Past, Present and Possible Future Application of Nanoparticle in Contaminated Soil Remediation

  • Chapter
  • First Online:
Nanomaterials for Environmental and Agricultural Sectors

Abstract

Many types of pollution have long threatened soil, the base of ecology. The distinctive physicochemical and biological properties of nanotechnology (NT), which differ from those in a large-scale model for the same substance, have drawn the attention of numerous scientists. Nanoparticles (NPs) have many uses in industries, including health, medication delivery, electronics, fuel cells, solar cells, food, space exploration and more. NPs have demonstrated several advantages for treating various soil contaminants in these applications. The development of NPs might pave the way for a more environmentally friendly and sustainable method of removing hazardous substances from contaminated soils more quickly. Numerous initiatives have been taken to boost the effectiveness of phytoremediation, including the use of rhizobacteria, genetic engineering and chemical additions. Herein, a combination of NT and bioremediation has opened up new possibilities for modernizing the remedy processes. Since the nanoscale process enhances the adsorption and degradation of contaminants, innovative remediation systems integrate nano-technological and biological remediation strategies. Due to their special surface qualities, NPs may absorb/adsorb a wide range of pollutants and accelerate processes by reducing the energy needed to break them down. Consequently, this remediation procedure prevents contaminants from building up and spreading from one medium to another. This chapter covers all potential uses of NPs in the rehabilitation of polluted soils and any related environmental issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 171.19
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ali B, Gill RA, Yang S, Gill MB, Farooq MA, Liu D, Daud MK, Ali S, Zhou W (2015) Regulation of cadmium-induced proteomic and metabolic changes by 5-aminolevulinic acid in leaves of brassica napus L. PLoS ONE 10(4):123328. https://doi.org/10.1371/JOURNAL.PONE.0123328

  2. Ali H, Khan E (2018) Trophic transfer, bioaccumulation, and biomagnification of non-essential hazardous heavy metals and metalloids in food chains/webs—Concepts and implications for wildlife and human health 25(6):1353–1376. https://doi.org/10.1080/10807039.2018.1469398

  3. Alissa EM, Ferns GA (2011) Heavy metal poisoning and cardiovascular disease. J Toxicol. https://doi.org/10.1155/2011/870125

  4. Arif N, Yadav V, Singh S, Singh S, Ahmad P, Mishra RK, Sharma S, Tripathi DK, Dubey NK, Chauhan DK (2016) Influence of high and low levels of plant-beneficial heavy metal ions on plant growth and development. Front Environ Sci 4(NOV):69. https://doi.org/10.3389/FENVS.2016.00069/BIBTEX

  5. Ashraf S, Ali Q, Zahir ZA, Ashraf S, Asghar HN (2019) Phytoremediation: environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol Environ Saf 174:714–727. https://doi.org/10.1016/J.ECOENV.2019.02.068

    Article  CAS  Google Scholar 

  6. Ayangbenro AS, Babalola OO (2017) A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Pub Health 14(1). https://doi.org/10.3390/IJERPH14010094

  7. Bachheti R, Fikadu A, Bachheti A, Husen A (2020) Biogenic fabrication of nanomaterials from flower-based chemical compounds, characterization and their various applications: a review. Saudi J Biol Sci 27(10):2551–2562. https://doi.org/10.1016/J.SJBS.2020.05.012

  8. Barzegar G, Jorfi S, Soltani RDC, Ahmadi M, Saeedi R, Abtahi M, Ramavandi B, Baboli Z (2017) Enhanced Sono-Fenton-like oxidation of PAH-contaminated soil using nano-sized magnetite as catalyst: optimization with response surface methodology 26(5):538–557. https://doi.org/10.1080/15320383.2017.1363157

  9. Basheer AA (2018) Chemical chiral pollution: impact on the society and science and need of the regulations in the 21st century. Chirality 30(4):402–406. https://doi.org/10.1002/CHIR.22808

  10. Behzadi S, Serpooshan V, Tao W, Hamaly MA, Alkawareek MY, Dreaden EC, Brown D, Alkilany AM, Farokhzad OC, Mahmoudi M (2017) Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev 46(14):4218. https://doi.org/10.1039/C6CS00636A

  11. Bidast S, Golchin A, Baybordi A, Zamani A, Naidu R (2020) The effects of non-stabilised and Na-carboxymethylcellulose-stabilised iron oxide nanoparticles on remediation of Co-contaminated soils. Chemosphere 261. https://doi.org/10.1016/J.CHEMOSPHERE.2020.128123

  12. Blinova I, Ivask A, Heinlaan M, Mortimer M, Kahru A (2010) Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environ Pollut (Barking, Essex : 1987) 158(1):41–47. https://doi.org/10.1016/J.ENVPOL.2009.08.017

  13. Blundell SP, Owens G (2021) Evaluation of enhancement techniques for the dechlorination of DDT by nanoscale zero-valent iron. Chemosphere 264(Pt 1). https://doi.org/10.1016/J.CHEMOSPHERE.2020.128324

  14. Briffa J, Sinagra E, Blundell R (2020) Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 6(9). https://doi.org/10.1016/J.HELIYON.2020.E04691

  15. Cecchin I, Reddy KR, Thomé A, Tessaro EF, Schnaid F (2017) Nanobioremediation: integration of nanoparticles and bioremediation for sustainable remediation of chlorinated organic contaminants in soils. Int Biodeterior Biodegradation 119:419–428. https://doi.org/10.1016/J.IBIOD.2016.09.027

  16. Cedervall T, Hansson LA, Lard M, Frohm B, Linse S (2012) Food chain transport of nanoparticles affects behaviour and fat metabolism in fish. PLoS ONE 7(2):e32254. https://doi.org/10.1371/JOURNAL.PONE.0032254

  17. Chandra RNK, Dubey VK (2017) Phytoremediation of industrial pollutants and life cycle assessment 441–470. https://doi.org/10.1201/9781315161549-18

  18. Dehghani MH, Sanaei D, Ali I, Bhatnagar A (2016) Removal of chromium(VI) from aqueous solution using treated waste newspaper as a low-cost adsorbent: Kinetic modeling and isotherm studies. J Mol Liq 215:671–679. https://doi.org/10.1016/J.MOLLIQ.2015.12.057

  19. Desiante WL, Minas NS, Fenner K (2021) Micropollutant biotransformation and bioaccumulation in natural stream biofilms. Water Res 193. https://doi.org/10.1016/J.WATRES.2021.116846

  20. Dietz KJ, Herth S (2011) Plant nanotoxicology. Trends Plant Sci 16(11):582–589. https://doi.org/10.1016/J.TPLANTS.2011.08.003

    Article  CAS  Google Scholar 

  21. Ekins P, Zenghelis D (2021) The costs and benefits of environmental sustainability. Sustain Sci 16(3):949–965. https://doi.org/10.1007/S11625-021-00910-5/FIGURES/5

    Article  Google Scholar 

  22. El-Temsah YS, Sevcu A, Bobcikova K, Cernik M, Joner EJ (2016) DDT degradation efficiency and ecotoxicological effects of two types of nano-sized zero-valent iron (nZVI) in water and soil. Chemosphere 144:2221–2228. https://doi.org/10.1016/J.CHEMOSPHERE.2015.10.122

  23. Enez A, Hudek L, Bräu L (2018) Reduction in trace element mediated oxidative stress towards cropped plants via beneficial microbes in irrigated crop** systems: a review. Appl Sci 8(10):1953. https://doi.org/10.3390/APP8101953

  24. Fay RM, Mumtaz MM (1996) Development of a priority list of chemical mixtures occurring at 1188 hazardous waste sites, using the HazDat database. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc 34(11–12):1163–1165. https://doi.org/10.1016/S0278-6915(97)00090-2

  25. Flora SJS, Pachauri V, Saxena G (2009) Arsenic, cadmium and lead. Reprod Dev Toxicol 415–438. https://doi.org/10.1016/B978-0-12-382032-7.10033-5

  26. Fujimori T, Takigami H (2014) Pollution distribution of heavy metals in surface soil at an informal electronic-waste recycling site. Environ Geochem Health 36(1):159–168. https://doi.org/10.1007/S10653-013-9526-Y/METRICS

  27. Gao J, Wang Y, Du Y, Zhou L, He Y, Ma L, Yin L, Kong W, Jiang Y (2017) Construction of biocatalytic colloidosome using lipase-containing dendritic mesoporous silica nanospheres for enhanced enzyme catalysis. Chem Eng J C(317):175–186. https://doi.org/10.1016/J.CEJ.2017.02.012

  28. Gerhardt KE, Gerwing PD, Greenberg BM (2017) Opinion: taking phytoremediation from proven technology to accepted practice. Plant Sci An Int J Experiment Plant Biol 256:170–185. https://doi.org/10.1016/J.PLANTSCI.2016.11.016

  29. Gil-Díaz M, Alonso J, Rodríguez-Valdés E, Gallego JR, Lobo MC (2017) Comparing different commercial zero valent iron nanoparticles to immobilize As and Hg in brownfield soil. Sci Total Environ 584–585:1324–1332. https://doi.org/10.1016/J.SCITOTENV.2017.02.011

    Article  Google Scholar 

  30. Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28(3):367–374. https://doi.org/10.1016/J.BIOTECHADV.2010.02.001

  31. Gondikas AP, Von Der Kammer F, Reed RB, Wagner S, Ranville JF, Hofmann T (2014) Release of TiO2 nanoparticles from sunscreens into surface waters: a one-year survey at the old danube recreational lake. Environ Sci Technol 48(10):5415–5422. https://doi.org/10.1021/ES405596Y/SUPPL_FILE/ES405596Y_SI_001.PDF

  32. Gong X, Huang D, Liu Y, Peng Z, Zeng G, Xu P, Cheng M, Wang R, Wan J (2018) Remediation of contaminated soils by biotechnology with nanomaterials: bio-behavior, applications, and perspectives. Crit Rev Biotechnol 38(3):455–468. https://doi.org/10.1080/07388551.2017.1368446

    Article  CAS  Google Scholar 

  33. Gorovtsov A, Demin K, Sushkova S, Minkina T, Grigoryeva T, Dudnikova T, Barbashev A, Semenkov I, Romanova V, Laikov A, Rajput V, Kocharovskaya Y (2022) The effect of combined pollution by PAHs and heavy metals on the topsoil microbial communities of Spolic Technosols of the lake Atamanskoe Southern Russia. Environ Geochem Health 44(4):1299–1315. https://doi.org/10.1007/S10653-021-01059-X

  34. Guagliardi I, Cicchella D, De Rosa R (2012) A geostatistical approach to assess concentration and spatial distribution of heavy metals in urban soils. Water Air Soil Pollut 223(9):5983–5998. https://doi.org/10.1007/S11270-012-1333-Z/METRICS

    Article  CAS  Google Scholar 

  35. Hidangmayum A, Debnath A, Guru A, Singh BN, Upadhyay SK, Dwivedi P (2022) Mechanistic and recent updates in nano-bioremediation for develo** green technology to alleviate agricultural contaminants. Int J Environ Sci Technol 2022:1–26. https://doi.org/10.1007/S13762-022-04560-7

    Article  Google Scholar 

  36. Hou S, Wu B, Peng D, Wang Z, Wang Y, Xu H (2019) Remediation performance and mechanism of hexavalent chromium in alkaline soil using multi-layer loaded nano-zero-valent iron. Environ Pollut 252:553–561. https://doi.org/10.1016/J.ENVPOL.2019.05.083

    Article  CAS  Google Scholar 

  37. Huang H, Ullah F, Zhou DX, Yi M, Zhao Y (2019) Mechanisms of ROS regulation of plant development and stress responses. Front Plant Sci 10:800. https://doi.org/10.3389/FPLS.2019.00800/BIBTEX

    Article  Google Scholar 

  38. Huber DL (2005) Synthesis, properties, and applications of iron nanoparticles. Small 1(5):482–501. https://doi.org/10.1002/SMLL.200500006

  39. Husen A, Siddiqi KS (2023) Advances in smart nanomaterials and their applications. Elsevier Inc., 50 Hampshire St., 5th Floor, Cambridge, MA 02139, USA

    Google Scholar 

  40. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60. https://doi.org/10.2478/INTOX-2014-0009

    Article  Google Scholar 

  41. Kononova, MM (2013) Soil Organic Matter: Its nature, its role in soil formation and in soil fertility 545

    Google Scholar 

  42. Krishna D, Sachan HK, Jatav HS (2022) Management of sewage sludge for environmental sustainability. Sustain Manage Util Sew Sludge 353–381. https://doi.org/10.1007/978-3-030-85226-9_17

  43. Lahiri D, Nag M, Sheikh HI, Sarkar T, Edinur HA, Pati S, Ray RR (2021) Microbiologically-synthesized nanoparticles and their role in silencing the biofilm signaling cascade. Front Microbiol 12:180. https://doi.org/10.3389/FMICB.2021.636588/BIBTEX

    Article  Google Scholar 

  44. Liu NM, Miyashita L, Maher BA, McPhail G, Jones CJP, Barratt B, Thangaratinam S, Karloukovski V, Ahmed IA, Aslam Z, Grigg J (2021) Evidence for the presence of air pollution nanoparticles in placental tissue cells. Sci Total Environ 751. https://doi.org/10.1016/J.SCITOTENV.2020.142235

  45. Ltifi M, Abichou T, Tisot JP (2014) Effects of soil aging on mechanical and hydraulic properties of a silty soil. Geotech Geol Eng 32(4):1101–1108. https://doi.org/10.1007/S10706-014-9784-1

    Article  Google Scholar 

  46. Maher BA, González-Maciel A, Reynoso-Robles R, Torres-Jardón R, Calderón-Garcidueñas L (2020) Iron-rich air pollution nanoparticles: an unrecognised environmental risk factor for myocardial mitochondrial dysfunction and cardiac oxidative stress. Environ Res 188. https://doi.org/10.1016/J.ENVRES.2020.109816

  47. Mandzhieva S, Chaplygin V, Chernikova N, Fedorenko A, Voloshina M, Minkina T, Rajput VD, Elinson M, Wong MH (2022) Responses of Spring Barley to Zn- and Cd-induced stress: morphometric analysis and cytotoxicity assay. Plants 11(23):3332. https://doi.org/10.3390/PLANTS11233332

  48. Martin JL, Maris V, Simberloff DS (2016) The need to respect nature and its limits challenges society and conservation science. Proc Natl Acad Sci 113(22):6105–6112. https://doi.org/10.1073/PNAS.1525003113

    Article  CAS  Google Scholar 

  49. Maurer-Jones MA, Christenson JR, Haynes CL (2012) TiO2 nanoparticle-induced ROS correlates with modulated immune cell function. J Nanopart Res 14(12):1291. https://doi.org/10.1007/S11051-012-1291-9

    Article  Google Scholar 

  50. Maurer-Jones MA, Lin YS, Haynes CL (2010) Functional assessment of metal oxide nanoparticle toxicity in immune cells. ACS Nano 4(6):3363–3373. https://doi.org/10.1021/NN9018834

    Article  CAS  Google Scholar 

  51. McLaughlin MJ, Smolders E (2001) Background zinc concentrations in soil affect the zinc sensitivity of soil microbial processes—a rationale for a metalloregion approach to risk assessments. Environ Toxicol Chem 20(11):2639–2643. https://doi.org/10.1002/ETC.5620201132

    Article  CAS  Google Scholar 

  52. Medina-Pérez G, Fernández-Luqueño F, Vazquez-Nuñez E, López-Valdez F, Prieto-Mendez J, Madariaga-Navarrete A, Miranda-Arámbula M (2019) Remediating polluted soils using nanotechnologies: environmental benefits and risks. Polish J Environ Stud 28(3):1013–1030. https://doi.org/10.15244/PJOES/87099

  53. Mehndiratta P, Jain A, Srivastava S, Gupta N (2013) Environmental pollution and nanotechnology. Environ Pollut 2(2). https://doi.org/10.5539/EP.V2N2P49

  54. Mukhopadhyay S, Maiti SK (2010) Phytoremediation of metal mine waste. Appl Ecol Environ Res 8(3):207–222

    Google Scholar 

  55. Naderi Peikam E, Jalali M (2019) Application of three nanoparticles (Al2O3, SiO2 and TiO2) for metal-contaminated soil remediation (measuring and modeling). Int J Environ Sci Technol 16(11):7207–7220. https://doi.org/10.1007/S13762-018-2134-8

    Article  CAS  Google Scholar 

  56. Pretty J, Bharucha ZP (2014) Sustainable intensification in agricultural systems. Ann Bot 114(8):1571–1596. https://doi.org/10.1093/AOB/MCU205

    Article  Google Scholar 

  57. Qian Y, Qin C, Chen M, Lin S (2020) Nanotechnology in soil remediation—applications versus implications. Ecotoxicol Environ Saf 201. https://doi.org/10.1016/J.ECOENV.2020.110815

  58. Qiao Y, Wu J, Xu Y, Fang Z, Zheng L, Cheng W, Tsang EP, Fang J, Zhao D (2017) Remediation of cadmium in soil by biochar-supported iron phosphate nanoparticles. Ecol Eng 106:515–522. https://doi.org/10.1016/J.ECOLENG.2017.06.023

    Article  Google Scholar 

  59. Raffa CM, Chiampo F, Shanthakumar S (2021) Remediation of metal/metalloid-polluted soils: a short review. Appl Sci 11:4134; 11(9):4134. https://doi.org/10.3390/APP11094134

  60. Rajput VD, Minkina T, Kumari A, Shende SS, Ranjan A, Faizan M, Barakvov A, Gromovik A, Gorbunova N, Rajput P, Singh A, Khabirov I, Nazarenko O, Sushkova S, Kızılkaya R (2022) A review on nanobioremediation approaches for restoration of contaminated soil. Eurasian J Soil Sci 11(1):43–60. https://doi.org/10.18393/EJSS.990605

  61. Rasmussen LD, Sørensen SJ, Turner RR, Barkay T (2000) Application of a mer-lux biosensor for estimating bioavailable mercury in soil. Soil Biol Biochem 32(5):639–646. https://doi.org/10.1016/S0038-0717(99)00190-X

    Article  CAS  Google Scholar 

  62. Reimann C, Birke M, Demetriades A, Filzmoser P, O’Connor P (2014) Chemistry of Europe’s agricultural soils, Part B. Chem Eur Agric Soils 352

    Google Scholar 

  63. Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. https://doi.org/10.1021/JF104517J

    Article  Google Scholar 

  64. Saha JK, Selladurai R, Coumar MV, Dotaniya ML, Kundu S, Patra AK (2017) Status of soil pollution in India 271–315. https://doi.org/10.1007/978-981-10-4274-4_11

  65. Singh Y, Saxena MK (2022) Insights into the recent advances in nano-bioremediation of pesticides from the contaminated soil. Front Microbiol 13:3906. https://doi.org/10.3389/FMICB.2022.982611/BIBTEX

    Article  Google Scholar 

  66. Song Y, Fang G, Zhu C, Zhu F, Wu S, Chen N, Wu T, Wang Y, Gao J, Zhou D (2009) Zero-valent iron activated persulfate remediation of polycyclic aromatic hydrocarbon-contaminated soils: An in situ pilot-scale study. Chem Eng J 355:65–75. https://doi.org/10.1016/J.CEJ.2018.08.126

    Article  Google Scholar 

  67. Stater EP, Sonay AY, Hart C, Grimm J (2021) The ancillary effects of nanoparticles and their implications for nanomedicine. Nat Nanotechnol 16(11):1180–1194. https://doi.org/10.1038/s41565-021-01017-9

  68. Stevenson F (1994) Humus chemistry: genesis, composition, reaction. Humus Chem 72(4):512

    Google Scholar 

  69. Struik PC, Kuyper TW (2017) Sustainable intensification in agriculture: the richer shade of green. A review. Agron Sustain Dev 37(5):1–15. https://doi.org/10.1007/S13593-017-0445-7/FIGURES/3

    Article  Google Scholar 

  70. Sun RJ, Chen JH, Fan TT, Zhou DM, Wang YJ (2018) Effect of nanoparticle hydroxyapatite on the immobilization of Cu and Zn in polluted soil. Environ Sci Pollut Res Int 25(1):73–80. https://doi.org/10.1007/S11356-016-8063-5

    Article  CAS  Google Scholar 

  71. Sunanda S, Misra M, Ghosh Sachan S (2022) Nanobioremediation of heavy metals: perspectives and challenges. J Basic Microbiol 62(3–4):428–443. https://doi.org/10.1002/JOBM.202100384

    Article  Google Scholar 

  72. Taylor AF, Rylott EL, Anderson CWN, Bruce NC (2014) Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLoS ONE 9(4):e93793. https://doi.org/10.1371/JOURNAL.PONE.0093793

    Article  Google Scholar 

  73. Tian H, Liang Y, Yang D, Sun Y (2020) Characteristics of PVP-stabilised NZVI and application to dechlorination of soil-sorbed TCE with ionic surfactant. Chemosphere 239. https://doi.org/10.1016/J.CHEMOSPHERE.2019.124807

  74. Tiede K, Boxall ABA, Tear SP, Lewis J, David H, Hassellöv M (2008) Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam Part A, Chem Anal Control, Expo Risk Assess 25(7):795–821. https://doi.org/10.1080/02652030802007553

  75. Usman M, Farooq M, Wakeel A, Nawaz A, Cheema SA, Rehman HU, Ashraf I, Sanaullah M (2020) Nanotechnology in agriculture: current status, challenges and future opportunities. Sci Total Environ 721:137778. https://doi.org/10.1016/J.SCITOTENV.2020.137778

  76. Vittori Antisari L, Carbone S, Gatti A, Vianello G, Nannipieri P (2009) Toxicity of metal oxide (CeO2, Fe3O4, SnO2) engineered nanoparticles on soil microbial biomass and their distribution in soil. Soil Biol Biochem 60:87–94. https://doi.org/10.1016/J.SOILBIO.2013.01.016

  77. Wang AN, Teng Y, Hu XF, Wu LH, Huang YJ, Luo YM, Christie P (2016) Diphenylarsinic acid contaminated soil remediation by titanium dioxide (P25) photocatalysis: degradation pathway, optimization of operating parameters and effects of soil properties. Sci Total Environ 541:348–355. https://doi.org/10.1016/J.SCITOTENV.2015.09.023

  78. Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed 12:1227. https://doi.org/10.2147/IJN.S121956

  79. **ao L, Cheng H, Cai H, Wei Y, Zan G, Feng X, Liu C, Li L, Huang L, Wang F, Chen X, Zou Y, Yang X (2022) Associations of heavy metals with activities of daily living disability: an epigenome-wide view of DNA methylation and mediation analysis. Environ Health Perspect 130(8):087009-1-087009–087011. https://doi.org/10.1289/EHP10602

  80. Yang J, Teng Y, Wang J, Li J (2011) Vanadium uptake by alfalfa grown in V-Cd-contaminated soil by pot experiment. Biol Trace Elem Res 142(3):787–795. https://doi.org/10.1007/S12011-010-8777-Z

  81. Zhang R, Zhang N, Fang Z (2018) In situ remediation of hexavalent chromium contaminated soil by CMC-stabilized nanoscale zero-valent iron composited with biochar. Water Sci Technol J Int Assoc Water Pollut Res 77(5–6):1622–1631. https://doi.org/10.2166/WST.2018.039

  82. Zhang T, Lowry GV, Capiro NL, Chen J, Chen W, Chen Y, Dionysiou DD, Elliott DW, Ghoshal S, Hofmann T, Hsu-Kim H, Hughes J, Jiang C, Jiang G, **g C, Kavanaugh M, Li Q, Liu S, Ma J, Alvarez PJJ (2019) In situ remediation of subsurface contamination: opportunities and challenges for nanotechnology and advanced materials. Environ Sci Nano 6(5):1283–1302. https://doi.org/10.1039/C9EN00143C

  83. Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5(3–4):323–332. https://doi.org/10.1023/A:1025520116015/METRICS

  84. Zhu X, Wang J, Zhang X, Chang Y, Chen Y (2010) Trophic transfer of TiO(2) nanoparticles from Daphnia to zebrafish in a simplified freshwater food chain. Chemosphere 79(9):928–933. https://doi.org/10.1016/J.CHEMOSPHERE.2010.03.022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kundan Kumar Chaubey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, S. et al. (2023). Past, Present and Possible Future Application of Nanoparticle in Contaminated Soil Remediation. In: Bachheti, R.K., Bachheti, A., Husen, A. (eds) Nanomaterials for Environmental and Agricultural Sectors. Smart Nanomaterials Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-2874-3_3

Download citation

Publish with us

Policies and ethics

Navigation