Novel Diagnosis Capabilities and Prospects for Determining Post-mortem Changes in Biological Tissues and the Time of Hematoma Formation in Forensic Medicine

  • Chapter
  • First Online:
Phase Map** of Human Biological Tissues

Abstract

The further development of new approaches to the analysis of not only the vector but also the phase structure of the fields of laser radiation converted by optically anisotropic layers of various optical thicknesses is urgent. The literature review shows that such a research method as BT laser polarimetry allows one to obtain a number of indicators of the optical properties of tissues, which, according to modern concepts, are a two-component amorphous-anisotropic matrix. Elucidation of the possibilities of laser polarimetry for solving problems of forensic medicine formed the basis of our research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Mall, M. Eckl, I. Sinicina, et al., Temperature-based death time estimation with only partially known environmental conditions. Int. J. Legal. Med. (2004)

    Google Scholar 

  2. N. Lange, S. Swearer, W.Q. Sturner, Human postmortem interval estimation from vitreous potassium: an analysis of original data from six different studies. Forensic Sc. Int. 3(66), 159–174 (1994)

    Google Scholar 

  3. L.M. Al-Alousi, R.A. Anderson, D.M. Worster et al., Multiple-probe thermography for estimating the postmortem interval: I. Continuous monitoring and data analysis of brain, liver, rectal and environmental temperatures in 117 forensic cases. J. Forensic Sci. 2(46), 317–322 (2001)

    Google Scholar 

  4. G.M. Hutchins, Body temperature is elevated in the early postmortem period. Hum. Pathol. 6(16), 560–561 (1985)

    Google Scholar 

  5. T. Suzutani, Studies on the estimation of the postmortem interval. 1. The temperature of cadaver (author's transl). Hokkaido Igaku Zasshi. 3(52), 205–211 (1977)

    Google Scholar 

  6. J.L. Melody, S.M. Lonergan, L.J. Rowe et al., Early postmortem biochemical factors influence tenderness and water-holding capacity of three porcine muscles. J. Anim. Sci. 4(82), 1195–11205 (2004)

    Google Scholar 

  7. M.A. Green, J.C. Wright, Postmortem interval estimation from body temperature data only. Forensic Sci. Int. 1(28), 35–46 (1985)

    Google Scholar 

  8. G. Mall, M. Hubig, M. Eckl et al., Modelling postmortem surface cooling in continuously changing environmental temperature. Leg. Med. 3(4), 164–173 (2002)

    Google Scholar 

  9. L.M. Al-Alousi, R. A. Anderson, D. M. Worster et al., Factors influencing the precision of estimating the postmortem interval using the triple-exponential formulae (TEF). Part II. A study of the effect of body temperature at the moment of death on the postmortem brain, liver and rectal cooling in 117 forensic cases. Forensic Sci. Int. 2–3(125), 223–230 (2002)

    Google Scholar 

  10. G. Mall, M. Hubig, G. Beier et al., Determination of time-dependent skin temperature decrease rates in the case of abrupt changes of environmental temperature. Forensic Sci. Int. 1–3(113), 219–226 (2000)

    Google Scholar 

  11. S. Sasaki, S. Tsunenari, M. Kanda, The estimation of the time of death by non-protein nitrogen (NPN) in cadaveric materials. Report 3: multiple regression analysis of NPN values in human cadaveric materials. Forensic Sci. Int. 1(22), 11–22 (1983)

    Google Scholar 

  12. J. Wiesbock, E. Josephi, E. Liebhardt, Intra-individual changes in potassium in the cerebrospinal fluid after death. Beitr. Gerichtl. Med. 47, 403–405 (1989)

    Google Scholar 

  13. J.I. Munoz, J.M. Suarez-Penaranda, X.L. Otero et al., A new perspective in the estimation of postmortem interval (PMI) based on vitreous. J. Forensic Sci. 2(46), 209–214 (2001)

    Google Scholar 

  14. A.J. Sabucedo, K.G. Furton, Estimation of postmortem interval using the protein marker cardiac Troponin I. Forensic Sci. Int. 1(134), 11–16 (2003)

    Google Scholar 

  15. N. Lynnerup, A computer program for the estimation of time of death. J. Forensic Sci. 4(38), 816–820 (1993)

    Google Scholar 

  16. H. Joachim, U. Feldmann, Quantimetric investigations of the time of death by estimating the postmortem threshold (rheobase) of human skeletal muscles to electric stimulus by direct current (author's transl). Z. Rechtsmed. 1(85), 5–22 (1980)

    Google Scholar 

  17. M. Shimizu, T. Hayashi, Y. Saitoh et al., Postmortem autolysis in the pancreas: multivariate statistical study. The influence of clinicopathological conditions. Pancreas 1(5), 91–94 (1990)

    Google Scholar 

  18. F. Kuroda, K. Hiraiwa, S. Oshida et al., Estimation of postmortem interval from rectal temperature by use of computer (III)-thermal conductivity of the skin. Med. Sci. Law. 4(22), 285–289 (1982)

    Google Scholar 

  19. F. Brion, B. Marc, F. Launay, Postmortem interval estimation by creatinine levels in human psoas Muscle. Forensic Sci. Int. 1(52) 113–120 (1991)

    Google Scholar 

  20. V. Tuchin, L. Wang, D. Zimnjakov, Optical polarization in biomedical applications (USA. Springer, New York, 2006)

    Book  Google Scholar 

  21. Chipman R.: Polarimetry, in Handbook of Optics: Vol I—Geometrical and Physical Optics, Polarized Light, Components and Instruments, ed. by M. Bass (McGraw-Hill Professional, New York, 2010), pp. 22.1–22.37

    Google Scholar 

  22. N. Ghosh, M. Wood, A. Vitkin, Polarized light assessment of complex turbid media such as biological tissues via Mueller matrix decomposition, in Handbook of Photonics for Biomedical Science, ed. by V. Tuchin (CRC Press, Taylor & Francis Group, London, 2010), pp. 253–282

    Google Scholar 

  23. S. Jacques, Polarized light imaging of biological tissues, in Handbook of Biomedical Optics. ed. by D. Boas, C. Pitris, N. Ramanujam (CRC Press, Boca Raton, London, New York, 2011), pp.649–669

    Google Scholar 

  24. N. Ghosh, Tissue polarimetry: concepts, challenges, applications, and outlook. J. Biomed. Opt. 16(11), 110801 (2011)

    Article  ADS  Google Scholar 

  25. M. Swami, H. Patel, P. Gupta, Conversion of 3×3 Mueller matrix to 4×4 Mueller matrix for non-depolarizing samples. Opt. Commun. 286, 18–22 (2013)

    Article  ADS  Google Scholar 

  26. D. Layden, N. Ghosh, A. Vitkin, Quantitative polarimetry for tissue characterization and diagnosis, in Advanced Biophotonics: Tissue Optical Sectioning edited by R. Wang, V. Tuchin (CRC Press, Taylor and Francis Group, Boca Raton, London, New York, 2013), pp. 73–108

    Google Scholar 

  27. T. Vo-Dinh, Biomedical Photonics Handbook, vol. 3, 2nd edn. (CRC Press, Boca Raton, 2014)

    Google Scholar 

  28. A. Vitkin, N. Ghosh, A. Martino, Tissue polarimetry, in Photonics: Scientific Foundations, Technology and Applications, 4th edn., ed. by D. Andrews (Wiley, Hoboken, New Jersey, 2015), pp.239–321

    Chapter  Google Scholar 

  29. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd edn. (SPIE Press, Bellingham, Washington, USA, 2007)

    Book  Google Scholar 

  30. W. Bickel, W. Bailey, Stokes vectors, Mueller matrices, and polarized scattered light. Am. J. Phys. 53(5), 468–478 (1985)

    Article  ADS  Google Scholar 

  31. V. Ushenko, O. Vanchuliak, M. Sakhnovskiy, O. Dubolazov, P. Grygoryshyn, I. Soltys, O. Olar, System of Mueller matrix polarization correlometry of biological polycrystalline layers. Proc. SPIE 10352, 103520U (2017)

    Google Scholar 

  32. V. Ushenko, O. Vanchuliak, M. Sakhnovskiy, O. Dubolazov, P. Grygoryshyn, I. Soltys, O. Olar, A. Antoniv, Polarization-interference map** of biological fluids polycrystalline films in differentiation of weak changes of optical anisotropy. Proc. SPIE 10396, 103962O (2017)

    Google Scholar 

  33. O. Dubolazov, L. Trifonyuk, Y. Marchuk, Y. Ushenko, V. Zhytaryuk, O. Prydiy, L. Kushnerik, I. Meglinskiy, Two-point Stokes vector parameters of object field for diagnosis and differentiation of optically anisotropic biological tissues. Proc. SPIE 10352, 103520V (2017)

    Google Scholar 

  34. L. Trifonyuk, O. Dubolazov, Y. Ushenko, V. Zhytaryuk, O. Prydiy, M. Grytsyuk, L. Kushnerik, I. Meglinskiy, I. Savka, New opportunities of differential diagnosis of biological tissues polycrystalline structure using methods of Stokes correlometry map** of polarization inhomogeneous images. Proc. SPIE 10396, 103962R (2017)

    Google Scholar 

  35. O. Dubolazov, V. Ushenko, L. Trifoniuk, Y. Ushenko, V. Zhytaryuk, O. Prydiy, M. Grytsyuk, L. Kushnerik, I. Meglinskiy, Methods and means of 3D diffuse Mueller-matrix tomography of depolarizing optically anisotropic biological layers. Proc. SPIE 10396, 103962P (2017)

    Google Scholar 

  36. A. Ushenko, A. Dubolazov, V. Ushenko, O. Novakovskaya, Statistical analysis of polarization-inhomogeneous Fourier spectra of laser radiation scattered by human skin in the tasks of differentiation of benign and malignant formations. J. Biomed. Opt. 21(7), 071110 (2016)

    Article  ADS  Google Scholar 

  37. Y. Ushenko, G. Koval, A. Ushenko, O. Dubolazov, V. Ushenko, O. Novakovskaia, Mueller-matrix of laser-induced autofluorescence of polycrystalline films of dried peritoneal fluid in diagnostics of endometriosis. J. Biomed. Opt. 21(7), 071116 (2016)

    Google Scholar 

  38. V. Prysyazhnyuk, Yu. Ushenko, A. Dubolazov, A. Ushenko, V. Ushenko, Polarization-dependent laser autofluorescence of the polycrystalline networks of blood plasma films in the task of liver pathology differentiation. Appl. Opt. 55(12), B126–B132 (2016)

    Google Scholar 

  39. A. Ushenko, O. Dubolazov, V. Ushenko, O. Novakovskaya, O. Olar, Fourier polarimetry of human skin in the tasks of differentiation of benign and malignant formations. Appl. Opt. 55(12), B56–B60 (2016)

    Google Scholar 

  40. Yu. Ushenko, V. Bachynsky, O. Vanchulyak, A. Dubolazov, M. Garazdyuk, V. Ushenko, Jones-matrix map** of complex degree of mutual anisotropy of birefringent protein networks during the differentiation of myocardium necrotic changes. Appl. Opt. 55(12), B113–B119 (2016)

    Google Scholar 

  41. A. Dubolazov, N. Pashkovskaya, Yu. Ushenko, Yu. Marchuk, V. Ushenko, O. Novakovskaya, Birefringence images of polycrystalline films of human urine in early diagnostics of kidney pathology. Appl. Opt. 55(12), B85–B90 (2016)

    Google Scholar 

  42. M. Garazdyuk, V. Bachinskyi, O. Vanchulyak, A. Ushenko, O. Dubolazov, M. Gorsky, Polarization-phase images of liquor polycrystalline films in determining time of death. Appl. Opt. 55(12), B67–B71 (2016)

    Article  Google Scholar 

  43. A. Ushenko, A. Dubolazov, V. Ushenko, Yu. Ushenko, M. Sakhnovskiy, O. Olar, Methods and means of laser polarimetry microscopy of optically anisotropic biological layers. Proc. SPIE 9971, 99712B (2016)

    Google Scholar 

  44. A. Ushenko, A. Dubolazov, V. Ushenko, Yu. Ushenko, L. Kushnerick, O. Olar, N. Pashkovskaya, Yu. Marchuk (2016) Mueller-matrix differentiation of fibrillar networks of biological tissues with different phase and amplitude anisotropy. Proc. SPIE 9971, 99712K

    Google Scholar 

  45. O. Dubolazov, A. Ushenko, Y. Ushenko, M. Sakhnovskiy, P. Grygoryshyn, N. Pavlyukovich, O. Pavlyukovich, V. Bachynskiy, S. Pavlov, V. Mishalov, Z. Omiotek, O. Mamyrbaev, Laser müller matrix diagnostics of changes in the optical anisotropy of biological tissues Information Technology in Medical Diagnostics II, in Proceedings of the International Scientific Internet Conference on Computer Graphics and Image Processing and 48th International Scientific and Practical Conference on Application of Lasers in Medicine and Biology, vol. 2018, (2019) pp. 195–203

    Google Scholar 

  46. M. Borovkova, M. Peyvasteh, O. Dubolazov, Y. Ushenko, V. Ushenko, A. Bykov, S. Deby, J. Rehbinder, T. Novikova, I. Meglinski, Complementary analysis of Mueller-matrix images of optically anisotropic highly scattering biological tissues. J. Eur. Opt. Soc. 14(1), 20 (2018)

    Article  Google Scholar 

  47. V.G. Kolobrodov, Q.A. Nguyen, G.S. Tymchik, The problems of designing coherent spectrum analyzers, in Proceedings of SPIE 11th International Conference on Correlation Optics18 September 2013 through 21 September 2013, vol. 2013, p. 9066. Article number 90660N Code 103970

    Google Scholar 

  48. V.A. Ostafiev, S.P. Sakhno, S.V. Ostafiev, G.S. Tymchik, Laser diffraction method of surface roughness measurement. J. Mater. Process. Technol. (63), 871–874 (1997)

    Google Scholar 

  49. I.G. Chyzh, V. Kolobrodov, A. Molodyk, V. Mykytenko, G. Tymchik, R. Romaniuk, P. Kisała, A. Kalizhanova, B. Yeraliyeva, Energy resolution of dual-channel opto-electronic surveillance system, in Proceedings Volume 11581, Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments, 115810K (2020) https://doi.org/10.1117/12.2580338. Event: Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments (Wilga, Poland, 2020)

  50. V.H. Kolobrodov, V.I. Mykytenko, G.S. Tymchik, Polarization model of thermal contrast observation objects. Thermotlectricity (1), 36–49 (2020)

    Google Scholar 

  51. V.H. Kolobrodov, M.S. Kolobrodov, G.S. Tymchik, A.S. Vasyura, P. Komada, Z. Azeshova, The output signal of a digital optoelectronic processor, in Proceedings of the SPIE 10808, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments, 108080W (2018)

    Google Scholar 

  52. G.S. Tymchik, V.I. Skytsyuk, T.R. Klotchko, H. Bezsmertna, W. Wójcik, S. Luganskaya, Z. Orazbekov, A. Iskakova, Diagnosis abnormalities of limb movement in disorders of the nervous system. Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 104453S–104453S-11 (2017). https://doi.org/10.1117/12.228100

  53. Z. Hu, M. Ivashchenko, L. Lyushenko, D. Klyushnyk, Artificial neural network training criterion formulation using error continuous domain. Int. J. Mod. Educ. Comput. Sci. (IJMECS) 13(3), 13–22 (2021) https://doi.org/10.5815/ijmecs.2021.03.02

  54. Z. Hu, I. Tereikovskyi, D. Chernyshev, L. Tereikovska, O. Tereikovskyi, D. Wang, Procedure for processing biometric parameters based on wavelet transformations. Int. J. Mod. Educ. Comput. Sci. (IJMECS) 13(2), 11–22 (2021). https://doi.org/10.5815/ijmecs.2021.02.02

  55. Z. Hu, R. Odarchenko, S. Gnatyuk, M. Zaliskyi, A. Chaplits, S. Bondar, V. Borovik,Statistical techniques for detecting cyberattacks on computer networks based on an analysis of abnormal traffic behavior. Int. J. Comput. Netw. Inf. Secur. (IJCNIS) 12(6), 1–13 (2020). https://doi.org/10.5815/ijcnis.2020.06.01

  56. Z. Hu, S. Gnatyuk, T. Okhrimenko, S. Tynymbayev, M. Iavich, High-speed and secure PRNG for cryptographic applications. Int. J. Comput. Netw. Inf. Secur. (IJCNIS) 12(3), 1–10 (2020). https://doi.org/10.5815/ijcnis.2020.03.01

  57. Z. Hu, I. Dychka, M. Onai, Y. Zhykin, Blind payment protocol for payment channel networks. Int. J. Compu. Netw. Inf. Secur. (IJCNIS), 11(6), 22–28 (2019). https://doi.org/10.5815/ijcnis.2019.06.03

  58. Z. Hu, Y. Khokhlachova, V. Sydorenko, I. Opirskyy, Method for optimization of information security systems behavior under conditions of influences. Int. J. Intell. Syst. Appl. (IJISA) 9(12), 46–58 (2017). https://doi.org/10.5815/ijisa.2017.12.05

  59. Z. Hu, S.V. Mashtalir, O.K. Tyshchenko, M.I. Stolbovyi, Video shots’ matching via various length of multidimensional time sequences. Int. J. Intell. Syst. Appl. (IJISA) 9(11), 10–16 (2017). https://doi.org/10.5815/ijisa.2017.11.02

  60. Z. Hu, I.A. Tereykovskiy, L.O. Tereykovska, V.V. Pogorelov, Determination of structural parameters of multilayer perceptron designed to estimate parameters of technical systems. Int. J. Intell. Syst. Appl. (IJISA) 9(10), 57–62 (2017). https://doi.org/10.5815/ijisa.2017.10.07

  61. Z. Hu, Y.V. Bodyanskiy, Nonna Ye. Kulishova, Oleksii K. Tyshchenko, A multidimensional extended neo-fuzzy neuron for facial expression recognition. Int. J. Intell. Syst. Appl. (IJISA) 9(9), 29–36 (2017). https://doi.org/10.5815/ijisa.2017.09.04

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hu, Z. et al. (2023). Novel Diagnosis Capabilities and Prospects for Determining Post-mortem Changes in Biological Tissues and the Time of Hematoma Formation in Forensic Medicine. In: Phase Map** of Human Biological Tissues. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-3269-6_1

Download citation

Publish with us

Policies and ethics

Navigation