Trace Gases of Mars Atmosphere

  • Chapter
  • First Online:
Aeronomy of Mars

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 469))

  • 252 Accesses

Abstract

The atmosphere of Mars is primarily composed of CO2 (~ 95%) with small amounts of N2 (~ 2.6%), Ar (~ 1.9%, O2 (0.16%) and CO (~ 0.06%). The O3, H2O, SO2, NO and CH4 are the trace gases in the troposphere of Mars varying from parts per million to parts per billion (e.g. Khayat et al., J Geophys Res Planets 126(11):e2021JE006834, 2021; Farmer et al., J Geophys Res Space 82:4225–4248, 1977; Stern et al., Mars Proc Natl Acad Sci 112:4245–4250, 2015; Ojha et al., Planet Space Sci 179:104734, 2019). The CH4, H2O and O3 are involved in the green house effect, which keeps the planet warmer than it would be without an atmosphere. The SO2 is produced in the Martian atmosphere from natural phenomena such as volcanic eruptions. The NO may likely come from the energy released in meteorite impact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 158.24
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barth, C.A., Hord, C.W.: Mariner ultraviolet spectrometer: topography and polar cap: ultraviolet measurements reveal the topography of Mars and show that ozone may be adsorbed on the polar cap. Science 173(3993), 197–201 (1971)

    Article  ADS  Google Scholar 

  • Barth, C.A., Hord, C.W., Stewart, A.I., et al.: Mariner 9 ultraviolet spectrometer experiment: seasonal variation of ozone on Mars. Science 179(4075), 795–796 (1973)

    Article  ADS  Google Scholar 

  • Berger, J.A., Schmidt, M.E., Gellert, R., et al.: A global Mars dust composition refined by the alpha-particle x-ray spectrometer in Gale Crater. Geophys. Res. Lett. 43(1), 67–75 (2016)

    Article  ADS  Google Scholar 

  • Clancy, R.T., Smith, M.D., Lefèvre, F., et al.: Vertical profiles of Mars 1.27 µm O2 dayglow from MRO CRISM limb spectra: seasonal/global behaviors, comparisons to LMDGCM simulations, and a global definition for Mars water vapor profiles. Icarus 293, 132–156 (2017)

    Article  ADS  Google Scholar 

  • Clancy, R.T., Wolff, M.J., Lefèvre, F., et al.: Daily global map** of Mars ozone column abundances with MARCI UV band imaging. Icarus 266, 112–133 (2016)

    Google Scholar 

  • Ding, S., Dasgupta, R., Lee, C.T.A., Wadhwa, M.: New bulk sulfur measurements of Martian meteorites and modeling the fate of sulfur during melting and crystallization—implications for sulfur transfer from Martian mantle to crust–atmosphere system. Earth Planet. Sci. Lett. 409, 157–167 (2015)

    Article  ADS  Google Scholar 

  • Etiope, G., Oehler, D.Z.: Methane spikes, background seasonality and non-detections on Mars: a geological perspective. Planet Space Sci. 168, 52–61 (2019)

    Article  ADS  Google Scholar 

  • Farmer, C.B., Davies, D.W., Holland, A.L., et al.: Mars: water vapor observations from the Viking orbiters. J. Geophys. Res. Space 82(28), 4225–4248 (1977)

    Article  ADS  Google Scholar 

  • Fedorova, A., Bertaux, J.L., Betsis, D., et al.: Water vapor in the middle atmosphere of Mars during the 2007 global dust storm. Icarus 300, 440–457 (2018)

    Article  ADS  Google Scholar 

  • Fox, J.L.: Response of the Martian thermosphere/ionosphere to enhanced fluxes of solar soft X rays. J. Geophys. Res. Space. Phys. 109(A11), (2004)

    Google Scholar 

  • Franz, H.B., King, P.L., Gaillard, F.: Sulfur on Mars from the atmosphere to the core. In Volatiles in the Martian Crust, pp. 119–183. Elsevier (2019)

    Google Scholar 

  • Giuranna, M., Viscardy, S., Daerden, F., et al.: Independent confirmation of a methane spike on Mars and a source region east of Gale Crater. Nat. Geosci. 12(5), 326–332 (2019)

    Article  ADS  Google Scholar 

  • Jakosky, B.M., Farmer, C.B.: The seasonal and global behavior of water vapor in the Mars atmosphere: complete global results of the Viking atmospheric water detector experiment. J. Geophys. Res. Solid Earth 87(B4), 2999–3019 (1982)

    Article  Google Scholar 

  • Khayat, A.S.J., Smith, M.D., Guzewich, S.D.: Understanding the water cycle above the north polar cap on Mars using MRO CRISM retrievals of water vapor. Icarus 321, 722–735 (2019). https://doi.org/10.1016/j.icarus.2018.12.024

  • Khayat, A.S., Smith, M.D., Wolff, M. et al.: ExoMars TGO/NOMAD‐UVIS vertical profiles of ozone: 2 the high‐altitude layers of atmospheric ozone. J. Geophys. Res. Planets 126(11), e2021JE006834 (2021)

    Google Scholar 

  • Korablev, O., et al.: No detection of methane on Mars from early ExoMars Trace Gas Orbiter observations. Nat. 568(7753), 517–520 (2019)

    Google Scholar 

  • Krasnopolsky, V.A.: Search for methane and upper limits to ethane and SO2 on Mars. Icarus 217(1), 144–152 (2012)

    Article  ADS  Google Scholar 

  • Krasnopolsky, V.A., Korablev, O.I., Moroz, V.I., et al.: Infrared solar occultation sounding of the Martian atmosphere by the Phobos spacecraft. Icarus 94(1), 32–44 (1991)

    Article  ADS  Google Scholar 

  • Lebonnois, S., Quémerais, E., Montmessin, F., et al.: Vertical distribution of ozone on Mars as measured by SPICAM/Mars express using stellar occultations. J. Geophys. Res. Planets 111(E9) (2006)

    Google Scholar 

  • Maltagliati, L., Montmessin, F., Korablev, O., et al.: Annual survey of water vapor vertical distribution and water–aerosol coupling in the martian atmosphere observed by SPICAM/MEx solar occultations. Icarus 223(2), 942–962 (2013)

    Article  ADS  Google Scholar 

  • Montmessin, F., Lefèvre, F.: Transport-driven formation of a polar ozone layer on Mars. Nat. Geosci. 6(11), 930–933 (2013)

    Article  ADS  Google Scholar 

  • Nier, A.O., McElroy, M.B.: Composition and structure of Mars’ upper atmosphere: results from the neutral mass spectrometers on Viking 1 and 2. J. Geophys. Res. 82(28), 4341–4349 (1977)

    Article  ADS  Google Scholar 

  • Ojha, L., Karunatillake, S., Iacovino, K.: Atmospheric injection of sulfur from the Medusae Fossae forming events. Planet Space Sci. 179, 104734 (2019)

    Article  Google Scholar 

  • Patel, M.R., Sellers, G., Mason, J.P., et al. ExoMars TGO/NOMAD‐UVIS vertical profiles of ozone: 1 seasonal variation and comparison to water. J. Geophys. Res. Planets 126(11), e2021JE006837 (2021)

    Google Scholar 

  • Perrier, S., Bertaux, J.L., Lefèvre, F. et al.: Global distribution of total ozone on Mars from SPICAM/MEX UV measurements. J. Geophys. Res. Planets 111(E9) (2006)

    Google Scholar 

  • Pla-Garcia, J., Rafkin, S.C., Karatekin, Ö., Gloesener, E.: Comparing MSL curiosity rover TLS-SAM methane measurements with Mars regional atmospheric modeling system atmospheric transport experiments. J. Geophys. Res. Planets 124(8), 2141–2167 (2019)

    Article  ADS  Google Scholar 

  • Rodin, A.V., Korablev, O.I., Moroz, V.I.: Vertical distribution of water in the near-equatorial troposphere of Mars: water vapor and clouds. Icarus 125(1), 212–229 (1997)

    Article  ADS  Google Scholar 

  • Stern, J.C., Sutter, B., Freissinet, C., et al.: Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale crater. Mars Proc. Natl. Acad. Sci. 112(14), 4245–4250 (2015)

    Article  ADS  Google Scholar 

  • Stevens, M.H., et al.: Detection of the nitric oxide dayglow on Mars by MAVEN/IUVS. J. Geophys. Res. Planet 124(5): 1226–1237 (2019)

    Google Scholar 

  • Vandaele, A.C., Daerden, F., Thomas, I., et al.: Impact of the 2018 global dust storm on Mars atmosphere composition as observed by NOMAD on ExoMars Trace Gas Orbiter. In: AGU Fall Meeting Abstracts, vol. 2018, pp. P31A-03 (2018)

    Google Scholar 

  • Webster, C.R., Mahaffy, P.R., Atreya, S.K., et al.: Mars methane detection and variability at gale crater. Science 347(6220), 415–417 (2015)

    Article  ADS  Google Scholar 

  • Webster, C.R., Mahaffy, P.R., Atreya, S.K., et al.: Background levels of methane in Mars’ atmosphere show strong seasonal variations. Science 360(6393), 1093–1096 (2018)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Haider .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haider, S.A. (2023). Trace Gases of Mars Atmosphere. In: Aeronomy of Mars. Astrophysics and Space Science Library, vol 469. Springer, Singapore. https://doi.org/10.1007/978-981-99-3138-5_19

Download citation

Publish with us

Policies and ethics

Navigation