Single Nucleotide Polymorphism as Evolutionary Evidence of Individuality

  • Chapter
  • First Online:
Fundamentals of Forensic Biology

Abstract

Since the development of DNA fingerprinting by Sir Alec Jeffery, the technique has always had a special relevance to forensic science. With the new emerging technologies, DNA fingerprinting has been performed through detection of specific DNA sequences within reference and query samples by techniques such as RFLP analysis and SSCP analysis to name a few. Recent advancement into determination of individuality includes the detection and analysis of Single Nucleotide Polymorphs (SNPs) within the samples. These analyses have proven significance due to their uniqueness within the genetic sequences by acting as biological markers. SNP detection protocols focus on highlighting the presence of the sequence modifications by using electrophoretic techniques, probes, primers, and high-throughput methods such as Sanger sequencing and NGS. The high-throughput techniques allow simultaneous multi-sample analysis through sequence by synthesis. With respect to individualization, these techniques have been adopted worldwide on regular basis for forensic investigation analysis of recent and cold cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allio R, Donega S, Galtier N, Nabholz B (2017) Large variation in the ratio of mitochondrial to nuclear mutation rate across animals: implications for genetic diversity and the use of mitochondrial DNA as a molecular marker. Mol Biol Evol 34:2762–2772

    Article  CAS  PubMed  Google Scholar 

  • Armentrout S. Using SNP genoty** to solve crimes: the cold case of April Tinsley warning: this presentation contains graphic sexual content. 2019

    Google Scholar 

  • Arshad M, Bhatti A, John P (2018) Identification and in silico analysis of functional SNPs of human TAGAP protein: a comprehensive study. PLoS One 13:1–13

    Article  Google Scholar 

  • Bardan F. New forensic DNA profiling techniques for human identification. 2019

    Google Scholar 

  • Barreiro LB, Laval G, Quach H, Patin E, Quintana-Murci L (2008) Natural selection has driven population differentiation in modern humans. Nat Genet 40:340–345

    Article  CAS  PubMed  Google Scholar 

  • Bas Yavaser G, Hulya Yukseloglu E, Cavus Yonar F, Erkan I (2021) Assessment of 13 single nucleotide polymorphisms loci for identification in forensic sciences for Turkish population. Int J Biol Chem 14:56–63

    Article  Google Scholar 

  • Belmont JW, Boudreau A, Leal SM, Hardenbol P, Pasternak S, Wheeler DA et al (2005) A haplotype map of the human genome. Nature 437:1299–1320

    Article  Google Scholar 

  • Bogenhagen D, Clayton DA (1974) The number of mitochondrial deoxyribonucleic acid genomes in mouse L and human HeLa cells. Quantitative isolation of mitochondrial deoxyribonucleic acid. J Biol Chem 249:7991–7995

    Article  CAS  PubMed  Google Scholar 

  • Breslin K, Wills B, Ralf A, Ventayol Garcia M, Kukla-Bartoszek M, Pospiech E et al (2019) HIrisPlex-S system for eye, hair, and skin color prediction from DNA: massively parallel sequencing solutions for two common forensically used platforms. Forensic Sci Int Genet 43:102152

    Article  CAS  PubMed  Google Scholar 

  • Brookes AJ (1999) The essence of SNPs. Gene 234:177–186

    Article  CAS  PubMed  Google Scholar 

  • Buetow KH, Edmonson MN, Cassidy AB (1999) Reliable identification of large numbers of candidate SNPs from public EST data. Nat Genet 21:323–325

    Article  CAS  PubMed  Google Scholar 

  • Cargill M, Altshuler D, Ireland J, Sklar P, Ardlie K, Patil N et al (1999) Characterization of single- nucleotide polymorphisms in coding regions of human genes [published erratum appears in Nat Genet 1999 Nov;23(3):373]. Nat Genet 22:231–238

    Article  CAS  PubMed  Google Scholar 

  • Chen TJ, Boles RG, Wong LJ (1999) Detection of mitochondrial DNA mutations by temporal temperature gradient gel electrophoresis. Clin Chem 45:1162–1167

    Article  CAS  PubMed  Google Scholar 

  • Cotton RG, Rodrigues NR, Campbell RD (1988) Reactivity of cytosine and thymine in single-base- pair mismatches with hydroxylamine and osmium tetroxide and its application to the study of mutations. Proc Natl Acad Sci U S A 85:4397–4401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dario P, Ribeiro T, Dias D, Corte-Real F, Geada H (2011) Complex casework using single nucleotide polymorphisms. Forensic Sci Int Genet Suppl Ser 3:379–380

    Article  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection, or preservation of favoured races in the struggle for life. John Murray, London; 1809-1882

    Book  Google Scholar 

  • Fiatal S, Ádány R (2018) Application of single-nucleotide polymorphism-related risk estimates in identification of increased genetic susceptibility to cardiovascular diseases: a literature review. Front Public Heal 5:5

    Google Scholar 

  • Fischer SG, Lerman LS (1983) DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc Natl Acad Sci U S A 80:1579–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y, He Z, He X, Zhang H, Weng J, Yang X et al (2019) Dual-color emissive AIEgen for specific and label-free double-stranded DNA recognition and single-nucleotide polymorphisms detection. J Am Chem Soc 141:20097–20106

    Article  CAS  PubMed  Google Scholar 

  • Glazier AM, Nadeau JH, Aitman TJ (2002) Genetics: finding genes that underline complex traits. Science 298(80):2345–2349

    Article  CAS  PubMed  Google Scholar 

  • Gunter LE, Kochert G, Giannasi DE (1994) Phylogenetic relationships of the Juglandaceae. Plant Syst Evol 192:11–29

    Article  Google Scholar 

  • Hayatsu H, Atsumi G, Nawamura T, Kanamitsu S, Negishi K, Maeda M (1991) Permanganate oxidation of nucleic acid components: a reinvestigation. Nucleic Acids Symp Ser 25:77–78

    CAS  Google Scholar 

  • Higasa K, Kukita Y, Baba S, Hayashi K (2002) Software for machine-independent quantitative interpretation of SSCP in capillary array electrophoresis (QUISCA). BioTechniques 33:1342–1348

    Article  CAS  PubMed  Google Scholar 

  • Hillier LDW, Marth GT, Quinlan AR, Dooling D, Fewell G, Barnett D et al (2008) Whole-genome sequencing and variant discovery in C. elegans. Nat Methods 5:183–188

    Article  CAS  PubMed  Google Scholar 

  • Huchard E, Cowlishaw G, Raymond M, Weill M, Knapp LA (2006) Molecular study of Mhc-DRB in wild chacma baboons reveals high variability and evidence for trans-species inheritance. Immunogenetics 58:805–816

    Article  CAS  PubMed  Google Scholar 

  • Inazuka M, Tahira T, Hayashi K (1996) One-tube post-PCR fluorescent labeling of DNA fragments. Genome Res 6:551–557

    Article  CAS  PubMed  Google Scholar 

  • International HapMap Consortium. International HapMap consortium. The International HapMap Project Nature 2003; 426: 789–796

    Google Scholar 

  • Ito M, Tran Le S, Chaudhari D, Higashimoto T, Maslim A, Boles RG (2001) Screening for mitochondrial DNA heteroplasmy in children at risk for mitochondrial disease. Mitochondrion 1:269–278

    Article  CAS  PubMed  Google Scholar 

  • Kikuta E, Murata M, Katsube N, Koike T, Kimura E (1999) Novel recognition of thymine base in double-stranded DNA by zinc(II)- macrocyclic tetraamine complexes appended with aromatic groups. J Am Chem Soc 121:5426–5436

    Article  CAS  Google Scholar 

  • Kikuta E, Aoki S, Kimura E (2002) New potent agents binding to a poly(dT) sequence in double- stranded DNA: Bis(Zn2+−cyclen) and tris(Zn2+−cyclen) complexes. J Biol Inorg Chem 7:473–482

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita E, Kinoshita E, Koike T. Chapter 10 Zn (II)– Cyclen polyacrylamide gel electrophoresis for SNP. 2009

    Google Scholar 

  • Kinoshita-Kikuta E, Kinoshita E, Koike T (2002) Erratum: a novel procedure for simple and efficient genoty** of single nucleotide polymorphisms by using the Zn2+−cyclen complex (nucleic acids research (2002) vol. 30 (e126)). Nucleic Acids Res 30:5593

    Article  CAS  Google Scholar 

  • Kruglyak L, Nickerson DA (2001) Variation is the spice of life. Nat Genet 27:234–236

    Article  CAS  PubMed  Google Scholar 

  • Kukita Y, Tahira T, Sommer SS, Hayashi K (1997) SSCP analysis of long DNA fragments in low pH gel. Hum Mutat 10:400–407

    Article  CAS  PubMed  Google Scholar 

  • Kukita Y, Higasa K, Baba S, Nakamura M, Manago S, Suzuki A et al (2002) A single-strand conformation polymorphism method for the large-scale analysis of mutations/polymorphisms using capillary electrophoresis. Electrophoresis 23:2259–2266

    Article  CAS  PubMed  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J et al (2001) Erratum: initial sequencing and analysis of the human genome: international human genome sequencing consortium (nature (2001) 409 (860-921)). Nature 412:565–566

    CAS  Google Scholar 

  • Liu W, Smith DI, Rechtzigel KJ, Thibodeau SN, James CD (1998) Denaturing high performance liquid chromatography (DHPLC) used in the detection of germline and somatic mutations. Nucleic Acids Res 26:1396–1400

    Google Scholar 

  • Lohrer HD, Tangen U (2000) Investigations into the molecular effects of single nucleotide polymorphism. Pathobiology 68:283–290

    Article  CAS  PubMed  Google Scholar 

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marth GT, Korf I, Yandell MD, Yeh RT, Gu Z, Zakeri H et al (1999) A general approach to single- nucleotide polymorphism discovery. Nat Genet 23:452–456

    Article  CAS  PubMed  Google Scholar 

  • Morin PA, Luikart G, Wayne RK (2004) SNPs in ecology, evolution and conservation. Trends Ecol Evol 19:208–216

    Article  Google Scholar 

  • Myers RM, Maniatis T, Lerman LS (1987) Detection and localization of single base changes by denaturing gradient gel electrophoresis. Methods Enzymol 155:501–527

    Article  CAS  PubMed  Google Scholar 

  • Ning C, Li T, Wang K, Zhang F, Li T, Wu X et al (2020) Ancient genomes from Northern China suggest links between subsistence changes and human migration. Nat Commun 11:1–9

    Article  Google Scholar 

  • Oldoni F, Kidd KK, Podini D (2019) Microhaplotypes in forensic genetics. Forensic Sci Int Genet 38:54–69

    Article  CAS  PubMed  Google Scholar 

  • Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T (1989a) Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci U S A 86:2766–2770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orita M, Suzuki Y, Sekiya T, Hayashi K (1989b) Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5:874–879

    Article  CAS  PubMed  Google Scholar 

  • Ota M, Fukushima H, Kulski JK, Inoko H (2007) Single nucleotide polymorphism detection by polymerase chain reaction-restriction fragment length polymorphism. Nat Protoc 2:2857–2864

    Article  CAS  PubMed  Google Scholar 

  • Paris PL, Langenhan JM, Kool ET (1998) Probing DNA sequences in solution with a monomer- excimer fluorescence color change. Nucleic Acids Res 26:3789–3793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratan A, Miller W, Guillory J, Stinson J, Seshagiri S, Schuster SC (2013) Comparison of sequencing platforms for single nucleotide variant calls in a human sample. PLoS One 8:1–10

    Article  Google Scholar 

  • Robert F, Pelletier J (2018) Exploring the impact of single-nucleotide polymorphisms on translation. Front Genet 9:1–11

    Article  Google Scholar 

  • Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G et al (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409:928–933

    Article  CAS  PubMed  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schürch AC, Arredondo-Alonso S, Willems RJL, Goering RV (2018) Whole genome sequencing options for bacterial strain ty** and epidemiologic analysis based on single nucleotide polymorphism versus gene-by-gene–based approaches. Clin Microbiol Infect 24:350–354

    Article  PubMed  Google Scholar 

  • Sham P, Bader JS, Craig I, O’Donovan M, Owen M (2002) DNA pooling: a tool for large-scale association studies. Nat Rev Genet 3:862–871

    Article  CAS  PubMed  Google Scholar 

  • Sheffield VC, Cox DR, Lerman LS, Myers RM (1989) Attachment of a 40-base-pair G + C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc Natl Acad Sci U S A 86:232–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shionoya M, Shirot M (1993) A New Ternary Zinc(II)Complex with [12]aneN4 (= 1, 4, 7, 10-tetraazacyclododecane) and AZT (= 3'-azido-3'-deoxythymidine). Highly selective recognition of thymidine and its related nucleosides by a zinc (II) macrocyclic tetraamine complex with novel complementary associations. J Am Chem Soc 4:6730–6737

    Article  Google Scholar 

  • Theophilus BDM, Latham T, Grabowski GA, Smith FI (1989) Comparison of RNase a, a chemical cleavage and GC-clamped denaturing gradient gel electrophoresis for the detection of mutations in exon 9 of the human acid β-glucosidase gene. Nucleic Acids Res 17:7707–7722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tillmar A, Sturk-Andreaggi K, Daniels-Higginbotham J, Thomas JT, Marshall C (2021) The FORCE panel: an all-in-one SNP marker set for confirming investigative genetic genealogy leads and for general forensic applications. Genes (Basel) 12:12

    Article  Google Scholar 

  • Tully LA, Parsons TJ, Steighner RJ, Holland MM, Marino MA, Prenger VL (2000) A sensitive denaturing gradient-gel electrophoresis assay reveals a high frequency of heteroplasmy in hypervariable region 1 of the human mtDNA control region. Am J Hum Genet 67:432–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyagi S, Kramer FR (1996) Molecular beacon probes that fluoresce on hybridiztion. Nature 14:303–308

    CAS  Google Scholar 

  • van Oorschot RAH, Ballantyne KN (2013) Capillary electrophoresis in forensic biology. In: Encyclopedia of forensic sciences: second edition, 2nd edn. Elsevier Ltd, London

    Google Scholar 

  • Varona M, Anderson JL (2019) Visual detection of single-nucleotide polymorphisms using molecular beacon loop-mediated isothermal amplification with centrifuge-free DNA extraction. Anal Chem 91:6991–6995

    Article  CAS  PubMed  Google Scholar 

  • Wong L-JC, Chen T-J, Tan D-J (2004) Detection of mitochondrial DNA mutations using temporal temperature gradient gel electrophoresis. Electrophoresis 25:2602–2610

    Article  CAS  PubMed  Google Scholar 

  • Yamana K, Iwai T, Ohtani Y, Sato S, Nakamura M, Nakano H (2002) Bis-pyrene-labeled oligonucleotides: sequence specificity of excimer and monomer fluorescence changes upon hybridization with DNA. Bioconjug Chem 13:1266–1273

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Misra, S., Sharma, P., Mishra, A., Gondhali, U., Chauhan, T. (2024). Single Nucleotide Polymorphism as Evolutionary Evidence of Individuality. In: Puri, A., Mahalakshmi, N., Chauhan, T., Mishra, A., Bhatnagar, P. (eds) Fundamentals of Forensic Biology. Springer, Singapore. https://doi.org/10.1007/978-981-99-3161-3_21

Download citation

Publish with us

Policies and ethics

Navigation