Artificial Intelligence and Hyperspectral Modeling for Soil Management

  • Chapter
  • First Online:
Innovation for Environmentally-friendly Food Production and Food Safety in China

Part of the book series: Sustainability Sciences in Asia and Africa ((SAFS))

  • 178 Accesses

Abstract

Soil management is important for sustainable agriculture, playing a vital role in food production and maintaining ecological functions in the agroecosystem. Effective soil management depends on highly accurate soil property estimation. Machine learning (ML) is an effective tool for data mining, selection of key soil properties, modeling the non-linear relationship between different soil properties. Through coupling with spectral imaging, ML algorithms have been extensively used to estimate physical, chemical, and biological properties quickly and accurately for more effective soil management. Most of the soil properties are estimated by either near infrared (NIR), Vis-NIR, or mid-infrared (MIR) in combination with different ML algorithms. Spectroscopy is widely used in estimation of chemical properties of soil samples. Spectral imaging from both UAV and satellite platforms should be taken to improve the spatial resolution of different soil properties. Spectral image super-resolution should be taken to generate spectral images in high spatial, spectral, and temporal resolutions; more advanced algorithms, especially deep learning (DL) should be taken for soil properties’ estimation based on the generated ‘super’ images. Using hyperspectral modeling, soil water content, soil organic matter, total N, total K, total P, clay and sand were found to be successfully predicted. Generally, MIR produced better predictions than Vis-NIR, but Vis-NIR outperformed MIR for a number of properties. An advantage of Vis-NIR is instrument portability although a new range of MIR portable devices is becoming available. In-field predictions for water, total organic C, extractable phosphorus, and total N appear similar to laboratory methods, but there are issues regarding, for example, sample heterogeneity, moisture content, and surface roughness. More precise and detailed soil property estimation will facilitate future soil management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

Download references

Acknowledgements

The work was funded through the project “CHN17/0019 Sinograin II: Technological innovation to support environmentally-friendly food production and food safety under a changing climate-opportunities and challenges for Norway-China cooperation” (funded by the Norwegian Ministry of Foreign Affairs through the Royal Norwegian Embassy in Bei**g).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangsan Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhao, J., Wan, S. (2023). Artificial Intelligence and Hyperspectral Modeling for Soil Management. In: Clarke, N., Peng, D., Clarke, J.L. (eds) Innovation for Environmentally-friendly Food Production and Food Safety in China. Sustainability Sciences in Asia and Africa(). Springer, Singapore. https://doi.org/10.1007/978-981-99-2828-6_4

Download citation

Publish with us

Policies and ethics

Navigation