  CAS  PubMed  Google Scholar 

  • Jogloy S, Wynne JC, Beute MK (1987) Inheritance of late leaf spot resistance and agronomic traits in peanut. Peanut Sci 14:86–90

    Article  Google Scholar 

  • Jyosthna MK, Reddy NE, Chalam TV, Reddy GLK (2004) Morphological and biochemical characterization of Phaeoisariopsis personata resistant and susceptible cultivars of groundnut (Arachis hypogaea L.). Plant Pathol Bull 13:243–250

    CAS  Google Scholar 

  • Biswas K, Sen C (2000) Management of stem rot of groundnut caused by Sclerotium rolfsii through Trichoderma harzianum. Indian Phytopath 53:290–295

    Google Scholar 

  • Kang I-H, Srivastava P, Ozias-Akins P, Gallo M (2007) Temporal and spatial expression of the major allergens in develo** and germinating peanut seed. Plant Physiol 144:836–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasno A (1988) Screening, breeding, and maintenance of groundnut varieties resistant to peanut stripe virus. In: 1. Meeting to coordinate research on Peanut stripe virus disease of groundnut. ICRISAT, Malang (Indonesia)

    Google Scholar 

  • Kasundra S, Kamdar J (2016) Phenoty** technique for stem rot disease in groundnut under field conditions

    Google Scholar 

  • Katam R, Basha SM, Suravajhala P, Pechan T (2010) Analysis of peanut leaf proteome. J Proteome Res 9:2236–2254

    Article  CAS  PubMed  Google Scholar 

  • Kaur J, Dhillon M (1990) Structural features of resistance in leaves of groundnut in relation to Cerosporidium leaf spot. Plant Dis Res 5:70–72

    Google Scholar 

  • Kayondo SI, Rubaihayo PR, Ntare BR, Gibson PT, Edema R, Ozimati A, Okello DK (2014) Genetics of resistance to groundnut rosette virus disease. Afr Crop Sci J 22:21–30

    Google Scholar 

  • Kesmala T, Jogloy S, Wongkaew S, Akkasaeng C, Patanothai A (2006) Evaluation of ten Peanut genotypes for resistance to Peanut bud necrosis virus (PBNV). Evaluation 28(3):460

    Google Scholar 

  • Khan SA, Chen H, Deng Y, Chen Y, Zhang C, Cai T, Ali N, Mamadou G, ** of QTLs and candidate genes discovery for aspergillus flavus resistance in peanut (Arachis hypogaea L.). Theor Appl Genet 133:2239–2257

    Article  CAS  PubMed  Google Scholar 

  • Khedikar YP, Gowda MVC, Sarvamangala C, Patgar KV, Upadhyaya HD, Varshney RK (2010) A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.). Theor Appl Genet 121:971–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kochert G, Stalker HT, Gimenes M, Galgaro L, Moore K (1996) RFLP and cytogenetic evidence for the progenitor species of allotetraploid cultivated peanut (Arachis hypogaea L.). Am J Bot 83:1282–1291

    Article  CAS  Google Scholar 

  • Kolekar RM, Sujay V, Shirasawa K (2016) QTL map** for late leaf spot and rust resistance using an improved genetic map and extensive phenotypic data on a recombinant inbred line population in peanut (Arachis hypogaea L.). Euphytica 209:147–156

    Article  CAS  Google Scholar 

  • Kolekar RM, Sukruth M, Shirasawa K, Nadaf HL, Motagi BN, Lingaraju S, Patil PV, Bhat RS (2017) Marker-assisted backcrossing to develop foliar disease-resistant genotypes in TMV 2 variety of peanut (Arachis hypogaea L.). Plant Breed 136(6):948–953

    Article  CAS  Google Scholar 

  • Korani W, Chu Y, Holbrook CC, Ozias-Akins P (2018) Insight into genes regulating postharvest aflatoxin contamination of tetraploid peanut from transcriptional profiling. Genetics 209(1):143–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kornegay JL, Beute MK, Wynne JC (1980) Inheritance of resistance to Cercospora arachidicola and Cercosporidium personatum in six Viginia-type peanut lines. Peanut Sci 7:4–9

    Article  Google Scholar 

  • Kottapalli KR, ZabetMoghaddam M, Rowland D, Faircloth W, Mirzaei M, Haynes PA, Payton P (2013) Shotgun label-free quantitative proteomics of water-deficit-stressed midmature peanut (Arachis hypogaea L.) seed. J Proteome Res 12:5048–5057

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Kirti PB (2015) Transcriptomic and proteomic analyses of resistant host responses in Arachis diogoi challenged with late leaf spot pathogen, Phaeoisariopsis Personata. PLoS One 10:0117559

    Google Scholar 

  • Kumari M, Singh M, Godika S, Choudhary S, Sharma J (2016) Effect of different fungicides, plant extracts on incidence and varietal screening against collar rot of groundnut (Arachis hypogaea L.) caused by aspergillus Niger van Tiegham. Int Quarterly J Life Sci 11(4):2835–2839

    CAS  Google Scholar 

  • Kumari V, Gowda M, Tasiwal V, Pandey MK, Bhat RS, Mallikarjuna N, Upadhyaya HD, Varshney RK (2014) Diversification of primary gene pool through introgression of resistance to foliar diseases from synthetic amphidiploids to cultivated groundnut (Arachis hypogaea L.). Crop J 2:110–119

    Article  Google Scholar 

  • Lei Y, Liao BS, Wang SY, Li D, Jiang HF (2005) Identification of AFLP markers for resistance to seed invasion by aspergillus flavus in peanut (Arachis hypogaea L.). Acta Agron Sin 31:1349–1353

    CAS  Google Scholar 

  • Lei Y, Liao B-S, Wang S-Y, Zhang Y-B, Li D, Jiang H-F (2006) A SCAR marker for resistance to aspergillus flavus in peanut (Arachis hypogaea L.). Hereditas 28(9):1107–1111

    CAS  PubMed  Google Scholar 

  • Li Z, Qiu Q (2000) Huayu 16: a new high-yielding, improved quality groundnut cultivar with wide adaptability for northern China. Int Arachis Newsl 20:31–32

    Google Scholar 

  • Li Z, Jarret RL, Demski JW (1997) Engineered resistance to tomato spotted wilt virus in transgenic peanut expressing the viral nucleocapsid gene. Transgenic Res 6:297–305

    Article  CAS  Google Scholar 

  • Liang X, Zhou G, Hong Y, Chen X, Liu H, Li S (2009) Overview of research progress on peanut (Arachis hypogaea L.) host resistance to aflatoxin contamination and genomics at the Guangdong academy of agricultural sciences. Peanut Sci 36:29–34

    Article  Google Scholar 

  • Liang XQ, Zhou GY, Pan RZ (2003) Study on the relationship of wax and cutin layers in peanut seeds and resistance to invasion and aflatoxin production by aspergillus flavus. J Trop Subtrop Bot 11:11–14

    CAS  Google Scholar 

  • Liao B, Zhuang W, Tang R, Zhang X, Shan S, Jiang H, Huang J (2009) Peanut aflatoxin and genomics research in China: progress and perspectives. Peanut Sci 36:21–28

    Article  Google Scholar 

  • Liao BS, Duan NX, Wang YY, Sun DR, Mehan VK (1994) Host-plant resistance to groundnut bacterial wilt: genetic diversity and enhancement. In: Mehan VK, MeDonald D (eds) Groundnut bacterial wilt in Asia: proceedings of the third working group meeting, Wuhan, China. ICRISAT, Patancheru, India, pp 91–96

    Google Scholar 

  • Liao BS, Li WR, Sun DR (1986) A study on inheritance of resistance to pseudomonas solanacearum E.F. Smith in Arachis hypogaea L. Oil Crops of China 3:1–8

    Google Scholar 

  • Luo HY, Pandey MK, Zhi Y, Zhang H, Xu SL, Guo JB, Wu B, Chen HW, Ren XP, Zhou XJ, Chen YN, Chen WG, Huang L, Liu N, Sudini HK, Varshney RK, Lei Y, Liao BS, Jiang HF (2020a) Discovery of two novel and adjacent QTLs on chromosome B02 controlling resistance against bacterial wilt in peanut variety Zhonghua 6. Theor Appl Genet 133:1133–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo Z, Cui R, Chavarro C, Tseng YC, Zhou H, Peng Z, Chu Y, Yang X, Lopez Y, Tillman B, Dufault N, Brenneman T, Isleib TG, Holbrook C, Ozias-Akins P, Wang J et al (2020b) Map** quantitative trait loci (QTLs) and estimating the epistasis controlling stem rot resistance in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet 133(4):1201–1212

    Article  CAS  PubMed  Google Scholar 

  • Maestri S, Maturo MG, Cosentino E, Marcolungo L, Iadarola B, Fortunati E, Rossato M, Delledonne M (2020) A long-read sequencing approach for direct haplotype phasing in clinical settings. Int J Mol Sci 21(23):9177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magbanua ZV, Wilde HD, Roberts JK, Chowdhury K, Abad J, Moyer JW, Wetzstein HY, Parrott WA (2000) Field resistance to tomato spotted wilt virus in transgenic peanut (Arachis hypogaea L.) expressing an antisense nucleocapsid gene sequence. Mol Breed 6:227–236

    Article  CAS  Google Scholar 

  • Mahatma MK, Thawait LK, Jadon KS, Thirumalaisamy PP, Bishi SK, Jadav JK, Khatediya N, Golakiya BA (2018) Metabolic profiles of groundnut (Arachis hypogaea L.) genotypes differing in Sclerotium rolfsii reaction. Eur J Plant Pathol 151:463–474

    Article  CAS  Google Scholar 

  • Mahatma MK, Thawait LK, Jadon KS, Thirumalaisamy PP, Bishi SK, Rathod KJ, Verma A, Kumar N, Golakiya BA (2021) Metabolic profiling for dissection of late leaf spot disease resistance mechanism in groundnut. Physiol Mol Biol Plants 27(5):1027–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahlein A-K (2016) Plant disease detection by imaging sensors—parallels and specific demands for precision agriculture and plant phenoty**. Plant Dis 100:241–251

    Article  PubMed  Google Scholar 

  • Makhumbila P, Rauwane M, Muedi H, Figlan S (2022) Metabolome profiling: a breeding prediction tool for legume performance under biotic stress conditions. Plan Theory 11:1–10

    Google Scholar 

  • Mallikarjuna G, Rao TS, Kirti PB (2016) Genetic engineering for peanut improvement: current status and prospects. Plant Cell Tissue Organ Cult 125:399–416

    Article  CAS  Google Scholar 

  • Mehan VK (1989) Screening groundnuts for resistance to seed invasion by aspergillus flavus and to aflatoxin production. In: McDonald M, Mehan VK, Hall SD (eds) Proceeding of international work-shop on aftatoxin contamination of groundnut. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, pp 323–334

    Google Scholar 

  • Mehan VK, Amadou B, McDonald D, Renard JL, Rao RN, Jayanthi S (1991) Field screening of groundnuts for resistance to seed infection by aspergillus flavus. Oleagineux 46:109–118

    Google Scholar 

  • Mehan VK, Boshou LS, Tan YJ, Robinson-Smith A, McDonald D, Hayward AC (1994) Bacterial wilt of groundnut. Information bulletin no. 35. International crops research Institute for the Semi-Arid Tropics, Patancheru, India

    Google Scholar 

  • Messiaen CM, Blancard D, Rouxel F, Lafon R (1991) Les maladies des Plantes Maraicheres, 3rd edn. Institut National de la Recherche Agronomique, Paris, France

    Google Scholar 

  • Middleton KJ, Saleh N, Horn N, Reddy DVR (1988) Production of peanut stripe virus-free seed and screening groundnuts for resistance to peanut stripe virus. In: 1. Meeting to coordinate research on Peanut stripe virus disease of groundnut. ICRISAT, Malang (Indonesia)

    Google Scholar 

  • Mixon AC, Rogers KM (1973) Peanut accessions resistant to seed infection by aspergillus flavus. Agron J 65:560–562

    Article  Google Scholar 

  • Moss JP, Singh AK, Reddy LJ, Nigam SN, Subrahmanyam P, McDonald D, Reddy AG (1997) Registration of ICGV 87165 peanut germplasm line with multiple resistance. Crop Sci 37:1028

    Article  Google Scholar 

  • Motagi BN (2001) Genetic analysis of resistance to late leaf spot and rust Vis-à-Vis productivity in groundnut (Arachis hypogaea L.). Dissertation, University of Agriculture Sciences, Dharwad, India

    Google Scholar 

  • Motagi BN, Bhat RS, Pujer S (2022) Genetic enhancement of groundnut: current status and future prospects. Accelerat Plant Breed 4:63–110

    Google Scholar 

  • Nandi S, Dutta S, Mondal A, Adhikari A, Nath R, Chattopadhaya A, Chaudhuri S (2013) Biochemical responses during the pathogenesis of Sclerotium rolfsii on cowpea. Afr J Biotechnol 12(25)

    Google Scholar 

  • Narula K, Elagamey E, Abdellatef MA, Sinha A, Ghosh S, Chakraborty N, Chakraborty S (2020) Chitosan-triggered immunity to fusarium in chickpea is associated with changes in the plant extracellular matrix architecture, stomatal closure and remodeling of the plant metabolome and proteome. Plant J 103(2):561–583

    Article  CAS  PubMed  Google Scholar 

  • Nathawat BDS, Patel DS, Singh RP, Mahendra P (2014) Effect of different plant age on incidence and varietal screening against of collar rot in groundnut. Biosci Trends 7(7):580–581

    Google Scholar 

  • Nevill DJ (1982) Inheritance of resistance to Cercosporidium personatum in groundnuts: a genetic model and its implications for selection. Oleagineux 37:355–362

    Google Scholar 

  • Nigam SN, Bock KR (1990) Inheritance of resistance to groundnut rosette virus in groundnut (Arachis hypogea L.). Ann Appl Biol 117:553–560

    Article  Google Scholar 

  • Nigam SN, Dwivedi SL, Gibbons RW (1991a) Peanut breeding: constraints, achievements and future possibilities. Plant Breed 61:1127–1136

    Google Scholar 

  • Nigam SN, Dwivedi SL, Rao YL, Gibbons RW (1991b) Registration of ‘ICGV 87141’peanut. Crop Sci 31:1096

    Article  Google Scholar 

  • Nigam SN, Dwivedi SL, Rao YL, Gibbons RW (1991c) Registration of ICGS 11 peanut cultivar. Crop Sci 30:960

    Article  Google Scholar 

  • Nigam SN, Reddy LJ, Subrahmanyam P, Reddy AG, McDonald D, Gibbons RW (1992) Registration of ICGV 87157, an elite peanut germplasm with multiple resistance to diseases. Crop Sci 32:837

    Article  Google Scholar 

  • Nigam SN, Waliyar F, Aruna R, Reddy SV, Kumar PL, Craufurd PQ, Diallo AT, Ntare BR, Upadhyaya HD (2009) Breeding peanut for resistance to aflatoxin contamination at ICRISAT. Peanut Sci 36:42–49

    Article  Google Scholar 

  • Nigam SN (2014) Groundnut at a glance, p 121

    Google Scholar 

  • Ntare BR, Subrahmanyam P, Waliyarc F (2002) Progress in combatting groundnut rosette disease in sub-Saharan Africa. Plant virology in sub-Saharan Africa 285–293

    Google Scholar 

  • O’Connor DJ, Wright GC, Dieters MJ, George DL, Hunter MN, Tatnell JR, Fleischfresser DB (2013) Development and application of speed breeding technologies in a commercial peanut breeding program. Peanut Sci 40:107–114

    Article  Google Scholar 

  • Olorunju PE, Kuhn CW, Demski JW, Misari SM, Ansa OA (1992) Inheritance of resistance in peanut to mixed infections of groundnut rosette virus (GRV) and groundnut rosette assistor virus and a single infection of GRV. Plant Dis 76:95–100

    Article  Google Scholar 

  • Ouakhssase A, Chahid A, Choubbane H, Aitmazirt A, Addi EA (2019) Optimization and validation of a liquid chromatography/tandem mass spectrometry (LC-MS/MS) method for the determination of aflatoxins in maize. Heliyon 5:01565

    Article  Google Scholar 

  • Özcan M, Seven S (2003) Physical and chemical analysis and fatty acid composition of peanut, peanut oil and peanut butter from Çom and NC-7 cultivars. Grasas Aceites 54(1):12–18

    Google Scholar 

  • Ozias-Akins P, Gill R, Yang H, Lynch R (1999) Genetic engineering of peanut: progress with Bt, peroxidase, peptidyl MIM D4E1, and lipoxygenase. In: Proceedings of the USDA-ARS 1999 Aflatoxin Elimination Workshop, pp 69–70

    Google Scholar 

  • Pandey MK, Agarwal G, Kale SM, Clevenger J, Nayak SN, Sriswathi M, Chitikineni A, Chavarro C, Chen X, Upadhyaya HD, Vishwakarma MK (2017) Development and evaluation of a high density genoty** ‘Axiom_Arachis’ array with 58 K SNPs for accelerating genetics and breeding in groundnut. Sci Rep 7(1):1–10

    Article  Google Scholar 

  • Pandey MK, Khan AW, Singh VK, Vishwakarma MK, Shasidhar Y, Kumar V, Garg V, Bhat RS, Chitikineni A, Janila P (2017b) QTL-seq approach identified genomic regions and diagnostic markers for rust and late leaf spot resistance in groundnut (Arachis hypogaea L.). Plant Biotechnol J 15:927–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey MK, Pandey AK, Kumar R, Nwosu V, Guo B, Wright G, Bhat RS, Chen X, Bera SK, Yuan M, Jiang H, Faye I, Radhakrishnan T, Wang X, Liang X, Liao B, Zhang X, Varshney RK, Zhuang W (2020) Translational genomics for achieving higher genetic gains in groundnut. Theor Appl Genet 133:1679–1702

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey MK, Roorkiwal M, Singh VK, Ramalingam A, Kudapa H, Thudi M, Chitikineni A, Rathore A, Varshney RK (2016) Emerging genomic tools for legume breeding: current status and future prospects. Front Plant Sci 7:45510

    Article  Google Scholar 

  • Pasupuleti J, Pandey MK, Manohar SS, Variath MT, Nallathambi P, Nadaf HL, Sudini H, Varshney RK (2016) Foliar fungal disease-resistant introgression lines of groundnut (Arachis hypogaea L.) record higher pod and haulm yield in multilocation testing. Plant Breed 135:355–366

    Article  CAS  Google Scholar 

  • Pasupuleti J, Ramaiah V, Rathore A, Rupakula A, Reddy RK, Waliyar F, Nigam SN (2013) Genetic analysis of resistance to late leaf spot in interspecific groundnuts. Euphytica 193:13–25

    Article  CAS  Google Scholar 

  • Pensuk V, Jogloy S, Wongkaew S, Patanothai A (2004) Generation means analysis of resistance to peanut bud necrosis caused by peanut bud necrosis tospovirus in peanut. Plant Breed 123:90–92

    Article  Google Scholar 

  • Porterfield H, Murray K, Schlichting D, Chen X, Hansen K, Duncan M, Dreskin S (2009) Effector activity of peanut allergens: a critical role for Ara h 2, Ara h 6, and their variants. Clin Exp Allergy 39:1099–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad K, Bhatnagar-Mathur P, Narasu ML, Waliyar F, Sharma KK (2011) Transgenic approaches for improving fungal disease resistance in groundnut. Technol Spectr Rev 5(1):1–0

    Google Scholar 

  • Prasad K, Bhatnagar-Mathur P, Waliyar F, Sharma KK (2012) Overexpression of a chitinase gene in transgenic peanut confers enhanced resistance to major soil borne and foliar fungal pathogens. J Plant Biochem Biotechnol 22:222–233

    Article  Google Scholar 

  • Prasada Rao RDVJ, Reddy AS, Chakravarthy SK, Sastry KS, Reddy DVR, Ramanath, Moses JP (1989) Peanut stripe virus research in India. II. Peanut stripe coordinator meeting held at ICRISAT, Hyderabad, India;456(2)

    Google Scholar 

  • Qian L, Hickey LT, Stahl A, Werner CR, Hayes B, Snowdon RJ, Voss-Fels KP (2017) Exploring and harnessing haplotype diversity to improve yield stability in crops. Front Plant Sci 8:1534

    Article  PubMed  PubMed Central  Google Scholar 

  • Qin H, Feng S, Chen C, Guo Y, Knapp S, Culbreath A, He G, Wang ML, Zhang X, Holbrook CC, Ozias-Akins P (2012) An integrated genetic linkage map of cultivated peanut (Arachis hypogaea L.) constructed from two RIL populations. Theor Appl Genet 124:653–664

    Article  PubMed  Google Scholar 

  • Rago AM, Cazón LI, Paredes JA, Molina JPE, Conforto EC, Bisonard EM, Oddino C (2017) Peanut smut: from an emerging disease to an actual threat to argentine peanut production. Plant Dis 101:400–408

    Article  CAS  PubMed  Google Scholar 

  • Rajarathinam P, Palanisamy G, Narayana M, Alagirisamy M (2022) Marker assisted backcross to introgress late leaf spot and rust resistance in groundnut (Arachis hypogaea L.). Mol Biol Rep 31:1–9

    Google Scholar 

  • Ramakrishnan P, Manivannan N, Mothilal A, Mahaingam L, Prabhu R, Gopikrishnan P (2020) Marker assisted introgression of QTL region to improve late leaf spot and rust resistance in elite and popular variety of groundnut (Arachis hypogaea L.) cv TMV 2. Australas. Plant Pathol 105:105

    Google Scholar 

  • Rao SC, Bhatnagar-Mathur P, Kumar PL, Reddy AS, Sharma KK (2013) Pathogen-derived resistance using a viral nucleocapsid gene confers only partial non-durable protection in peanut against peanut bud necrosis virus. Arch Virol 158:133–143

    Article  CAS  PubMed  Google Scholar 

  • Rathod V, Hamid R, Tomar RS, Padhiyar S, Kheni J, Thirumalaisamy P, Munshi NS (2020a) Peanut (Arachis hypogaea) transcriptome revealed the molecular interactions of the defense mechanism in response to early leaf spot fungi (Cercospora arachidicola). Plant Gene 23:100243

    Article  CAS  Google Scholar 

  • Rathod V, Hamid R, Tomar RS, Patel R, Padhiyar S, Kheni J, Thirumalaisamy PP, Munshi NS (2020b) Comparative RNA-Seq profiling of a resistant and susceptible peanut (Arachis hypogaea) genotypes in response to leaf rust infection caused by Puccinia arachidis. 3 Biotech 10(6):1–5

    Article  Google Scholar 

  • Reddy LJ, Nigam SN, Moss JP, Singh AK, Subrahmanyam P, McDonald D, Reddy AG (1996) Registration of ICGV 86699 peanut germplasm line with multiple disease and insect resistance. Crop Sci 36:821

    Article  Google Scholar 

  • Reddy LJ, Nigam SN, Rao NR, Reddy NS (2001) Registration of ICGV 87354 peanut germplasm with drought tolerance and rust resistance. Crop Sci 41:274

    Article  Google Scholar 

  • Reddy LJ, Nigam SN, Subrahmanyam P, Reddy AG, McDonald D, Gibbons RW, Pentaiah V (1992) Registration of 'ICGV 87160′ peanut. Crop Sci 32(4):1075

    Article  Google Scholar 

  • Reddy LJ, Nigam SN, Subrahmanyam P, Reddy AG, McDonald D, Gibbons RW, Pentaiah V (1993) Registration of 'ICGV 86590′ peanut cultivar. Crop Sci 33:357–358

    Article  Google Scholar 

  • Ren W, Wang K, Liao P, Yang G, Zhao Y, Zhou Y (2016) The regulation of innate immunity by nutritional factors. Biomed Res Int 2016:5138706

    Article  PubMed  PubMed Central  Google Scholar 

  • Riaz A, Hickey LT (2017) Rapid phenoty** adult plant resistance to stem rust in wheat grown under controlled conditions. In: Wheat rust diseases. Humana Press, New York, NY, pp 183–196

    Chapter  Google Scholar 

  • Richard CA, Hickey LT, Fletcher S, Jennings R, Chenu K, Christopher JT (2015) High-throughput phenoty** of seminal root traits in wheat. Plant Methods 11(1):1–1

    Article  Google Scholar 

  • Rowell T, Mortley DG, Loretan PA, Bonsi CK, Hill WA (1999) Continuous daily light period and temperature influence peanut yield in nutrient film technique. Crop Sci 39(4):1111–1114

    Article  Google Scholar 

  • Sanders TH, Mixon AC (1978) Effect of peanut tannins on percent seed colonization and in vitro growth by aspergillus parasiticus. Mycopathologia 66:169–173

    Article  Google Scholar 

  • Scott JW, Somodi GC, Jones JB (1988) Bacterial spot resistance is not associated with bacterial wilt resistance in tomato. Proc Fla State Hort Soc 101:390–392

    Google Scholar 

  • Sharief Y, Rawlings JO, Gregory WC (1978) Estimates of leaf spot resistance in three interspecific hybrids of Arachis. Euphytica 27:741–751

    Article  Google Scholar 

  • Sharma S, Choudhary B, Yadav S, Mishra A, Mishra VK, Chand R, Chen C, Pandey SP (2021) Metabolite profiling identified pipecolic acid as an important component of peanut seed resistance against aspergillus flavus infection. J Hazard Mater 404:124155

    Article  CAS  PubMed  Google Scholar 

  • Sharma KK, Anjaiah V (2000) An efficient method for the production of transgenic plants of peanut (Arachis hypogaea L.) through agrobacterium tumefaciens-mediated genetic transformation. Plant Sci 159:7–19

    Article  CAS  PubMed  Google Scholar 

  • Shasidhar Y, Variath MT, Vishwakarma MK, Manohar SS, Gangurde SS, Sriswathi M, Sudini HK, Dobariya KL, Bera SK, Radhakrishnan T, Pandey MK, Janila P, Varshney RK (2020) Improvement of three Indian popular groundnut varieties for foliar disease resistance and high oleic acid using SSR markers and SNP array in marker-assisted backcrossing. Crop J 8:1–15

    Article  Google Scholar 

  • Shew BB, Wynne JC, Beute MK (1987) Field, microplot and green house evaluation of resistance to Sclerotium rolfsii in groundnut. Plant Dis 71:188–192

    Article  Google Scholar 

  • Shirasawa K, Bhat RS, Khedikar YP, Sujay V, Kolekar RM, Yeri SB, Sukruth M, Cholin S, Byregowda A, Pandey MK, Varshney RK, Gowda MVC (2018) Sequencing analysis of genetic loci for resistance for late leaf spot and rust in peanut (Arachis hypogaea L.). front. Plant Sci 9:1727

    Google Scholar 

  • Shokes FM, Weber Z, Gorbet DW, Pudelko HA, Taczanowski M (1998) Evaluation of peanut genotypes for resistance to southern stem rot using an agar disk technique. Peanut Sci 25:12–17

    Article  Google Scholar 

  • Simpson CE, Starr JL, Church GT et al (2003) Registration of ‘NemaTAM’ peanut. (registrations of cultivars). Crop Sci 43(4):1561–1562

    Article  Google Scholar 

  • Singh AK, Dwivedi SL, Pande S, Moss JP, Nigam SN et al (2003) Registration of rust and late leaf spot resistant peanut germplasm lines. Crop Sci 43:440–441

    Article  Google Scholar 

  • Singh AK, Mehan VK, Nigam SN (1997) Sources of resistance to groundnut fungal and bacterial disease: an update and appraisal. Information bulletin, no. 50. ICRISAT, Patencheru 502324, Andhra Pradesh, India, p 48

    Google Scholar 

  • Sinharoy S, DasGupta M (2009) RNA interference highlights the role of CCaMK in dissemination of endosymbionts in the Aeschynomeneae legume Arachis. Mol Plant-Microbe Interact 22:1466–1475

    Article  CAS  PubMed  Google Scholar 

  • Smith OD, Boswell TE, Grichar WJ, Simpson CE (1989) Reaction of select peanut (Arachis hypogaea L.) lines to southern stem rot and Pythium pod rot under varied disease pressure. Peanut Sci 16:9–14

    Article  Google Scholar 

  • Soni P, Gangurde SS, Ortega-Beltran A, Kumar R, Parmar S, Sudini HK, Lei Y, Ni X, Huai D, Fountain JC, Njoroge S (2020a) Functional biology and molecular mechanisms of host-pathogen interactions for aflatoxin contamination in groundnut (Arachis hypogaea L.) and maize (Zea mays L.). Front Microbiol 11:227

    Article  PubMed  PubMed Central  Google Scholar 

  • Soni P, Nayak SN, Kumar R, Pandey MK, Singh N, Sudini HK, Bajaj P, Fountain JC, Singam P, Hong Y, Chen X (2020b) Transcriptome analysis identified coordinated control of key pathways regulating cellular physiology and metabolism upon aspergillus flavus infection resulting in reduced aflatoxin production in groundnut. J Fungus 6(4):370

    Article  CAS  Google Scholar 

  • Soni P, Pandey AK, Nayak SN, Pandey MK, Tolani P, Pandey S, Sudini HK, Bajaj P, Fountain JC, Singam P, Guo B (2021) Global transcriptome profiling identified transcription factors, biological process, and associated pathways for pre-harvest aflatoxin contamination in groundnut. J Fungus 7(6):413

    Article  CAS  Google Scholar 

  • Stram DO, Seshan VE (2012) Multi-SNP haplotype analysis methods for association analysis. Methods Mol Biol 850:423–452

    Article  PubMed  Google Scholar 

  • Subrahmanyam P, Ghanekar AM, Nolt BL, Reddy DVR, McDonald D (1985a) Resistance to peanut diseases in wild Arachis species. In: Proceedings of international workshop cytogenet. Arachis, 31 Oct.–Nov. 1983. ICRISAT, Patancheru, India, pp 49–55

    Google Scholar 

  • Subrahmanyam P, McDonald D, Gibbons RW, Nigam SN, Nevill DJ (1982b) Resistance to rust and late leafspot diseases in some genotypes of Arachis hypogaea. Peanut Sci 9:6–10

    Article  Google Scholar 

  • Subrahmanyam P, McDonald D, Gibbons RW, Reddy LJ (1985b) Peanut rust: a major threat to peanut production in the semiarid tropics. Plant Dis 69:813–819

    Article  Google Scholar 

  • Subrahmanyam P, McDonald D, Gillons RW (1982a) Variation in Cercosporidium personatum symptoms on certain cultivars of Arachis hypogaea. Oleagineux 37:63–67

    Google Scholar 

  • Subrahmanyam P, McDonald D, Waliyar F, Reddy LJ, Nigam SN, Gibbons RW, Rao VR, Singh AK, Pande S, Reddy PM, Rao PS (1995) Screening methods and sources of resistance to rust and late leaf spot of groundnut. Information Bulletin no 47

    Google Scholar 

  • Subrahmanyam P, Van der Merwe PJ, Reddy LJ, Chiyembekeza AJ, Kimmins FM, Naidu RA (2000) Identification of elite short-duration, rosette resistant lines in world germplasm collections. Int Arachis Newsl 20:46–50

    Google Scholar 

  • Subrahmanyam P, Wongkaew S, Reddy DVR, Demski JW, McDonald D, Sharma SB, Smith DH (1992) Field diagnosis of groundnut diseases. ICRISAT information bulletin no. 36, Patancheru, AP

    Google Scholar 

  • Sudhakar P, Latha P, Babitha M, Reddy PV, Naidu PH (2007) Relationship of drought tolerance traits with aflatoxin contamination in groundnut. Indian J Plant Physiol 12:261

    CAS  Google Scholar 

  • Sujay V, Gowda MVC, Pandey MK, Bhat RS, Khedikar YP, Nadaf HL, Gautami B, Sarvamangala C, Lingaraju S, Radhakrishan T, Knapp SJ, Varshney RK (2012) Quantitative trait locus analysis and construction of consensus genetic map for foliar disease resistance based on two recombinant inbred line populations in cultivated groundnut (Arachis hypogaea L.). Mol Breed 32(2):773–788

    Article  Google Scholar 

  • Sujitkumar B (2015) Biochemical and molecular basis of innate and Pseudomonas fluorescens induced stem rot tolerance in groundnut (Arachis hypogaea L.). M.Sc (Biochemistry) thesis. Junagadh Agric Univ, Junagadh, India

    Google Scholar 

  • Sukand G, Kulkarni SR (2006) Studies on structural and biochemical mechanism of resistance in groundnut to Puccinia arachidis. Indian Phytopathol 59:323–328

    Google Scholar 

  • Sundaresha S, Kumar AM, Rohini S, Math S, Keshamma E, Chandrashekar S, Udayakumar M (2010) Enhanced protection against two major fungal pathogens of groundnut, Cercospora arachidicola and aspergillus flavus in transgenic groundnut over-expressing a tobacco β 1–3 glucanase. Eur J Plant Pathol 126:497–508

    Article  CAS  Google Scholar 

  • Swamy KM, Patil MS, Bhat RS, Bydgi AS (2015) Development of coat protein mediated resistance in Peanut plants against Peanut bud necrosis virus. J Mycol Plant Pathol 45(2):156–165

    Google Scholar 

  • Tallury SP, Hollowell JE, Isleib TG, Stalker HT (2014) Greenhouse evaluation of section Arachis wild species for Sclerotinia blight and Cylindrocladium black rot resistance. Peanut Sci 41:17–24

    Article  Google Scholar 

  • Tang W, Kuang J, Qiang S (2015) The pathogenicity of Sclerotium rolfsii on Cyperus difformis and its potential host specificity among the genus Cyperus. J Plant Pathol Microbiol 6(3):S3-002

    Google Scholar 

  • Thakur RP, Rao VP, Reddy SV, Ferguson M (2000) Evaluation of wild Arachis germplasm accessions for in vitro seed colonization and anatoxin production by aspergillus flavus. Int Arachis Newsl 20:44–46

    Google Scholar 

  • Turner RB, Lindsey DL, Davis DD, Bishop RD (1975) Isolation and identification of 5,7-Dimethoxyisoflavone, an inhibitor of aspergillus flavus from peanuts. Mycopathologia 57:39

    Article  CAS  PubMed  Google Scholar 

  • Upadhyaya HD, Nigam SN, Thakur RP (2002) Genetic enhancement for resistance to aflatoxin contamination in groundnut. In: Summary proceedings of the seventh ICRISAT regional groundnut meeting for Western and Central Africa, Cotonu, Benin, 6–8 December 2000. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India, pp 29–36

    Google Scholar 

  • Van der Merwe PJA, Subrahmanyam P, Kimmins FM, Willekens J (2001) Mechanisms of resistance to groundnut rosette. Int Arachis Newsl 21:43–46

    Google Scholar 

  • Vander Plank JE (1968) Disease resistance in plants. Academic Press, New York

    Google Scholar 

  • Variath MT, Janila P (2017) Economic and academic importance of peanut. In: The peanut genome, vol 7, p 26

    Google Scholar 

  • Varshney RK, Pandey MK, Pasupuleti J, Nigam SN, Sudini H, Gowda MVC, Sriswathi M, Radhakrishnan T, Manohar SS, Nagesh P (2014) Marker-assisted introgression of a QTL region to improve rust resistance in three elite and popular varieties of peanut (Arachis hypogaea L.). Theor Appl Genet 127:1771–1781

    Article  PubMed  PubMed Central  Google Scholar 

  • Vindhiyavarman P, Mohammed SE (2001) Release of foliar disease resistant groundnut cultivar VRI Gn 5 in Tamil Nadu. India Int Arachis Newsl 21:16–17

    Google Scholar 

  • Waliyar F, Hassan H, Bonkoungou S (1994) Sources of resistance to aspergillus flavus and aflatoxin contamination in groundnut genotypes in West Africa. Plant Dis 78:704–708

    Article  Google Scholar 

  • Waliyar F, Kumar K, Diallo M, Traore A, Mangala UN, Upadhyaya HD, Sudini H (2016) Resistance to pre-harvest aflatoxin contamination in ICRISAT’s groundnut mini core collection. Eur J Plant Pathol 145:901–913

    Article  CAS  Google Scholar 

  • Waliyar F, Kumar PL, Ntare BR, Monyo E, Nigam SN, Reddy AS, Osiru M, Diallo AT (2007) A century of research on groundnut rosette disease and its management. Information Bulletin no. 75

    Google Scholar 

  • Waliyar F, Sudini H (2012) ELISA: an inexpensive and highly precise tools for estimation of aflatoxins. International Crops Research Institute for the Semi-Arid Tropics

    Google Scholar 

  • Walkey DGA (1985) Control through resistant cultivars. In: Applied virology. Wiley, New York, pp 234–259

    Google Scholar 

  • Wang H, Lei Y, Wan L, Yan L, Lv J, Dai X, Ren X, Guo W, Jiang H, Liao B (2016) Comparative transcript profiling of resistant and susceptible peanut post-harvest seeds in response to aflatoxin production by aspergillus flavus. BMC Plant Biol 16(1):1–6

    Article  Google Scholar 

  • Wang YY, Wang CH, **a XM (1985) A preliminary study on inheritance of resistance to bacterial wilt in peanut. Oil Crops of China 4:15–17

    CAS  Google Scholar 

  • Wang T, Chen XP, Li HF, Liu HY, Hong YB, Yang QL, Chi XY, Yang Z, Yu SL, Li L (2013) Transcriptome identification of the resistance-associated genes (RAGs) to aspergillus flavus infection in pre-harvested peanut (Arachis hypogaea). Funct Plant Biol 40:292–303

    Article  CAS  PubMed  Google Scholar 

  • Wankhade AP, Chimote VP, Viswanatha KP, Yadaru S, Deshmukh DB, Gattu S, Sudini HK, Deshmukh MP, Shinde VS, Vemula AK, Pasupuleti J (2023) Genome-wide association map** for LLS resistance in a MAGIC population of groundnut (Arachis hypogaea L.). Theor Appl Genet 136(3):43–43

    Article  CAS  PubMed  Google Scholar 

  • Wankhade AP, Kadirimangalam SR, Viswanatha KP, Deshmukh MP, Shinde VS, Deshmukh DB, Pasupuleti J (2021) Variability and trait association studies for late leaf spot resistance in a groundnut MAGIC population. Agron J 11(11):2193

    CAS  Google Scholar 

  • Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds J, Rey MD, Hatta MAM (2018) Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants 4:23–29

    Article  PubMed  Google Scholar 

  • Whitaker TB, Dorner JW, Giesbrecht FG, Slate AB (2004) Variability among aflatoxin test results on runner peanuts harvested from small field plots. Peanut Sci 31(1):59–63

    Article  CAS  Google Scholar 

  • Whitaker TB, Dowell FE, Hagler WM, Giesbrecht FG, Wu J (1993) Variability associated with sampling, sample preparation, and chemically testing farmers stock peanuts for aflatoxin. J Assoc Off Anal Chem Int 77:107–116

    Google Scholar 

  • Wynne JC, Beute MK (1983) Registration of NC 8C peanut (Reg. No. 27). Crop Sci 23:183–184

    Article  Google Scholar 

  • Xu ZY, Zhang ZY (1987) Test of wild species of peanut for resistance to peanut mild mottle virus (in Chinese). Oil Crops China 4:91–93

    Google Scholar 

  • Xue HQ, Isleib TG, Payne GA, Wilson RF, Novitzky WP, O’Brian G (2003) Comparison of aflatoxin production in normal and high-oleic backcross-derived peanut lines. Plant Dis 87:1360–1365

    Article  CAS  PubMed  Google Scholar 

  • Xue HQ, Isleib TG, Stalker HT, Payne GA, OBrian G (2004) Evaluation of Arachis species and interspecific tetraploid lines for resistance to aflatoxin production by aspergillus flavus. Peanut Sci 31:134–141

    Article  CAS  Google Scholar 

  • Yeri SB, Kolekar RM, Motagi BN, Nadaf HL, Lingaraju S, Gowda MVC, Bhat RS (2014) Development of late leaf spot and rust tolerant genotypes from TMV 2 and JL 24 by marker assisted backcross breeding in groundnut AAGB 2014—7th international conference on advances in Arachis through Genomics & Biotechnology. Georgia, USA, p 45

    Google Scholar 

  • Yu B, Huai D, Huang L, Kang Y, Ren X, Chen Y, Zhou X, Luo H, Liu N, Chen W, Lei Y, Pandey MK, Sudini H, Varshney RK, Liao B, Jiang H (2019) Identification of genomic regions and diagnostic markers for resistance to aflatoxin contamination in peanut (Arachis hypogaea L.). BMC Genet 20(1):32

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Zhang J, He X, Wang Y, Ma X, Yin D (2017) Genome-wide association study of major agronomic traits to domestication in peanut. Front Plant Sci 8:1611

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Chu Y, Dang P, Tang Y, Li J, Jiang T, Clevenger JP, Ozias-Akins P, Holbrook C, Wang ML, Jacobson A (2019) Identification of potential genes for resistance to tomato spotted wilt and leaf spots in peanut (Arachis hypogaea L.) through GWAS analysis

    Book  Google Scholar 

  • Zhao Y, Zhang C, Chen H, Yuan M, Nipper R, Prakash CS, Zhuang W, He G (2016) QTL map** for bacterial wilt resistance in peanut (Arachis hypogaea L.). Mol Breed 36:13

    Article  PubMed  Google Scholar 

  • Zhao C, Zhao S, Hou L, **a H, Wang J, Li C, Li A, Li T, Zhang X, Wang X (2015) Proteomics analysis reveals differentially activated pathways that operate in peanut gynophores at different developmental stages. BMC Plant Biol 15:1–12

    Article  Google Scholar 

  • Zhao X, Li C, Yan C, Wang J, Yuan C, Zhang H, Shan S (2019) Transcriptome and proteome analyses of resistant preharvest peanut seed coat in response to aspergillus flavus infection. Electron J Biotechnol 39:82–90

    Article  CAS  Google Scholar 

  • Zongo A, Nana AT, Sawadogo M, Konate AK, Sankara P, Ntare BR, Desmae H (2017) Variability and correlations among groundnut populations for early leaf spot, pod yield, and agronomic traits. Agron J 7:52

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janila Pasupuleti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bangaru, K. et al. (2023). Next-Generation Crop Breeding Approaches for Improving Disease Resistance in Groundnut (Arachis hypogaea L.). In: Jha, U.C., Nayyar, H., Sharma, K.D., von Wettberg, E.J.B., Singh, P., Siddique, K.H. (eds) Diseases in Legume Crops. Springer, Singapore. https://doi.org/10.1007/978-981-99-3358-7_9

Download citation

Publish with us

Policies and ethics

Navigation