Modeling and Simulation of Nano-devices

  • Reference work entry
  • First Online:
Handbook of Integrated Circuit Industry
  • 2258 Accesses

Abstract

Modeling and simulation of nano-devices can be used to study and predict the performance of the nanoscale devices and play an increasingly important role in understanding the working mechanisms of devices and improving their performance. Since the MOSFET device size shrinks to nanoscale, the performance of nano-devices is increasingly affected by various quantum effects and nanoscale material properties. Quantum theoretical simulation methods based on quantum effects have been developed to research the new nano-devices. This chapter describes several modeling and simulation methods of nano-devices, including Monte Carlo simulation, nonequilibrium Green’s function (NEGF), molecular dynamics simulation, first principles method, density functional theory, and atomic device simulation. The basic principle of simulation methods and application potential are briefly introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 802.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 802.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Dutton, Z. Yu, Technology CAD – Computer Simulation of IC Processes and Devices (Springer, New York, NY, USA, 1993)

    Google Scholar 

  2. C. Jacoboni, L. Reggiani, Rev. Mod. Phys. 55, 645–705 (1983)

    Article  Google Scholar 

  3. K. Hess, Monte Carlo Device Simulation: Full Band and beyond[M] (Kluwer Academic Publishers, New York, NY, USA, 1991)

    Google Scholar 

  4. C. Jacoboni, P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation[M] (Springer-Verlag, Berlin, Germany, 1989)

    Google Scholar 

  5. L. Ye, Monte Carlo Simulation of Small-Size Semiconductor Devices (Science Press, Bei**g, China, 1997)

    Google Scholar 

  6. M. Lundstrom, Fundamentals of Carrier Transport, 2nd edn. (Cambridge University Press, Cambridge, UK, 1990)

    Google Scholar 

  7. K. Natori, J. Appl. Phys. 76(8), 4879–4890 (1994)

    Article  Google Scholar 

  8. Lundstrom M. Electron devices meeting, 2003. IEDM ’03 technical digest. IEEE International. IEEE, 2004, p. 33.1.1–33.1.4

    Google Scholar 

  9. M. Luisier, A. Schenk, W. Fichtner, et al., Phys. Rev. B 74, 205323 (2006)

    Article  Google Scholar 

  10. D. Vasileska, S.M. Goodnick, G. Klimeck, Computational Electronics (Taylor and Francis Group, LLC, Milton Park, Oxfordshire, UK, 2010)

    Google Scholar 

  11. D. Vasileska, S.M. Goodnick, Synthesis Lectures on Computational Electromagnetics 1(1), 1–216 (2005)

    Article  Google Scholar 

  12. S. Datta, Quantum Transport: Atom to Transistor[M] (Cambridge University Press, Cambridge, UK, 2005)

    Google Scholar 

  13. M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Oxford University Press, Oxford, 1954)

    MATH  Google Scholar 

  14. R.N. Barnett, U. Landman, Phys. Rev. B 48(4), 2081 (1993)

    Article  Google Scholar 

  15. B.J. Alder, T.E. Wainwright, J. Chem. Phys. 27, 1208–1209 (1957)

    Article  Google Scholar 

  16. D. Frenkel, B. Smit, Understanding Molecular Simulations: From Algorithms to Applications (Academic Press, San Diego, 1996)

    MATH  Google Scholar 

  17. N. Onofrio, D. Guzman, A. Strachan, Nat. Mater. 14(4), 440–446 (2015)

    Article  Google Scholar 

  18. G.F. Schneider, S.W. Kowalczyk, V.E. Calado, et al., Nano Lett. 10(8), 3163–3167 (2010)

    Article  Google Scholar 

  19. D.R. Hatree, Proc. Camb. Philos. Soc. 24, 111 (1928)

    Article  Google Scholar 

  20. V. Fock, Naherungsmethode zur Losung des quantenmechanischen Mehrkorperproblems. Zeitschrift für Physik. 61, 126–148 (1930). https://doi.org/10.1007/BF01340294

  21. J.C. Slater, Phys. Rev. 34, 1293 (1929)

    Article  Google Scholar 

  22. R.O. Jones, Rev. Mod. Phys. 87(3), 897 (2015)

    Article  Google Scholar 

  23. M. Ashton, J. Paul, S.B. Sinnott, R.G. Hennig, Phys. Rev. Lett. 10, 106101 (2017)

    Article  Google Scholar 

  24. J. Taylor, H. Guo, J. Wang, Phys. Rev. B 63(24), 245407 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aoyan Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Publishing House of Electronics Industry

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Liu, F., Wang, Y., Zeng, L., Du, G., Liu, X. (2024). Modeling and Simulation of Nano-devices. In: Wang, Y., Chi, MH., Lou, J.JC., Chen, CZ. (eds) Handbook of Integrated Circuit Industry. Springer, Singapore. https://doi.org/10.1007/978-981-99-2836-1_86

Download citation

Publish with us

Policies and ethics

Navigation