Role of Phenolics in Establishing Mycorrhizal Association in Plants for Management of Biotic Stress

  • Chapter
  • First Online:
Plant Phenolics in Biotic Stress Management

Abstract

Phenolic compounds are the most significant secondary metabolites produced by plants for the defense. Arbuscular mycorrhiza fungi (AMF), obligate symbionts, are the prominent one with an expanded host range and have an important role in designing ecosystems and associated productivity. Nearly up to 70% of the vascular plants are capable to form symbiotic association with AMF. AMF are primarily dependent on the host plant for photosynthates but offer much more benefit in return for the well-being of the host. Notably, they are able to modulate the tolerance of the host plant against various types of biotic stresses like fungi, bacterial, viral, phytopathogens, herbivores and nematodes. To protect themselves from the stress, plants have modified themselves with different sensory systems which can detect biotic invasion and combat the harm it causes to growth, productivity and survival. The establishment of AMF with the plants starts with the recognition of signal molecules or mostly phenolics. Among phenolics, flavonoids are the abundant compounds which are able to accelerate the development of AMF at micromolar concentrations. In addition, strigolactones molecules are also responsible for the germination of spore and growth of hyphae in fungi. The increase in phenolics compound concentrations is effective in inducing enhanced resistance against these biotic stress agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 213.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 267.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal AA (2011) Current trends in the evolutionary ecology of plant defence. Funct Ecol 25(2):420–432

    Article  Google Scholar 

  • Agrios GN (2005) Preface. In: Agrios GN (ed) Plant pathology, 5th edn. Academic, San Diego, CA

    Google Scholar 

  • Ahanger MA, Tyagi SR, Wani MR, Ahmad P (2014) Drought tolerance: role of organic osmolytes, growth regulators, and mineral nutrients. In: Ahmad P, Wani MR (eds) Physiological mechanisms and adaptation strategies in plants under changing environment, vol 1. Springer, New York, pp 25–55. https://doi.org/10.1007/978-1-4614-8591-9_2

    Chapter  Google Scholar 

  • Akhtar MS, Siddiqui ZA (2007) Glomus intraradices, Pseudomonas alcaligenes, and Bacillus pumilus: effective agents for the control of root-rot disease complex of chickpea (Cicer arietinum L.). J Gen Plant Pathol 74:53–60

    Article  Google Scholar 

  • Akhtar MS, Siddiqui ZA, Wiemken A (2010) Arbuscular mycorrhizal fungi and Rhizobium to control plant fungal diseases. In: Lichtfouse E (ed) Alternative farming systems, biotechnology, drought stress and ecological fertilisation, Sustainable agriculture reviews, vol 6. Springer, Dordrecht., pp 263–292

    Google Scholar 

  • Akiyama K, Matsuoka H, Hayashi H (2002) Isolation and identification of a phosphate deficiency induced C-glycosyl-flavonoid that stimulates arbuscular mycorrhiza formation in melon roots. Mol Plant Microbe Interact 15:334–340

    Article  CAS  PubMed  Google Scholar 

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  CAS  PubMed  Google Scholar 

  • Akiyama K, Tanigawa F, Kashihara T, Hayashi H (2010) Lupin pyranoisoflavones inhibiting hyphal development in arbuscular mycorrhizal fungi. Phytochemistry 71:1865–1871

    Article  CAS  PubMed  Google Scholar 

  • Alasalvar C, Grigor JM, Zhang D, Quantick PC, Shahidi F (2001) Comparison of volatiles, phenolics, sugars, antioxidant vitamins, and sensory quality of different colored carrot varieties. J Agric Food Chem 49:1410–1416

    Article  CAS  PubMed  Google Scholar 

  • Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P (2004) Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol 19(10):535–544

    Article  PubMed  Google Scholar 

  • Antunes PM, Goss MJ (2005) Communication in the tripartite symbiosis formed by arbuscular mycorrhizal fungi, Rhizobia and legume plants: a review. Am Soc Agron 48:199–122

    CAS  Google Scholar 

  • Antunes PM, de Variennes A, Rajcan I, Goss MJ (2006) Accumulation of specific flavonoids in soybean as a function of the early tripartite symbiosis with arbuscular mycorrhizal fungi and Bradyrhizobium japonicum. Soil Biol Biochem 38:1234–1242

    Article  CAS  Google Scholar 

  • Arimura GI, Matsui K, Takabayashi J (2009) Chemical and molecular ecology of herbivore-induced plant volatiles: proximate factors and their ultimate functions. Plant Cell Physiol 50(5):911–923

    Article  CAS  PubMed  Google Scholar 

  • Ashbolt NJ (2004) Microbial contamination of drinking water and disease outcomes in develo** regions. Toxicology 198(1):229–238

    Article  CAS  PubMed  Google Scholar 

  • Atilano RA, Menge JA, van Gundy SD (1981) Interactions between Meloidogyne arenaria and Glomus fassiculatus in grape. J Nematol 13:52–57

    CAS  PubMed  PubMed Central  Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681

    Article  CAS  PubMed  Google Scholar 

  • Bagyaraj DJ (1984) Biological interactions with mycorrhizal fungi. In: Powell CL, Bagyaraj DJ (eds) VA mycorrhiza. CRC Press, New York, pp 131–153

    Google Scholar 

  • Bai FW, Yan J, Qu ZC, Zhang HW, Xu J, Ye MM, Shen DL (2002) Phylogenetic analysis reveals that a dwarfing disease on different cereal crops in China is due to rice black streaked dwarf virus (RBSDV). Virus Gene 25(2):201–206

    Article  CAS  Google Scholar 

  • Bajaj R, Hu W, Huang Y, Chen S, Prasad R, Varma A, Bushley K (2015) The beneficial root endophyte Piriformospora indica reduces egg density of the soybean cyst nematode. Biol Control 90:193–199

    Article  Google Scholar 

  • Bajaj R, Prasad R, Varma A, Bushley KE (2017) The role of arbuscular mycorrhizal fungi and the mycorrhizal-like fungus Piriformospora indica in biocontrol of plant parasitic nematodes. In: Varma A, Prasad R, Tuteja N (eds) Mycorrhiza. Springer International Publishing AG, Cham, pp 43–56

    Google Scholar 

  • Balasubramanian N, Hao YJ, Toubarro D, Nascimento G, Simões N (2009) Purification, biochemical and molecular analysis of a chymotrypsin protease with prophenoloxidase suppression activity from the entomopathogenic nematode Steinernema carpocapsae. Int J Parasitol 39(9):975–984

    Article  CAS  PubMed  Google Scholar 

  • Balasundram N, Sundram K, Samman S (2006) Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem 99:191–203

    Article  CAS  Google Scholar 

  • Balemi T, Negisho K (2012) Management of soil phosphorus and plant adaptation mechanisms to phosphorus stress for sustainable crop production: a review. J Soil Sci Plant Nutr 12:547–562

    Google Scholar 

  • Baptista MJ, Siqueira JO (1994) Efeito de flavonoides na germinação de esporos e no crescimento assimbiótico do fungo micorrízico arbuscular Gigaspora gigantea. Rev Bras Fisiol Veg 6:127–134

    CAS  Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    Article  CAS  PubMed  Google Scholar 

  • Beckers GJM, Jaskiewicz M, Liu Y, Underwood WR, He SY, Zhang S, Conrath U (2009) Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. Plant Cell 21:944–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benaragama D, Shirtliffe SJ, Johnson EN, Duddu HSN, Syrovy LD (2016) Does yield loss due to weed competition differ between organic and conventional crop** systems? Weed Res 56(4):274–283

    Article  Google Scholar 

  • Benhamou N, Fortin JA, Hamel C, St Arnaud M, Shatilla A (1994) Resistance responses of mycorrhizal Ri T-DNA-transformed carrot roots to infection by Fusarium oxysporum f. sp. chrysanthemi. Phytopathology 84:958–968

    Article  CAS  Google Scholar 

  • Bertin C, Yang X, Weston A (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83

    Article  CAS  Google Scholar 

  • Bilgin DD, Zavala JA, Zhu JIN, Clough SJ, Ort DR, Delucia E (2010) Biotic stress globally downregulates photosynthesis genes. Plant Cell Environ 33(10):1597–1613

    Article  CAS  PubMed  Google Scholar 

  • Biondi EG, Reisinger SJ, Skerker JM, Arif M, Perchuk BS, Ryan KR, Laub MT (2006) Regulation of the bacterial cell cycle by an integrated genetic circuit. Nature 444:899–904

    Article  CAS  PubMed  Google Scholar 

  • Birkenbihl RP, Somssich IE (2011) Transcriptional plant responses critical for resistance towards necrotrophic pathogens. Front Plant Sci. https://doi.org/10.3389/fpls.2011.00076

  • Boller T, He SY (2009) Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324(5928):742–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48. https://doi.org/10.1038/ncomms1046

    Article  CAS  PubMed  Google Scholar 

  • Bouwmeester HJ, Matusova R, Zhongkui S, Beale MH (2003) Secondary metabolite signalling in host-parasitic plant interactions. Curr Opin Plant Biol 6:358–364

    Article  CAS  PubMed  Google Scholar 

  • Bowles TM, Barrios-Masias FH, Carlisle EA, Cavagnaro TR, Jackson LE (2016) Effects of arbuscular mycorrhizae on tomato yield, nutrient uptake, water relations, and soil carbon dynamics under deficit irrigation in field conditions. Sci Total Environ 566:1223–1234. https://doi.org/10.1016/j.scitotenv.2016.05.178

    Article  CAS  PubMed  Google Scholar 

  • Bravo L (1998) Polyphenols: chemistry ,dietary sources, metabolism and nutritional significance. Nutr Rev 56:317–333

    Article  CAS  PubMed  Google Scholar 

  • Bridge J (1996) Nematode management in sustainable and subsistence agriculture. Annu Rev Phytopathol 34(1):201–225

    Article  CAS  PubMed  Google Scholar 

  • Buee M, Rossignol M, Jauneau A, Ranjeva R, Becard G (2000) The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates. Mol Plant Microbe Interact 13:693–698

    Article  CAS  PubMed  Google Scholar 

  • Burger J, Darmency H, Granger S, Guyot SH, Messéan A, Colbach N (2015) Simulation study of the impact of changed crop** practices in conventional and GM maize on weeds and associated biodiversity. Agric Syst 137:51–63

    Article  Google Scholar 

  • Caarls L, Pieterse CM, Van Wees S (2015) How salicylic acid takes transcriptional control over jasmonic acid signaling. Front Plant Sci. https://doi.org/10.3389/fpls.2015.00170

  • Cameron DD, Neal AL, van Wees SC, Ton J (2013) Mycorrhiza induced resistance: more than the sum of its parts? Trends Plant Sci 18:539–545. https://doi.org/10.1016/j.tplants.2013.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campe R, Loehrer M, Conrath U, Goellner K (2014) Phakopsora pachyrhizi induces defense marker genes to necrotrophs in Arabidopsis thaliana. Physiol Mol Plant Pathol 87:1–8

    Article  CAS  Google Scholar 

  • Campos-Soriano L, García-Martínez J, Segundo BS (2012) The arbuscular mycorrhizal symbiosis promotes the systemic induction of regulatory defence-related genes in rice leaves and confers resistance to pathogen infection. Mol Plant Pathol 13:579–592

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Tian C, Li A, Qiu J (2012) Advances on molecular mechanisms of plant-pathogen interactions. Yi Chuan Hereditas 34:134–144. https://doi.org/10.3724/SP.J.1005.2012.00134

    Article  CAS  PubMed  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: sha** the evolution of the plant immune response. Cell 124(4):803–814

    Article  CAS  PubMed  Google Scholar 

  • Cobb NA (1917) The mononchs (Mononchus Bastian 1866), a genus of free-living predatory nematodes. Soil Sci 3:431–486

    Article  Google Scholar 

  • Collins NC, Thordal-Christensen H, Lipka V, Bau S (2003) SNARE-protein-mediated disease resistance at the plant cell wall. Nature (London) 425(6961):973–977

    Article  CAS  PubMed  Google Scholar 

  • Conrath U (2009) Priming of induced plant defense responses. In: Loon LCV (ed) Advances in botanical research. Academic, Burlington, MA, pp 361–395

    Chapter  Google Scholar 

  • Conrath U, Beckers GJM, Flors V, García-Agustín P, Jakab G, Mauch F, Newman MA, Pieterse CMJ, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L, MauchMani B (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 11:1017–1028

    Google Scholar 

  • Cordeiro MAS, Ferreira DA, Paulino HB, Souza CRF, Siqueira JO, Carneiro MAC (2015) Mycorrhization stimulant based in formononetin associated to fungicide and doses of phosphorus in soybean in the Cerrado. Biosci J 31:1062–1070

    Article  Google Scholar 

  • Cordier C, Pozo MJ, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (1998) Cell defense responses associated with localized and systemic resistance to Phytophthora induced in tomato by an arbuscular mycorrhizal fungus. Mol Plant Microbe Interact 11:1017–1028

    Article  CAS  Google Scholar 

  • Dass A, Shekhawat K, Choudhary AK, Sepat S, Rathore SS, Mahajan G, Chauhan BS (2016) Weed management in rice using crop competitiona review. Crop Prot 95:45–52

    Article  Google Scholar 

  • de la Peña E, Rodriguez-Echevarria S, van der Putten WH, Freitas H, Moens M (2006) Mechanism of control of root-feeding nematodes by mycorrhizal fungi in the dune grass, Ammophila arenaria. New Phytol 169:829–840

    Article  PubMed  Google Scholar 

  • De Vleesschauwer D, Xu J, Hãfte M, Höfte M (2014) Making sense of hormone-mediated defense networking: from rice to Arabidopsis. Front Plant Sci 5:1–15

    Article  Google Scholar 

  • Denison RF, Kiers ET (2011) Life histories of symbiotic rhizobia and mycorrhizal fungi. Curr Biol 21:775–785

    Article  Google Scholar 

  • Dorn KM, Fankhauser JD, Wyse DL, Marks MD (2013) De novo assembly of the pennycress (Thlaspi arvense) transcriptome provides tools for the development of a winter cover crop and biodiesel feedstock. Plant J 75(6):1028–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudareva N, Negre F, Nagegowda DA, Orlova I (2006) Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci 25(5):417–440

    Article  CAS  Google Scholar 

  • Duncan LW (2005) Nematode parasites of citrus. In: Luc M, Sikora RA (eds) Plant parasitic nematodes in subtropical and tropical agriculture. CABI Bioscience, Egham, UK. (Chapter 11)

    Google Scholar 

  • Durner J, Shah J, Klessig DF (1997) Salicylic acid and disease resistance in plants. Trends Plant Sci 2(7):266–274

    Article  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    Article  CAS  PubMed  Google Scholar 

  • El-Khallal SM (2007) Induction and modulation of resistance in tomato plants against Fusarium wilt disease by bioagent fungi (arbuscular mycorrhiza) and/or hormonal elicitors (Jasmonic acid & Salicylic acid): 2-Changes in the antioxidant enzymes, phenolic compounds and pathogen related-proteins. Aust J Basic Appl Sci 1:717–732

    CAS  Google Scholar 

  • Elsen A, Beeterens R, Swennen R, De Waele D (2003) Effects of an arbuscular mycorrhizal fungus and two plant-parasitic nematodes on Musa genotypes differing in root morphology. Biol Fertil Soils 38:367–376

    Article  Google Scholar 

  • Elsen A, Gervacio D, Swennen R, De Waele D (2008) AMF-induced biocontrol against plant parasitic nematodes in Musa sp.: a systemic effect. Mycorrhiza 18:251–256

    Article  CAS  PubMed  Google Scholar 

  • Etebu E, Nwauzoma AB (2014) A review on sweet orange (Citrus sinensis L Osbeck): health, diseases and management. Am J Res Commun 2(2):33–70

    Google Scholar 

  • Fereres A, Moreno A (2009) Behavioural aspects influencing plant virus transmission by homopteran insects. Virus Res 141(2):158–168

    Article  CAS  PubMed  Google Scholar 

  • Fernandes I, Alves A, Correia A, Devreese B, Esteves AC (2014) Secretome analysis identifies potential virulence factors of Diplodia corticola, a fungal pathogen involved in cork oak (Quercus suber) decline. Fung Biol 118(5):516–523

    Article  CAS  Google Scholar 

  • Ferraz L, Brown D (2002) An introduction to nematodes-plant nematology. Pensoft, Sofia

    Google Scholar 

  • Fiehn O (2002) Metabolomics the link between genotypes and phenotypes. Plant Mol Biol 48:155–171

    Article  CAS  PubMed  Google Scholar 

  • Filion M, St-Arnaud M, Jabaji-Hare SH (2003) Quantification of Fusarium solani f. sp phaseoli in mycorrhizal bean plants and surrounding mycorrhizosphere soil using real-time polymerase chain reaction and direct isolations on selective media. Phytopathology 93:229–235

    Article  CAS  PubMed  Google Scholar 

  • Filipjev IN, Schuurmans Stekhoven JH (1941) A manual of agricultural helminthology. Brill, Leiden, p 878

    Google Scholar 

  • Gachomo E, Allen JW, Pfeffer PE, Govindarajulu M, Douds DD, ** HR, Nagahashi G, Lammers PJ, Shachar-Hill Y, Bücking H (2009) Germinating spores of Glomus intraradices can use internal and exogenous nitrogen sources for de novo biosynthesis of amino acids. New Phytol 184:399–411

    Article  CAS  PubMed  Google Scholar 

  • Gagne-Bourgue F, Aliferis KA, Seguin P, Rani M, Samson R, Jabaji S (2013) Isolation and characterization of indigenous endophytic bacteria associated with leaves of switchgrass (Panicum virgatum L.) cultivars. J Appl Microbiol 114(3):836–853

    Article  CAS  PubMed  Google Scholar 

  • Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F, BarloyHubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dreano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thebault P, Vandenbol M, Vorholter FJ, Weidner S, Wells DH, Wong K, Yeh KC, Batut J (2001) The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293:668–672

    Article  CAS  PubMed  Google Scholar 

  • Gange AC, West HM (1994) Interactions between arbuscular mycorrhizal fungi and foliar-feeding insects in Plantago lanceolata L. New Phytol 128:79–87

    Article  CAS  PubMed  Google Scholar 

  • Gange AC, Brown VK, Aplin DM (2003) Multitrophic links between arbuscular mycorrhizal fungi and insect parasitoids. Ecol Lett 6:1051–1055

    Article  Google Scholar 

  • Genre A, Chabaud M, Timmers T, Bonfante P, Barker DG (2005) Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection. Plant Cell 17:3489–3499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • George C, Kohler J, Rillig MC (2016) Biochars reduce infection rates of the root-lesion nematode Pratylenchus penetrans and associated biomass loss in carrot. Soil Biol Biochem 95:11–18

    Article  CAS  Google Scholar 

  • Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530

    Article  PubMed  Google Scholar 

  • Gibson KE, Kobayashi H, Walker GC (2008) Molecular determinants of a symbiotic chronic infection. Annu Rev Genet 42:413–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giovannetti M, Avio L, Sbrana C (2010) Fungal spore germination and presymbiotic mycelial growth—physiological and genetic aspects. In: Koltai H, Kapulnik Y (eds) Arbuscular mycorrhizas: physiology and function. Springer, New York, pp 3–32

    Chapter  Google Scholar 

  • Goicoechea N, Garmendia I, Sánchez-Díaz M, Aguirreolea J (2010) Review. Arbuscular mycorrhizal fungi (AMF) as bioprotector agents against wilt induced by Verticillium spp. in pepper. Span J Agric Res 8(S1):S25–S42

    Article  Google Scholar 

  • Goodin MM, Zaitlin D, Naidu RA, Lommel SA (2008) Nicotiana benthamiana: its history and future as a model for plant–pathogen interactions. Mol Plant Microbe Interact 21(8):1015–1026

    Article  CAS  PubMed  Google Scholar 

  • Grabau ZJ, Maung ZTZ, Noyes DC, Baas DG, Werling BP, Brainard DC, Melakeberhan H (2017) Effects of cover crops on Pratylenchus penetrans and the nematode community in carrot production. J Nematol 49(1):114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham JH (2001) What do root pathogens see in mycorrhizas. New Phytol 148:357–359

    Article  Google Scholar 

  • Grant M, Lamb C (2006) Systemic immunity. Curr Opin Plant Biol 9:414–420

    Article  CAS  PubMed  Google Scholar 

  • Guenoune D, Galili S, Phillips DA, Volpin H, Chet I, Okon Y, Kapulnik Y (2001) The defense response elicited by the pathogen Rhizoctonia solani is suppressed by colonization of the AM-fungus Glomus intraradices. Plant Sci 160:925–932

    Article  CAS  PubMed  Google Scholar 

  • Guerrieri E, Lingua G, Digilio MC, Massa N, Berta G (2004) Do interactions between plant roots and the rhizosphere affect parasitoid behaviour? Ecol Entomol 29:753–756

    Article  Google Scholar 

  • Gworgwor NA, Weber HC (2003) Arbuscular mycorrhizal fungi–parasite–host interaction for the control of Striga hermonthica (Del.) Benth. in sorghum Sorghum bicolor (L.) Moench. Mycorrhiza 13:277–281

    Article  PubMed  Google Scholar 

  • Hajra N, Shahina F, Firoza K (2013) Biocontrol of root-knot nematode by arbuscular mycorrhizal fungi in Luffa cylindrica. Pak J Nematol 31:77–84

    Google Scholar 

  • Hammond-Kosack K, Jones JDG (2000) Responses to plant pathogens. Biochem Mol Biol Plants 1:1102–1156

    Google Scholar 

  • Hao Z, Fayolle L, van Tuinen D, Chatagnier O, Li X, Gianinazzi S, Gianinazzi-Pearson V (2012) Local and systemic mycorrhiza-induced protection against the ectoparasitic nematode **phinema index involves priming of defence gene responses in grapevine. J Exp Bot 63:3657–3672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harborne JB (1980) Plant phenolics. In: Bell EA, Charlwood BV (eds) Encyclopedia of plant physiology, Secondary plant products, vol 8. Springer, Berlin, pp 329–402

    Google Scholar 

  • Hare P (2011) Antimalarial fungal pesticide. Nat Biotechnol 29(4):330–331

    Google Scholar 

  • Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42

    Article  CAS  PubMed  Google Scholar 

  • Hartley SE, Gange AC (2009) Impacts of plant symbiotic fungi on insect herbivores: mutualism in a multitrophic context. Annu Rev Entomol 54:323–342

    Article  CAS  PubMed  Google Scholar 

  • Hasan N, Jain RK (1987) Parasitic nematodes and vesicular-arbuscular mycorrhizal (VAM) fungi associated with berseem (Trifolium alexandrinum L.) in the Bundelkhan region. Indian J Nematol 17:184–188

    Google Scholar 

  • Hassan S, Mathesius U (2012) The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions. J Exp Bot 63:3429–3444

    Article  CAS  PubMed  Google Scholar 

  • Hause B, Mrosk C, Isayenkov S, Strack D (2007) Jasmonates in arbuscular mycorrhizal interactions. Phytochemistry 68:101–110

    Article  CAS  PubMed  Google Scholar 

  • Haynes PA, Roberts TH (2007) Subcellular shotgun proteomics in plants: looking beyond the usual suspects. Proteomics 7(16):2963–2975

    Article  CAS  PubMed  Google Scholar 

  • Hearne SJ (2009) Control-the Striga conundrum. Pest Manag Sci 65:603–614

    Article  CAS  PubMed  Google Scholar 

  • Hijri M, Sanders IR (2005) Low gene copy number shows that arbuscular mycorrhizal fungi inherit genetically different nuclei. Nature 433:160–163

    Article  CAS  PubMed  Google Scholar 

  • Hiltner L (1904) Uber neure Erfahrungen und probleme auf dem gebeit der bodenbackteriologie und unter besonderer berucksichtigung der grundungung und brache. Arb Deut Landwirsch Ges 98:59–78

    Google Scholar 

  • Hussey RS, Roncadori RW (1982) Vesicular arbuscular mycorrhizal fungi may limit nematode activity and improve plant growth. Plant Dis 66:9–14

    Article  Google Scholar 

  • Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, Lindsley RC, Mermel CH (2014) Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 371:2488–2498

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaiti F, Meddich A, El Hadrami I (2007) Effectiveness of arbuscular mycorrhizal fungi in the protection of date palm (Phoenix dactylifera L.) against bayoud disease. Physiol Mol Plant Pathol 71:166–173

    Article  CAS  Google Scholar 

  • John A, Bai H (2004) Evaluation of VAM for management of root knot nematodes in Brinjal. Indian J Nematol 34:22–25

    Google Scholar 

  • Johns CD (2014) Agricultural application of mycorrhizal fungi to increase crop yields, promote soil health and combat climate change. Future Directions International. https://www.futuredirections.org.au/publication/agricultural-application-of-mycorrhizal-fungi-toincrease-crop-yields-promote-soil-health-and-combat-climate-change/. Accessed 11 Aug 2020

  • Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 38:651–664

    Article  CAS  PubMed  Google Scholar 

  • Kang KW, Lee SJ, Kim SG (2005) Molecular mechanism of nrf2 activation by oxidative stress. Antioxid Redox Signal 7(11–12):1664–1673

    Article  CAS  PubMed  Google Scholar 

  • Kantharaju V, Krishnappa K, Ravichandra NG, Karuna K (2005) Management of root-knot fungus, Glomus fasciculatum. Indian J Nematol 35:32–36

    Google Scholar 

  • Kaplan DT, Opperman CH (2000) Reproductive strategies and karyotype of the burrowing nematode, Radopholus similis. J Nematol 32(2):126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karban R (2010) Neighbors affect resistance to herbivory–a new mechanism. New Phytol 186(3):564–566

    Article  PubMed  Google Scholar 

  • Karban R (2011) The ecology and evolution of induced resistance against herbivores. Funct Ecol 25(2):339–347

    Article  Google Scholar 

  • Kerry BR (2000) Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annu Rev Phytopathol 38(1):423–441

    Article  CAS  PubMed  Google Scholar 

  • Kivlin SN, Hawkes CV, Treseder KK (2011) Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biol Biochem 43:2294–2303

    Article  CAS  Google Scholar 

  • Kloppholz S, Kuhn H, Requena N (2011) A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Curr Biol 21:1204–1209

    Article  CAS  PubMed  Google Scholar 

  • Kobra N, Jalil K, Youbert G (2009) Effects of three Glomus species as biocontrol agents against verticillium-induced wilt in cotton. J Plant Protect Res 49:185–189

    Article  Google Scholar 

  • Kofoid CA, White WA (1919) A new nematode infection of man. J Am Med Assoc 72:567–569

    Article  Google Scholar 

  • Koricheva J, Gange AC, Jones T (2009) Effects of mycorrhizal fungi on insect herbivores: a meta-analysis. Ecology 90:2088–2097

    Article  PubMed  Google Scholar 

  • Kosuta S, Chabaud M, Lougnon G, Gough C, Dénarie J, Barker DG, Bécard G (2003) A diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD11 expression in roots of Medicago truncatula. Plant Physiol 131:1–11

    Article  Google Scholar 

  • Kumari SMP, Prabina BJ (2019) Protection of Tomato, Lycopersicon esculentum from Wilt Pathogen, Fusarium oxysporum f.sp. lycopersici by Arbuscular Mycorrhizal Fungi, Glomus sp. Int J Curr Microbiol Appl Sci 8:1368–1378

    Article  CAS  Google Scholar 

  • Lamers J, Van Der Meer T, Testerink C (2020) How plants sense and respond to stressful environments. Plant Physiol 182:1624–1635. https://doi.org/10.1104/pp.19.01464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamovsek J, Urek G, Trdan S (2013) Biological control of root-knot nematodes (Meloidogyne spp.): microbes against the pests/BIOTIcNO ZATIRANJE OGORcIC KORENINSKIH SISK (Meloidogyne spp.): MIKROORGANIZMI PROTI SKODLJIVCEM. Acta Agric Slov 101(2):263

    Article  Google Scholar 

  • Laparre J, Malbreila M, Letissec F, Portaisc JC, Rouxa C, Bécarda G, Puech-Pagésa V (2014) Combining metabolomics and gene expression analysis reveals that propionyl- and butyryl carnitines are involved in late stages of arbuscular mycorrhizal symbiosis. Mol Plant 7:554–566

    Article  CAS  PubMed  Google Scholar 

  • Larose G, Chênevert R, Moutoglis P, Gagné S, Piché Y, Vierheilig H (2002) Flavonoid levels in roots of Medicago sativa are modulated by the developmental stage of the symbiosis and the root colonizing arbuscular mycorrhizal fungus. J Plant Physiol 159:1329–1339

    Article  CAS  Google Scholar 

  • Lattanzio V (2013) Phenolic compounds: introduction. In: Ramawat KG, Merillon JM (eds) Natural products. Springer, Berlin. https://doi.org/10.1007/978-3-642-22144-6_57

    Chapter  Google Scholar 

  • Lattanzio V, Lattanzio VM, Cardinali A (2006) Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochem Adv Res 661:23–67

    Google Scholar 

  • Lee CW, Efetova M, Engelmann JC, Kramell R, Wasternack C, Ludwig-Müller J, Deeken R (2009) Agrobacterium tumefaciens promotes tumor induction by modulating pathogen defense in Arabidopsis thaliana. Plant Cell 21(9):2948–2962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lendzemo VW, Kuyper TW, Kropff MJ, van Ast A (2005) Field inoculation with arbuscular mycorrhizal fungi reduces Striga hermonthica performance on cereal crops and has the potential to contribute to integrated Striga management. Field Crop Res 91:51–61

    Article  Google Scholar 

  • Lendzemo VW, Van Ast A, Kuyper TW (2006) Can arbuscular mycorrhizal fungi contribute to Striga management on cereals in Africa? Outlook Agric 35:307–311

    Article  Google Scholar 

  • Lendzemo VW, Kuyper TW, Matusova R, Bouwmeester HJ, van Ast A (2007) Colonization by arbuscular mycorrhizal fungi of sorghum leads to reduced germination and subsequent attachment and emergence of Striga hermonthica. Plant Behav 2:58–62

    Article  Google Scholar 

  • Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16(2):319–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li HY, Yang GD, Shu HR, Yang YT, Ye BX, Nishida I, Zheng CC (2006) Colonization by the arbuscular mycorrhizal fungus Glomus versiforme induces a defense response against the rootknot nematode Meloidogyne incognita in the grapevine (Vitis amurensis Rupr.), which includes transcriptional activation of the class III chitinase gene VCH3. Plant Cell Physiol 47:154–163

    Article  CAS  PubMed  Google Scholar 

  • Li AR, Smith SE, Smith FA, Guan KY (2012) Inoculation with arbuscular mycorrhizal fungi suppresses initiation of haustoria in the root hemiparasite Pedicularis tricolor. Ann Bot 109:1075–1080

    Article  PubMed  PubMed Central  Google Scholar 

  • Li AR, Guan KY, Stonor R, Smith SE, Smith FA (2013) Direct and indirect influences of arbuscular mycorrhizal fungi on phosphorus uptake by two root hemiparasitic Pedicularis species: do the fungal partners matter at low colonization levels? Ann Bot 112:1089–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Limpens E, van Zeijl A, Geurts R (2015) Lipochitooligosaccharides modulate plant host immunity to enable endosymbioses. Annu Rev Phytopathol 53:311–334

    Article  CAS  PubMed  Google Scholar 

  • Lira MA Jr, Nascimento LRS, Fracetto GGM (2015) Legume-rhizobia signal exchange: promiscuity and environmental effects. Front Microbiol 6:945. https://doi.org/10.3389/fmicb.2015.00945

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J, Maldonado-Mendoza I, Lopez-Meyer M, Cheung F, Town CD, Harrison MJ (2007) Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J 50:529–544

    Article  CAS  PubMed  Google Scholar 

  • Loon LCV, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • López-Ráez JA, Charnikhova T, Mulder P, Kohlen W, Bino R, Levin I, Bouwmeester H (2008) Susceptibility of the tomato mutant high pigment-2dg (hp-2dg) to Orobanche spp infection. J Agric Food Chem 56:6326–6332

    Article  PubMed  Google Scholar 

  • López-Ráez JA, Matusova R, Cardoso C, Jamil M, Charnikhova T, Kohlen W, Verstappen F, Ruyter-Spira C, Bouwmeester HJ (2009) Strigolactones: ecological significance and use as a target for parasitic plant control. Pest Manag Sci 64:471–477

    Article  Google Scholar 

  • López-Ráez JA, Verhage A, Fernández I, García JM, Azcón-Aguilar C, Flors V, Pozo MJ (2010a) Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway. J Exp Bot 61:2589–2601

    Article  PubMed  PubMed Central  Google Scholar 

  • López-Ráez JA, Flors V, García JM, Pozo MJ (2010b) AM symbiosis alters phenolic acid content in tomato roots. Plant Signal Behav 5:1138–1140

    Article  PubMed  PubMed Central  Google Scholar 

  • Louarn J, Carbonne F, Delavault P, Becard G, Rochange S (2012) Reduced germination of Orobanche cumana seeds in the presence of arbuscular mycorrhizal fungi or their exudates. PLoS One 7(11):e49273. https://doi.org/10.1371/journal.pone.0049273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maillet F, Poinsot V, Andre O, Puech-Pages V, Haouy A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel A, Martinez EA, Driguez H, Bécard G, Dénarié J (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469:58–64

    Article  CAS  PubMed  Google Scholar 

  • Mandal SM, Chakraborty D, Dey S (2010) Phenolic acids act as signaling molecules in plantmicrobe symbioses. Plant Signal Behav 5:359–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mang HG, Laluk KA, Parsons EP, Kosma DK, Cooper BR, Park HC, Chilosi G (2009) The Arabidopsis RESURRECTION1 gene regulates a novel antagonistic interaction in plant defense to biotrophs and necrotrophs. Plant Physiol 151(1):290–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mann RS, Ali JG, Hermann SL, Tiwari S, Pelz-Stelinski KS, Alborn HT, Stelinski LL (2012) Induced release of a plant-defense volatile ‘deceptively’ attracts insect vectors to plants infected with a bacterial pathogen. PLoS Pathog 8(3):111–124

    Article  Google Scholar 

  • Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Toth IAN (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 13(6):614–629

    Article  PubMed  PubMed Central  Google Scholar 

  • Marro N, Paola L, Cabello M, Doucet ME, Becerra AG (2014) Use of the arbuscular mycorrhizal fungus Glomus intraradices as biological control agent of the nematode Nacobbus aberrans parasitizing tomato. Braz Arch Biol Technol 57:668–674

    Article  Google Scholar 

  • Matthews BF, Beard H, MacDonald MH, Kabir S, Youssef RM, Hosseini P, Brewer E (2013) Engineered resistance and hypersusceptibility through functional metabolic studies of 100 genes in soybean to its major pathogen, the soybean cyst nematode. Planta 237(5):1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald BA, Linde C (2002) The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica 124(2):163–180

    Article  CAS  Google Scholar 

  • Meixner C, Ludwig-Müller J, Miersch O, Gresshoff P, Staehelin C, Vierheilig H (2005) Lack of mycorrhizal autoregulation and phytohormonal changes in the supernodulating soybean mutant nts1007. Planta 222:709–715

    Article  CAS  PubMed  Google Scholar 

  • Messinese E, Mun JH, Yeun LH, Jayaraman D, Rougé P, Barre A, Lougnon G, Schornack S, Bono JJ, Cook DR, Ané JM (2007) A novel nuclear protein interacts with the symbiotic DMI3 calcium- and calmodulin-dependent protein kinase of Medicago truncatula. Mol Plant Microbe Interact 20:912–921

    Article  CAS  PubMed  Google Scholar 

  • Miedes E, Vanholme R, Boerjan W, Molina A (2015) The role of the secondary cell wall in plant resistance to pathogens. Plant Cell Wall Pathog Parasit Symb 78:213–221

    Google Scholar 

  • Miranda M, Ralph SG, Mellway R, White R, Heath MC, Bohlmann J, Constabel CP (2007) The transcriptional response of hybrid poplar (Populus trichocarpa × P. deltoids) to infection by Melampsora medusae leaf rust involves induction of flavonoid pathway genes leading to the accumulation of proanthocyanidins. Mol Plant Microbe Interact 20(7):816–831

    Article  CAS  PubMed  Google Scholar 

  • Mitra RM, Gleason CA, Edwards A, Hadfield J, Downie JA, Oldroyd GED, Long SR (2004) A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development: gene identification by transcript-based cloning. Proc Natl Acad Sci U S A 101:4701–4705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammadi K, Khalesro S, Sohrabi Y, Heidari G (2011) A review: Beneficial effects of the mycorrhizal fungi for plant growth. J Appl Environ Biol Sci 1:310–319

    Google Scholar 

  • Monaghan J, Zipfel C (2012) Plant pattern recognition receptor complexes at the plasma membrane. Curr Opin Plant Biol 15:349–357

    Article  CAS  PubMed  Google Scholar 

  • Morandi D, Gianinazzi-Pearson V (1986) Influence of mycorrhiza and phosphate nutrition on secondary metabolite contents of soybean roots. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA, Paris, pp 787–791

    Google Scholar 

  • Morandi D, Bailey JA, Gianinazzi-Person V (1984) Isoflavonoid accumulation in soybean roots infected with vesicular-Arbuscular mycorrhizal fungi. Physiol Plant Pathol 24:357–364

    Article  CAS  Google Scholar 

  • Morandi D, Le Signor C, Gianinazzi-Pearson V, Duc G (2009) A Medicago truncatula mutant hyper-responsive to mycorrhiza and defective for nodulation. Mycorrhiza 19:435–441

    Article  PubMed  Google Scholar 

  • Mukherjee A, Ané JM (2011) Germinating spore exudates from arbuscular mycorrhizal fungi: molecular and developmental responses in plants and their regulation by ethylene. Mol Plant Microbe Interact 24:260–270

    Article  CAS  PubMed  Google Scholar 

  • Nagy PD (2008) Recombination in plant RNA viruses. In: Plant virus evolution, vol 26. Springer, Berlin, pp 133–156

    Chapter  Google Scholar 

  • Nair MG, Safir GR, Siqueira JO (1991) Isolation and identification of vesicular-arbuscular mycorrhiza-stimulatory compounds from clover (Trifolium repens) roots. Appl Environ Microbiol 57:434–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakmee PS, Techapinyawat S, Ngamprasit S (2016) Comparative potentials of native arbuscular mycorrhizal fungi to improve nutrient uptake and biomass of Sorghum bicolor Linn. Agric Nat Resour 50:173–178

    CAS  Google Scholar 

  • Navazio L, Moscatiello R, Genre A, Novero M, Baldan B, Bonfante P, Mariani P (2007) A diffusible signal from arbuscular mycorrhizal fungi elicits a transient cytosolic calcium elevation in host plant cells. Plant Physiol 144:673–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nejat N, Mantri N (2017) Plant immune system: crosstalk between responses to biotic and abiotic stresses the missing link in understanding plant defence. Curr Issues Mol Biol 23:1–16. https://doi.org/10.21775/cimb.023.001

    Article  PubMed  Google Scholar 

  • Nguvo KJ, Gao X (2019) Weapons hidden underneath: bio-control agents and their potentials to activate plant induced systemic resistance in controlling crop Fusarium diseases. J Plant Dis Prot 126:177–190

    Article  Google Scholar 

  • Nicholson RL, Hammerschmidt R (1992) Phenolic compounds and their role in disease resistance. Annu Rev Phytopathol 30:369–389

    Article  CAS  Google Scholar 

  • Nicol JM, Rivoal R (2008) Global knowledge and its application for the integrated control and management of nematodes on wheat. Integr Manag Biocontrol Veg Grain Crops Nematodes 2:251–294

    Article  Google Scholar 

  • Nicol JM, Turner SJ, Coyne DL, Den-Nijs L, Hockland S, Maafi ZT (2011) Current nematode threats to world agriculture. In: Genomics and molecular genetics of plant-nematode interactions, vol 45. Springer, Netherlands, pp 21–43

    Chapter  Google Scholar 

  • Noe JP (2004) Plant-parasitic nematodes. In: Trigiano RN (ed) Plant pathology: concepts and laboratory exercises. CRC Press

    Google Scholar 

  • Nogales A, Aguirreolea J, Santa María E, Camprubí A, Calvet C (2009) Response of mycorrhizal grapevine to Armillaria mellea inoculation: disease development and polyamines. Plant Soil 31:177–187

    Article  Google Scholar 

  • Norman JR, Hooker JE (2000) Sporulation of Phytophthora fragariae shows greater stimulation by exudates of non-mycorrhizal than by mycorrhizal strawberry roots. Mycol Res 104:1069–1073

    Article  Google Scholar 

  • Norman J, Atkinson D, Hooker J (1996) Arbuscular mycorrhizal fungal-induced alteration to root architecture in strawberry and induced resistance to the root pathogen Phytophthora fragariae. Plant Soil 185:191–198

    Article  CAS  Google Scholar 

  • Ozgonen H, Erkilic A (2007) Growth enhancement and Phytophthora blight (Phytophthora capsici Leonian) control by arbuscular mycorrhizal fungal inoculation in pepper. Crop Prot 26:1682–1688

    Article  Google Scholar 

  • Pande S, Siddique KHM, Kishore GK, Bayaa B, Gaur PM, Gowda CLL, Crouch JH (2005) Ascochyta blight of chickpea (Cicer arietinum L.): a review of biology, pathogenicity, and disease management. Crop Past Sci 56(4):317–332

    Article  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Genet 6:763–775

    Article  CAS  Google Scholar 

  • Pastor V, Luna E, Mauch-Mani B, Ton J, Flors V (2012) Primed plants do not forget. Environ Exp Bot. https://doi.org/10.1016/j.envexpbot.2012.02.013

  • Paszkowski U (2006) Mutualism and parasitism: the yin and yang of plant symbioses. Curr Opin Plant Biol 9:364–370

    Article  PubMed  Google Scholar 

  • Paterson E, Sim A, Davidson J, Daniell TJ (2016) Arbuscular mycorrhizal hyphae promote priming of native soil organic matter mineralization. Plant Soil 408:243–C254. https://doi.org/10.1007/s11104-016-2928-8

    Article  CAS  Google Scholar 

  • Peck S, Mittler R (2020) Plant signaling in biotic and abiotic stress. J Exp Bot 71:1649–1651. https://doi.org/10.1093/jxb/eraa051

    Article  CAS  PubMed  Google Scholar 

  • Peña-Cortés H, Barrios P, Dorta F, Polanco V, Sánchez C, Sánchez E, Ramírez I (2004) Involvement of jasmonic acid and derivatives in plant response to pathogen and insects and in fruit ripening. J Plant Growth Regul 23:246–260

    Google Scholar 

  • Pereira A (2016) Plant abiotic stress challenges from the changing environment. Front Plant Sci 7:1123

    Article  PubMed  PubMed Central  Google Scholar 

  • Petutschnig EK, Jones AM, Serazetdinova L, Lipka U, Lipka V (2010) The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitinbinding protein in Arabidopsis thaliana and subject to chitin induced phosphorylation. J Biol Chem 285(37):28902–28911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieterse CMJ, Van Wees SCM, Van Pelt JA, Knoester M, Laan R, Gerrits H, Weisbeek PJ, Van Loon LC (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571–1580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinior A, Wyss U, Piché Y, Vierheilig H (1999) Plants colonized by AM fungi regulate further root colonization by AM fungi through altered root exudation. Can J Bot 77:891–897

    Google Scholar 

  • Pinochet J, Calvet C, Camprubi A, Fernandez C (1996) Interactions between migratory endoparasitic nematodes and arbuscular mycorrhizal fungi in perennial crops – a review. Plant Soil 185:183–190

    Article  CAS  Google Scholar 

  • Pitzschke A, Schikora A, Hirt H (2009) MAPK cascade signalling networks in plant defence. Curr Opin Plant Biol 12(4):421–426

    Article  CAS  PubMed  Google Scholar 

  • Pivato B, Gamalero E, Lemanceau P, Berta G (2008) Colonization of adventitious roots of Medicago truncatula by Pseudomonas fluorescens C7R12 as affected by arbuscular mycorrhiza. FEMS Microbiol Lett 289:173–180

    Article  CAS  PubMed  Google Scholar 

  • Povero G, Loreti E, Pucciariello C, Santaniello A, Di Tommaso D, Di Tommaso G, Perata P (2011) Transcript profiling of chitosan-treated Arabidopsis seedlings. J Plant Res 124(5):619–629

    Article  CAS  PubMed  Google Scholar 

  • Pozo MJ, Azcón-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    Article  CAS  PubMed  Google Scholar 

  • Pozo MJ, Azcón-Aguilar C, Dumas-Gaudot E, Barea JM (1999) β-1,3-Glucanase activities in tomato roots inoculated with arbuscular mycorrhizal fungi and/or Phytophthora parasitica and their possible involvement in bioprotection. Plant Sci 141:149–157

    Article  CAS  Google Scholar 

  • Pozo MJ, Cordier C, Dumas-Gaudot E, Gianinazzi S, Barea JM, Azcón-Aguilar C (2002) Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. J Exp Bot 53:525–534

    Article  CAS  PubMed  Google Scholar 

  • Pozo MJ, Van Der Ent S, Van Loon LC, Pieterse CMJ (2008) Transcription factor MYC2 is involved in priming for enhanced defense during rhizobacteria-induced systemic resistance in Arabidopsis thaliana. New Phytol 180:511–523

    Article  CAS  PubMed  Google Scholar 

  • Pozo MJ, Verhage A, García-Andrade J, García JM, Azcón-Aguilar C (2009) Priming plant defence against pathogens by arbuscular mycorrhizal fungi. In: Azcón-Aguilar C, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (eds) Mycorrhizas—functional processes and ecological impact. Springer, Berlin, pp 123–135

    Chapter  Google Scholar 

  • Pozo MJ, Jung SC, López-Ráez JA, Azcón-Aguilar C (2010) Impact of arbuscular mycorrhizal symbiosis on plant response to biotic stress: the role of plant defence mechanisms. In: Kapulnick Y, Douds DD (eds) Arbuscular mycorrhizas: physiology and function. Springer, Dordrecht, pp 193–207

    Chapter  Google Scholar 

  • Prins M, Laimer M, Noris E, Schubert J, Wassenegger M, Tepfer M (2008) Strategies for antiviral resistance in transgenic plants. Mol Plant Pathol 9(1):73–83

    Article  CAS  PubMed  Google Scholar 

  • Prinsen E, Chauvaux N, Schmidt J, John M, Wieneke U, De Greef J, Schell J, Van Onckelen H (1991) Stimulation of indole-3-acetic acid production in rhizobium by flavonoids. FEBS Lett 282:53–55

    Article  CAS  PubMed  Google Scholar 

  • Purcell AH, Hopkins DL (1996) Fastidious xylem-limited bacterial plant pathogens. Annu Rev Phytopathol 34(1):131–151

    Article  CAS  PubMed  Google Scholar 

  • Ramamoorthy V, Viswanathan R, Raguchander T, Prakasam V, Samiyappan R (2001) Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Prot 20(1):1–11

    Article  CAS  Google Scholar 

  • Ramegowda V, Senthil-Kumar M (2015) The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. J Plant Physiol 176:47–54

    Article  CAS  PubMed  Google Scholar 

  • Ramesh K, Rao AN, Chauhan BS (2017) Role of crop competition in managing weeds in rice, wheat, and maize in India: a review. Crop Prot 95:14–21

    Article  Google Scholar 

  • Randhir R, Lin Y-T, Shetty K (2004) Phenolics, their antioxidant and antimicrobial activity in dark germinated fenugreek sprouts in response to peptide and phytochemical elicitors. Asia Pac J Clin Nutr 13:295–307

    CAS  PubMed  Google Scholar 

  • Reddy N, Raghavender CR, Sreevani A (2006) Approach for enhancing Mycorrhiza mediated disease resistance of tomato dam**-off. Indian Phytopathol 59(3):299–304

    Google Scholar 

  • Reddy DVR, Sudarshana MR, Fuchs M, Rao NC, Thottappilly G (2009) Genetically engineered virus-resistant plants in develo** countries: status and future prospects. Adv Virus Res 75:185–220

    Article  CAS  PubMed  Google Scholar 

  • Rejeb IB, Pastor V, Mauch-Mani B (2014) Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plants 3:458–475. https://doi.org/10.3390/plants3040458

    Article  PubMed  PubMed Central  Google Scholar 

  • Requena N, Serrano E, Ocón A, Breuninger M (2007) Plant signals and fungal perception during arbuscular mycorrhizal establishment. Phytochemistry 68:33–40

    Article  CAS  PubMed  Google Scholar 

  • Riely BK, Lougnon G, Ané JM, Cook DR (2007) The symbiotic ion channel homolog DMI1 is localized in the nuclear membrane of Medicago truncatula roots. Plant J 49:208–216

    Article  CAS  PubMed  Google Scholar 

  • Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696. https://doi.org/10.1104/pp.103.033431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robards R, Antolovich M (1997) Analytical chemistry of fruit bioflavonoids. A review. Analyst 122:11R–34R

    Article  CAS  Google Scholar 

  • Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F et al (2008) Stress tolerance in plants via habitat-adapted symbiosis. Int Soc Microb Ecol 2:404–416. https://doi.org/10.1038/ismej.2007.106

    Article  Google Scholar 

  • Rouphael Y, Franken P, Schneider C, Schwarz D, Giovannetti M, Agnolucci M (2015) Arbuscular mycorrhizal fungi act as bio-stimulants in horticultural crops. Sci Hort 196:91–108. https://doi.org/10.1016/j.scienta.2015.09.002

    Article  Google Scholar 

  • Rumbou A, von Bargen S, Büttner C (2009) A model system for plant-virus interaction—infectivity and seed transmission of Cherry leaf roll virus (CLRV) in Arabidopsis thaliana. Eur J Plant Pathol 124(3):527–532

    Article  CAS  Google Scholar 

  • Safdar A, Javed N, Khan SA, Safdar H, Haq IU, Abbas H, Ullah Z (2013) Synergistic effect of a fungus, Fusarium semitectum, and a nematode, Tylenchulus semipenetrans, on citrus decline. Pak J Zool 45(3):643–651

    Google Scholar 

  • Saijo Y, Loo EPI (2020) Plant immunity in signal integration between biotic and abiotic stress responses. New Phytol 225:87–104. https://doi.org/10.1111/nph.15989

    Article  PubMed  Google Scholar 

  • Salam EA, Alatar A, El-Sheikh MA (2017) Inoculation with arbuscular mycorrhizal fungi alleviates harmful effects of drought stress on damask rose. Saudi J Biol Sci 25(8):1772–1780. https://doi.org/10.1016/j.sjbs.2017.10.015

    Article  PubMed  PubMed Central  Google Scholar 

  • Sankaranarayanan C, Sundarababu R (1994) Interaction of Glomus fasciculatum with Meloidogyne incognita inoculated at different timings on blackgram (Vigna mungo). Nematol Medit 22:35–36

    Google Scholar 

  • Santamaria ME, Martínez M, Cambra I, Grbíc V, Diaz I (2013) Understanding plant defence responses against herbivore attacks: an essential first step towards the development of sustainable resistance against pests. Transgenic Res 22:697–708

    Article  CAS  PubMed  Google Scholar 

  • Santi MM, Dipjyoti C, Satyahari D (2010) Phenolic acids act as signaling molecules in plantmicrobe symbioses. Plant Signal Behav 5(4):359–368

    Article  Google Scholar 

  • Sardana V, Mahajan G, Jabran K, Chauhan BS (2017) Role of competition in managing weeds: an introduction to the special issue. Crop Prot 95:1–7

    Article  Google Scholar 

  • Sato K, Naito M, Yukitake H, Hirakawa H, Shoji M, McBride MJ, Nakayama K (2010) A protein secretion system linked to bacteroidete gliding motility and pathogenesis. Proc Natl Acad Sci 107(1):276–281

    Article  CAS  PubMed  Google Scholar 

  • Scervino JM, Ponce MA, Erra-Bassells R, Vierheilig H, Ocampo JA, Godeas A (2005a) Arbuscular mycorrhizal colonization of tomato by Gigaspora and Glomus species in the presence of root flavonoids. J Plant Physiol 162:625–633

    Article  CAS  PubMed  Google Scholar 

  • Scervino JM, Ponce MA, Erra-Bassells R, Vierheilig H, Ocampo JA, Godeas A (2005b) Flavonoids exhibit fungal species and genus specific effects on the presymbiotic growth of Gigaspora and Glomus. Mycol Res 109:789–794

    Article  CAS  PubMed  Google Scholar 

  • Scervino JM, Ponce MA, Erra-Bassells R, Bornpadre J, Vierheilig H, Ocampo JA, Godeas A (2007) The effect of flavones and flavonols on colonization of tomato plants by arbuscular mycorrhizal fungi of the genera Gigaspora and Glomus. Can J Microbiol 53:702–709

    Article  CAS  PubMed  Google Scholar 

  • Schellenbaum L, Berta G, Ravolanirina F, Tisserant B, Gianinazzi S, Fitter AH (1991) Influence of endomycorrhizal infection on root morphology in a micropropagated woody plant species (Vitis vinifera L.). Ann Bot 68:135–141

    Article  Google Scholar 

  • Schliemann W, Ammer C, Strack D (2008) Metabolite profiling of mycorrhizal roots of Medicago truncatula. Phytochemistry 69:112–146

    Article  CAS  PubMed  Google Scholar 

  • Schulze-Lefert P, Vogel J (2000) Closing the ranks to attack by powdery mildew. Trends Plant Sci 5(8):343–348

    Article  CAS  PubMed  Google Scholar 

  • Schumann GL, D’Arcy CJ (2010) Essential plant pathology. American Phytopathological Society (APS Press), St. Paul, MI

    Google Scholar 

  • Schüβler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Searle IR, Men AE, Laniya TS, Buzas DM, Iturbe-Ormaetxe I, Carroll BJ, Gresshoff PM (2003) Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase. Science 299:109–112

    Article  CAS  PubMed  Google Scholar 

  • Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14(1):43–50

    Article  CAS  PubMed  Google Scholar 

  • Sharma SK, Bryan GJ, Winfield MO, Millam S (2007) Stability of potato (Solanum tuberosum L.) plants regenerated via somatic embryos, axillary bud proliferated shoots, microtubers and true potato seeds: a comparative phenotypic, cytogenetic and molecular assessment. Planta 226(6):1449–1458

    Article  CAS  PubMed  Google Scholar 

  • Sharma HC, Sujana G, Rao DM (2009) Morphological and chemical components of resistance to pod borer, Helicoverpa armigera in wild relatives of pigeonpea. Arthropod Plant Interact 3(3):151–161

    Article  Google Scholar 

  • Shreenivasa R, Krishnappa K, Ravichandra NG (2007) Interaction effects of arbuscular mycorrhizal fungus Glomus fasciculatum and root-knot nematode, Meloidogyne incognita on growth and phosphorous uptake of tomato. Karnataka J Agric Sci 20:57–61

    Google Scholar 

  • Siddiqui ZA, Akhtar MS (2007) Effects of AM fungi and organic fertilizers on the reproduction of the nematode Meloidogyne incognita and on the growth and water loss of tomato. Biol Fertil Soils 43:603–609

    Article  Google Scholar 

  • Siddiqui ZA, Mahmood I (1998) Effect of a plant growth promoting bacterium, an AM fungus and soil types on the morphometrics and reproduction of Meloidogyne javanica on tomato. Appl Soil Ecol 8:77–84

    Article  Google Scholar 

  • Siddiqui ZA, Pichtel J (2008) Mycorrhizae: an overview. In: Mycorrhizae: sustainable agriculture and forestry. Springer Science and Business Media LLC, Berlin, Germany, pp 1–35

    Chapter  Google Scholar 

  • Singh LP, Gill SS, Tuteja N (2011) Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav 6:175–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siqueira JO, Safir GR, Nair MG (1991a) Significance of phenolic compounds in plant-soil microbial systems. Crit Rev Plant Sci 10:63

    Article  CAS  Google Scholar 

  • Siqueira JO, Safir GR, Nair MG (1991b) Stimulation of vesicular arbuscular mycorrhiza formation and growth of white clover by flavonoid compounds. New Phytol 118:87–93

    Article  CAS  Google Scholar 

  • Skorupska A, Wielbo J, Kidaj D, Marek-Kozaczuk M (2010) Enhancing Rhizobium-legume symbiosis using signaling factors. In: Khan MS (ed) Microbes for legume improvement. Springer, Wien, pp 27–54

    Chapter  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, San Diego

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Elsevier Academic Publishers, New York

    Google Scholar 

  • Smith SE, Read DJ (2010) Mycorrhizal symbiosis, Academic, Cambridge, MA. ISBN 978-0-08-055934-6

    Google Scholar 

  • Song Y, Chen D, Lu K, Sun Z, Zeng R (2015) Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus. Front Plant Sci 6:6

    Article  Google Scholar 

  • Spagnoletti FN, Cornero M, Chiocchio V, Lavado RS, Roberts IN (2020) Arbuscular mycorrhiza protects soybean plants against Macrophomina phaseolina even under nitrogen fertilization. Eur J Plant Pathol 156:839–849

    Article  CAS  Google Scholar 

  • Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, Bonito G, Corradi N, Grigoriev IV, Gryganskyi A et al (2016) A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108:1028–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spoel SH, Dong X (2012) How do plants achieve immunity? Defence without specialized immune cells. Nat Rev Immunol 12:89–100

    Article  CAS  PubMed  Google Scholar 

  • St Arnaud M, Elsen A (2005) Interaction of arbuscular mycorrhizal fungi with soil-borne pathogens and non-pathogenic rhizosphere micro-organisms. In: Declerck S, Fortin JA, Strullu D-G (eds) In vitro culture of mycorrhizas. Springer, Berlin, pp 217–231

    Chapter  Google Scholar 

  • Steinkellner S, Lendzemo V, Langer I, Schweiger I, Khaosaad T, Toussaint J-P, Vierheilig H (2007) Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions. Molecules 12:1290–1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stracke S, Kistner C, Yoshida S, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Szczyglowski K, Parniske M (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417:959–962

    Article  CAS  PubMed  Google Scholar 

  • Subramanian S, Stacey G, Yu O (2007) Distinct, crucial roles of flavonoids during legume nodulation. Trends Plant Sci 12:282–285

    Article  CAS  PubMed  Google Scholar 

  • Swain T (1975) Evolution of flavonoid compounds. In: Harborne JB, Mabry TJ, Mabry H (eds) The flavonoids. Chapman & Hall, London, pp 1096–1138

    Chapter  Google Scholar 

  • Taliansky M, Torrance L, Kalinina NO (2008) Role of plant virus movement proteins. Methods Mol Biol 451:33–54

    Article  CAS  PubMed  Google Scholar 

  • Tarkowski P, Vereecke D (2014) Threats and opportunities of plant pathogenic bacteria. Biotechnol Adv 32(1):215–229

    Article  PubMed  Google Scholar 

  • Tedersoo L, Sánchez-Ramírez S, Kõljalg U, Bahram M, Döring M, Schigel DS, May T, Ryberg M, Abarenkov K (2018) High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Divers 90:135–159

    Article  Google Scholar 

  • Thirkell TJ, Charters MD, Elliott AJ, Sait SM, Field KJ (2017) Are mycorrhizal fungi our sustainable saviours considerations for achieving food security. J Ecol 105:921–929. https://doi.org/10.1111/1365-2745.12788

    Article  CAS  Google Scholar 

  • Thomma BP, Tierens KF, Penninckx IA, Mauch-Mani B, Broekaert WF, Cammue BP (2001) Different micro-organisms differentially induce Arabidopsis disease response pathways. Plant Physiol Biochem 39(7):673–680

    Article  CAS  Google Scholar 

  • Thorne ET, Young BM, Young GM, Stevenson JF, Labavitch JM, Matthews MA, Rost TL (2006) The structure of xylem vessels in grapevine (Vitaceae) and a possible passive mechanism for the systemic spread of bacterial disease. Am J Bot 93(4):497–504

    Article  PubMed  Google Scholar 

  • Utkhede R (2006) Increased growth and yield of hydroponically grown greenhouse tomato plants inoculated with arbuscular mycorrhizal fungi and Fusarium oxysporum f. sp radicislycopersici. BioControl 51:393–400

    Article  Google Scholar 

  • Van-Dam NM (2009) How plants cope with biotic interactions. Plant Biol 11:1–5

    Article  CAS  PubMed  Google Scholar 

  • Van der Ent S, Van Wees SCM, Pieterse CMJ (2009) Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochemistry 70:1581–1588

    Article  PubMed  Google Scholar 

  • Van Hulten M, Pelser M, Van Loon LC, Pieterse CMJ, Ton J (2006) Costs and benefits of priming for defense in Arabidopsis. Proc Natl Acad Sci U S A 103:5602–5607

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Rossum D, Schuurmans FP, Gillis M, Muyotcha A, Van Verseveld HW, Stouthamer AH, Boogerd FC (1995) Genetic and phenetic analyses of Bradyrhizobium strains nodulating peanut (Arachis hypogaea L.) roots. Appl Environ Microbiol 61:1599–1609

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Wees SCM, Van der Ent S, Pieterse CMJ (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448

    Article  PubMed  Google Scholar 

  • Van-Doorn WG, Beers EP, Dangl JL, Franklin-Tong VE, Gallois P, Hara-Nishimura I, Mur LAJ (2011) Morphological classification of plant cell deaths. Cell Death Differ 18(8):1241–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veresoglou SD, Rillig MC (2012) Suppression of fungal and nematode plant pathogens through arbuscular mycorrhizal fungi. Biol Lett 8:214–217

    Article  PubMed  Google Scholar 

  • Verhage A, van Wees SC, Pieterse CM (2010) Plant immunity: it’s the hormones talking, but what do they say? Plant Physiol 154(2):536–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vierheilig H (2004a) Regulatory mechanisms during the plant-arbuscular mycorrhizal fungus interaction. Can J Bot 82:1166–1176

    Article  CAS  Google Scholar 

  • Vierheilig H (2004b) Further root colonization by arbuscular mycorrhizal fungi in already mycorrhizal plants is suppressed after a critical level of root colonization. J Plant Physiol 161:339–341

    Article  CAS  PubMed  Google Scholar 

  • Vierheilig H, Piché Y (2002) Signalling in arbuscular mycorrhiza: facts and hypotheses. In: Buslig B, Manthey J (eds) Flavonoids in cell functions. Kluwer/Plenum, New York, pp 23–39

    Chapter  Google Scholar 

  • Vierheilig H, Bago B, Albrecht C, Poulin MJ, Piché Y (1998) Flavonoids and arbuscular mycorrhizal fungi. In: Manthey J, Buslig B (eds) Flavonoids in the living system. Plenum Press, New York, pp 9–33

    Chapter  Google Scholar 

  • Vierheilig H, Steinkellner S, Khaosaad T, Garcia-Garrido JM (2008) The biocontrol effect of mycorrhization on soilborne fungal pathogens and the autoregulation of the AM symbiosis: one mechanism, two effects? In: Varma A (ed) Mycorrhiza: state of the art, genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics. Springer, Berlin, pp 307–320

    Chapter  Google Scholar 

  • Vos C, Claerhout S, Mkandawire R, Panis B, De Waele D, Elsen A (2011) Arbuscular mycorrhizal fungi reduce root-knot nematode penetration through altered root exudation of their host. Plant Soil 354:335–345

    Article  Google Scholar 

  • Vos C, Claerhout S, Mkandawire R, Panis B, de Waele D, Elsen A (2012a) Arbuscular mycorrhizal fungi reduce root-knot nematode penetration through altered root exudation of their host. Plant Soil 354:335–345

    Article  CAS  Google Scholar 

  • Vos C, Tesfahun A, Panis B, De Waele D, Elsen A (2012b) Arbuscular mycorrhizal fungi induce systemic resistance in tomato against the sedentary nematode Meloidogyne incognita and the migratory nematode Pratylenchus penetrans. Appl Soil Ecol 61:1–6

    Article  Google Scholar 

  • Vuong TD, Sonah H, Meinhardt CG, Deshmukh R, Kadam S, Nelson RL, Nguyen HT (2015) Genetic architecture of cyst nematode resistance revealed by genome-wide association study in soybean. BMC Genomics 16(1):593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Franken P (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci U S A 102(38):13386–13391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walling LL (2008) Avoiding effective defenses: strategies employed by phloem-feeding insects. Plant Physiol 146(3):859–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walters D, Heil M (2007) Costs and trade-offs associated with induced resistance. Physiol Mol Plant Pathol 71:3–17

    Article  CAS  Google Scholar 

  • Wang B, Qiu Y-L (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Ma L-Y, Cao J, Li Y-L, Ding L-N, Zhu K-M et al (2019) Recent advances in mechanisms of plant defense to Sclerotinia sclerotiorum. Front Plant Sci 10:1314. https://doi.org/10.3389/fpls.2019.0131

    Article  PubMed  PubMed Central  Google Scholar 

  • War AR, Sharma HC, Paulraj MG, War MY, Ignacimuthu S (2011) Herbivore induced plant volatiles: their role in plant defense for pest management. Plant Signal Behav 6(12):1973–1978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227

    Article  Google Scholar 

  • Wu S, Chappell J (2008) Metabolic engineering of natural products in plants; tools of the trade and challenges for the future. Curr Opin Biotechnol 19:145–152

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Luo Y, Lu R, Lau N, Lai EC, Li WX, Ding SW (2010) Virus discovery by deep sequencing and assembly of virus-derived small silencing RNAs. Proc Natl Acad Sci 107(4):1606–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yano K, Yoshida S, Muller J, Singh S, Banba M, Vickers K, Markmann K, White C, Schuller B, Sato S, Asamizu E, Tabata S, Murooka Y, Perry J, Wang TL, Kawaguchi M, Imaizumi-Anraku H, Hayashi M, Parniske M (2008) CYCLOPS, a mediator of symbiotic intracellular accommodation. Proc Natl Acad Sci U S A 105:20540–20545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao MK, Désilets H, Charles MT, Boulanger R, Tweddell RJ (2003) Effect of mycorrhization on the accumulation of rishitin and solavetivone in potato plantlets challenged with Rhizoctonia solani. Mycorrhiza 13:333–336

    Article  CAS  PubMed  Google Scholar 

  • Youssef MMA, El-Nagdi WMA (2015) Vesicular arbuscular mycorrhizae: a promising trend for biocontrolling plant parasitic nematodes. A review. Sci Agric 11:76–80

    CAS  Google Scholar 

  • Zaynab M, Fatima M, Abbas S, Sharif Y, Umair M, Zafar MH, Bahadar K (2018) Role of secondary metabolites in plant defense against pathogens. Microb Pathog 124:198–202

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Subramanian S, Stacey G, Yu O (2009) Flavones and flavonols play distinct critical roles during nodulation of Medicago truncatula by Sinorhizobium meliloti. Plant J 57:171–183

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Zhub H, Zhao H, Yao Q (2013) Arbuscular mycorrhizal fungal inoculation increases phenolic synthesis in clover roots via hydrogen peroxide, salicylic acid and nitric oxide signaling pathways. J Plant Physiol 170(1):74–79

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2016) Abiotic stress signalling and responses in plants. Cell 167(2):313–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu XC, Song FB, Xu HW (2010) Arbuscular mycorrhizae improve low temperature stress in maize via alterations in host water status and photosynthesis. Plant Soil 331:129–137. https://doi.org/10.1007/s11104-009-0239-z

    Article  CAS  Google Scholar 

  • Zou YN, Srivastava AK, Wu QS (2016) Glomalin: a potential soil conditioner for perennial fruits. Int J Agric Biol 18:293–297. https://doi.org/10.17957/IJAB/15.0085

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lone, R., Mushtaq, G., Hassan, N., Malla, N.A., Rohella, G.K., Khan, S. (2024). Role of Phenolics in Establishing Mycorrhizal Association in Plants for Management of Biotic Stress. In: Lone, R., Khan, S., Mohammed Al-Sadi, A. (eds) Plant Phenolics in Biotic Stress Management. Springer, Singapore. https://doi.org/10.1007/978-981-99-3334-1_2

Download citation

Publish with us

Policies and ethics

Navigation