Reuterin: A Broad Spectrum Antimicrobial Agent and Its Applications

  • Chapter
  • First Online:
Industrial Microbiology and Biotechnology

Abstract

Probiotic bacteria play a vital role in living animals including human health by hel** in the digestion of foods and boosting the immune system. Hence, microbes with better properties are of interest. Some probiotic bacteria produce specific substances that can inhibit or inactivate other organisms which compete for nutrients and space. The β-hydroxypropionaldehyde (3-HPA) known as reuterin is produced by Lactobacillus reuteri. It has broad antimicrobial activity against potentially harmful microorganisms without adversely affecting the beneficial gut flora. Its production occurs under the anaerobic condition where the enzyme glycerol dehydratase facilitates the conversion of glycerol to reuterin by removing water molecules. The structure of reuterin contains both hydroxy and aldehyde functional groups. Reuterin is a low molecular weight water-soluble compound resilient to proteolytic and lipolytic enzymes, and remains active at a varied pH and hence finds applications in industries. This chapter focuses on reuterin production, stability, antimicrobial activity, and its applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1,3-PDO:

1,3-propanediol

3-HP:

3-hydroxypropionic acid

3-HPA:

3-Hydroxypropionaldehyde

FT-IR:

Fourier-transform infrared spectroscopy

GRAS:

Generally regarded as safe

HCA:

Hydroxycinnamic acid

HHP:

High hydrostatic pressure

HPLC:

High-performance liquid chromatography

IC-PAD:

Ion chromatography-pulsed amperometric detection

MRS:

De Man, Rogosa and Sharpe Medium

RP-HPLC:

Reverse phase high-performance liquid chromatography

TVC:

Total viable counts

References

  • Anadón A, Castellano V, Martínez-Larrañaga MR (2014) Regulation and guidelines of probiotics and prebiotics. In: Otles S (ed) Probiotics and prebiotics in food, nutrition and health. CRC Press, Boca Raton, FL, pp 91–113

    Google Scholar 

  • Angiolillo L, Conte A, Del Nobile MA (2017) Microencapsulated Lactobacillus reuteri combined with modified atmosphere as a way to improve tuna burger shelf life. Int J Food Sci Technol 52(7):1576–1584

    Article  CAS  Google Scholar 

  • Angiolillo L, Conte A, Del Nobile MA (2018) A new method to bio-preserve sea bass fillets. Int J Food Microbiol 271:60–66

    Article  CAS  PubMed  Google Scholar 

  • Arqués JL, Fernández J, Gaya P, Nuñez M, Rodrı́guez E, Medina M (2004) Antimicrobial activity of reuterin in combination with nisin against food-borne pathogens. Int J Food Microbiol 95(2):225–229

    Article  PubMed  Google Scholar 

  • Arqués JL, Rodríguez E, Nuñez M, Medina M (2008a) Antimicrobial activity of nisin, reuterin, and the lactoperoxidase system on Listeria monocytogenes and Staphylococcus aureus in cuajada, a semisolid dairy product manufactured in Spain. J Dairy Sci 91(1):70–75

    Article  PubMed  Google Scholar 

  • Arqués JL, Rodríguez E, Nuñez M, Medina M (2008b) Inactivation of gram-negative pathogens in refrigerated milk by reuterin in combination with nisin or the lactoperoxidase system. Eur Food Res Technol 227(1):77–82

    Article  Google Scholar 

  • Arqués JL, Rodríguez E, Nuñez M, Medina M (2011) Combined effect of reuterin and lactic acid bacteria bacteriocins on the inactivation of food-borne pathogens in milk. Food Control 22(3–4):457–461

    Article  Google Scholar 

  • Asare PT (2019) Bioprotective effects of reuterin produced by bioconversion of glycerol by Lactobacillus reuteri in fresh-cut vegetable and chicken gut (Doctoral dissertation, ETH Zurich)

    Google Scholar 

  • Asare PT, Greppi A, Stettler M, Schwab C, Stevens MJ, Lacroix C (2018) Decontamination of minimally-processed fresh lettuce using reuterin produced by Lactobacillus reuteri. Front Microbiol 9:1421

    Article  PubMed  PubMed Central  Google Scholar 

  • Asare PT, Zurfluh K, Greppi A, Lynch D, Schwab C, Stephan R, Lacroix C (2020) Reuterin demonstrates potent antimicrobial activity against a broad panel of human and poultry meat campylobacter spp. isolates. Microorganisms 8(1):78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avila M, Gómez-Torres N, Hernández M, Garde S (2014) Inhibitory activity of reuterin, nisin, lysozyme and nitrite against vegetative cells and spores of dairy-related clostridium species. Int J Food Microbiol 172:70–75

    Article  CAS  PubMed  Google Scholar 

  • Axelsson LT, Chung TC, Dobrogosz WJ, Lindgren SE (1989) Production of a broad-spectrum antimicrobial substance by Lactobacillus reuteri. Microb Ecol Health Dis 2(2):131–136

    Google Scholar 

  • Barbirato F, Grivet JP, Soucaille P, Bories A (1996) 3-Hydroxypropionaldehyde, an inhibitory metabolite of glycerol fermentation to 1, 3-propanediol by enterobacterial species. Appl Environ Microbiol 62(4):1448–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer R, Cowan DA, Crouch A (2010a) Acrolein in wine: importance of 3-hydroxypropionaldehyde and derivatives in production and detection. J Agric Food Chem 58(6):3243–3250

    Article  CAS  PubMed  Google Scholar 

  • Bauer R, du Toit M, Kossmann J (2010b) Influence of environmental parameters on production of the acrolein precursor 3-hydroxypropionaldehyde by Lactobacillus reuteri DSMZ 20016 and its accumulation by wine lactobacilli. Int J Food Microbiol 137(1):28–31

    Article  CAS  PubMed  Google Scholar 

  • Bell HN, Rebernick RJ, Goyert J, Singhal R, Kuljanin M, Kerk SA et al (2022) Reuterin in the healthy gut microbiome suppresses colorectal cancer growth through altering redox balance. Cancer Cell 40(2):185–200

    Article  CAS  PubMed  Google Scholar 

  • Bermudez-Brito M, Plaza-Díaz J, Muñoz-Quezada S, Gómez-Llorente C, Gil A (2012) Probiotic mechanisms of action. Ann Nutr Metab 61(2):160–174

    Article  CAS  PubMed  Google Scholar 

  • Bertin Y, Habouzit C, Dunière L, Laurier M, Durand A, Duchez D et al (2017) Lactobacillus reuteri suppresses E. coli O157: H7 in bovine ruminal fluid: toward a pre-slaughter strategy to improve food safety? PLoS One 12(11):e0187229

    Article  PubMed  PubMed Central  Google Scholar 

  • Casas IA, Dobrogosz WJ (2000) Validation of the probiotic concept: Lactobacillus reuteri confers broad-spectrum protection against disease in humans and animals. Microb Ecol Health Dis 12(4):247–285. https://doi.org/10.1080/08910600050216246-1

    Article  Google Scholar 

  • Castellani C, Obermüller B, Kienesberger B, Singer G, Peterbauer C, Grabherr R et al (2021) Production, storage stability, and susceptibility testing of reuterin and its impact on the murine fecal microbiome and volatile organic compound profile. Front Microbiol 12:699858

    Article  PubMed  PubMed Central  Google Scholar 

  • Cleusix V, Lacroix C, Vollenweider S, Duboux M, Le Blay G (2007) Inhibitory activity spectrum of reuterin produced by Lactobacillus reuteri against intestinal bacteria. BMC Microbiol 7(1):1–9

    Article  Google Scholar 

  • Clomburg JM, Gonzalez R (2013) Anaerobic fermentation of glycerol: a platform for renewable fuels and chemicals. Trends Biotechnol 31(1):20–28

    Article  CAS  PubMed  Google Scholar 

  • Daniel R, Bobik TA, Gottschalk G (1998) Biochemistry of coenzyme B12-dependent glycerol and diol dehydratases and organization of the encoding genes. FEMS Microbiol Rev 22(5):553–566

    Article  CAS  PubMed  Google Scholar 

  • Dishisha T, Pyo SH, Hatti-Kaul R (2015) Bio-based 3-hydroxypropionic-and acrylic acid production from biodiesel glycerol via integrated microbial and chemical catalysis. Microb Cell Factories 14(1):1–11

    Article  Google Scholar 

  • Doleyres Y, Beck P, Vollenweider S, Lacroix C (2005) Production of 3-hydroxypropionaldehyde using a two-step process with Lactobacillus reuteri. Appl Microbiol Biotechnol 68(4):467–474

    Article  CAS  PubMed  Google Scholar 

  • El-Ziney MG, Van Den Tempel T, Debevere J, Jakobsen M (1999) Application of reuterin produced by Lactobacillus reuteri 12002 for meat decontamination and preservation. J Food Prot 62(3):257–261

    Article  CAS  PubMed  Google Scholar 

  • Engels C, Schwab C, Zhang J, Stevens MJ, Bieri C, Ebert MO et al (2016) Acrolein contributes strongly to antimicrobial and heterocyclic amine transformation activities of reuterin. Sci Rep 6(1):1–13

    Article  Google Scholar 

  • Fernández-Cruz ML, Martín-Cabrejas I, Pérez-del Palacio J, Gaya P, Díaz-Navarro C, Navas JM et al (2016) In vitro toxicity of reuterin, a potential food biopreservative. Food Chem Toxicol 96:155–159

    Article  PubMed  Google Scholar 

  • Fujiwara N, Murakami K, Nakao M, Toguchi M, Yumoto H, Amoh T et al (2017) Novel reuterin-related compounds suppress odour by periodontopathic bacteria. Oral Dis 23(4):492–497

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Torres N, Ávila M, Gaya P, Garde S (2014) Prevention of late blowing defect by reuterin produced in cheese by a Lactobacillus reuteri adjunct. Food Microbiol 42:82–88

    Article  PubMed  Google Scholar 

  • González M, Reginensi SM, Chilibroste P, Olivera J (2019) Effects of reuterin-producing Lactobacillus reuteri strain plus glycerol on the quality and aerobic stability of laboratory sorghum silage. J BioSci Biotechnol 8(2):105–113

    Google Scholar 

  • Greifova G, Májeková H, Greif G, Body P, Greifová M, Dubničková M (2017) Analysis of antimicrobial and immunomodulatory substances produced by heterofermentative Lactobacillus reuteri. Folia Microbiol 62(6):515–524

    Article  CAS  Google Scholar 

  • Guarner F, Malagelada JR (2003) Gut flora in health and disease. Lancet 361(9356):512–519

    Article  PubMed  Google Scholar 

  • Hanchi H, Hammami R, Gingras H, Kourda R, Bergeron MG, Ben Hamida J et al (2017) Inhibition of MRSA and of Clostridium difficile by durancin 61A: synergy with bacteriocins and antibiotics. Future Microbiol 12(3):205–212

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Carrillo JG, Orta-Zavalza E, González-Rodríguez SE, Montoya-Torres C, Sepúlveda-Ahumada DR, Ortiz-Rivera Y (2021) Evaluation of the effectivity of reuterin in pectin edible coatings to extend the shelf-life of strawberries during cold storage. Food Packag Shelf Life 30:100760

    Article  Google Scholar 

  • Hsieh PS, Chen CW, Kuo YW, Ho HH (2021) Lactobacillus spp. reduces ethanol-induced liver oxidative stress and inflammation in a mouse model of alcoholic steatohepatitis. Exp Ther Med 21(3):1–1

    Article  Google Scholar 

  • Jones ML, Martoni CJ, Parent M, Prakash S (2012) Cholesterol-lowering efficacy of a microencapsulated bile salt hydrolase-active Lactobacillus reuteri NCIMB 30242 yoghurt formulation in hypercholesterolaemic adults. Br J Nutr 107(10):1505–1513

    Article  CAS  PubMed  Google Scholar 

  • Ju JH, Jeon SG, Lee KM, Heo SY, Kim MS, Kim CH, Oh BR (2021) The biocatalytic production of 3-hydroxypropionaldehyde and evaluation of its stability. Catalysts 11(10):1139

    Article  CAS  Google Scholar 

  • Kandler O, Stetter KO, Köhl R (1980) Lactobacillus reuteri sp. nov., a new species of heterofermentative Lactobacilli. Central J Bacteriol 1(3):264–269

    Google Scholar 

  • Kim SJ, Kang CH, Kim GH, Cho H (2022) Anti-tumor effects of heat-killed L. reuteri MG5346 and L. casei MG4584 against human colorectal carcinoma through caspase-9-dependent apoptosis in xenograft model. Microorganisms 10(3):533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuleaşan H, Çakmakçı ML (2002) Effect of reuterin, produced by Lactobacillus reuteri on the surface of sausages to inhibit the growth of Listeria monocytogenes and Salmonella spp. Food Nahrung 46(6):408–410

    Article  PubMed  Google Scholar 

  • Kumar N, Kumar V, Waheed SM, Pradhan D (2020) Efficacy of reuterin and bacteriocins nisin and pediocin on preservation of raw milk procured from dairy farms. Food Technol Biotechnol 58(4):359–369. https://doi.org/10.17113/ftb.58.04.20.6728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langa S, Landete JM, Martín-Cabrejas I, Rodríguez E, Arqués JL, Medina M (2013) In situ reuterin production by Lactobacillus reuteri in dairy products. Food Control 33(1):200–206

    Article  CAS  Google Scholar 

  • Li S, Qi C, Zhu H, Yu R, **e C, Peng Y et al (2019) Lactobacillus reuteri improves gut barrier function and affects diurnal variation of the gut microbiota in mice fed a high-fat diet. Food Funct 10(8):4705–4715

    Article  CAS  PubMed  Google Scholar 

  • Louis P, Hold GL, Flint HJ (2014) The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 12(10):661–672

    Article  CAS  PubMed  Google Scholar 

  • Luo M, Hu M, Feng X, **ao Li W, Dong D, Wang W (2020) Preventive effect of Lactobacillus reuteri on melanoma. Biomed Pharmacother 126:109929

    Article  CAS  PubMed  Google Scholar 

  • Lüthi-Peng Q, Dileme F, Puhan Z (2002a) Effect of glucose on glycerol bioconversion by Lactobacillus reuteri. Appl Microbiol Biotechnol 59(2):289–296

    PubMed  Google Scholar 

  • Lüthi-Peng Q, Schärer S, Puhan Z (2002b) Production and stability of 3-hydroxypropionaldehyde in Lactobacillus reuteri. Appl Microbiol Biotechnol 60(1):73–80

    PubMed  Google Scholar 

  • Martín R, Olivares M, Marín ML, Xaus J, Fernández L, Rodríguez JM (2005) Characterization of a reuterin-producing Lactobacillus coryniformis strain isolated from a goat’s milk cheese. Int J Food Microbiol 104(3):267–277

    Article  PubMed  Google Scholar 

  • Martín-Cabrejas I, Langa S, Gaya P, Rodríguez E, Landete JM, Medina M, Arqués JL (2017) Optimization of reuterin production in cheese by Lactobacillus reuteri. J Food Sci Technol 54(5):1346–1349

    Article  PubMed  PubMed Central  Google Scholar 

  • Mauro CSI, Garcia S (2019) Coconut milk beverage fermented by Lactobacillus reuteri: optimization process and stability during refrigerated storage. J Food Sci Technol 56(2):854–864

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra SK, Malik RK, Manju G, Pandey N, Singroha G, Behare P, Kaushik JK (2012) Characterization of a reuterin-producing Lactobacillus reuteri BPL-36 strain isolated from human infant fecal sample. Probiotics Antimicrob Proteins 4(3):154–161

    Article  CAS  PubMed  Google Scholar 

  • Molin G, Johansson ML, Stahl M, Ahrné S, Andersson R, Jeppsson B, Bengmark S (1992) Systematics of the Lactobacillus population on rat mucosa with special reference to Lactobacillus reuteri. Antonie Van Leeuwenhoek 61:175–183

    Article  CAS  PubMed  Google Scholar 

  • Montiel R, Martín-Cabrejas I, Gaya P, Medina M (2014a) Reuterin and high hydrostatic pressure treatments on the inactivation of Listeria monocytogenes and effect on the characteristics of cold-smoked salmon. Food Bioprocess Technol 7(8):2319–2329

    Article  Google Scholar 

  • Montiel R, Martín-Cabrejas I, Langa S, El Aouad N, Arqués JL, Reyes F, Medina M (2014b) Antimicrobial activity of reuterin produced by Lactobacillus reuteri on Listeria monocytogenes in cold-smoked salmon. Food Microbiol 44:1–5

    Article  CAS  PubMed  Google Scholar 

  • Montiel R, Martín-Cabrejas I, Medina M (2015) Reuterin, lactoperoxidase, lactoferrin and high hydrostatic pressure on the inactivation of food-borne pathogens in cooked ham. Food Control 51:122–128

    Article  CAS  Google Scholar 

  • Montiel R, Martín-Cabrejas I, Peirotén Á, Medina M (2016) Reuterin, lactoperoxidase, lactoferrin and high hydrostatic pressure treatments on the characteristics of cooked ham. Innovative Food Sci Emerg Technol 35:111–118

    Article  CAS  Google Scholar 

  • Morita H, Toh H, Fukuda S, Horikawa H, Oshima K, Suzuki T et al (2008) Comparative genome analysis of Lactobacillus reuteri and Lactobacillus fermentum reveal a genomic Island for reuterin and cobalamin production. DNA Res 15(3):151–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mu Q, Tavella VJ, Luo XM (2018) Role of Lactobacillus reuteri in human health and diseases. Front Microbiol 9:757

    Article  PubMed  PubMed Central  Google Scholar 

  • Muthukumarasamy P, Han JH, Holley RA (2003) Bactericidal effects of lactobacillus reuteri and allyl isothiocyanate on Escherichia coli O157: H7 in refrigerated ground beef. J Food Prot 66(11):2038–2044

    Article  CAS  PubMed  Google Scholar 

  • Naito S, Hayashidani H, Kaneko K, Ogawa M, Benno Y (1995) Development of intestinal lactobacilli in normal piglets. J Appl Bacteriol 79:230–236

    Article  CAS  PubMed  Google Scholar 

  • Oh PL, Benson AK, Peterson DA, Patil PB, Moriyama EN, Roos S, Walter J (2010) Diversification of the gut symbiont Lactobacillus reuteri as a result of host-driven evolution. ISME J 4(3):377–387

    Article  PubMed  Google Scholar 

  • Ortiz-Rivera Y, Sanchez-Vega R, Gutierrez-Mendez N, Leon-Felix J, Acosta-Muniz C, Sepulveda DR (2017) Production of reuterin in a fermented milk product by Lactobacillus reuteri: inhibition of pathogens, spoilage microorganisms, and lactic acid bacteria. J Dairy Sci 100(6):4258–4268

    Article  CAS  PubMed  Google Scholar 

  • Patel KG, Pyrsopoulos NT (2019) The microbiome and metabolome in alcoholic liver disease. In: Microbiome and metabolome in diagnosis, therapy, and other strategic applications. Elsevier, Amsterdam, pp 271–277

    Chapter  Google Scholar 

  • Pilote-Fortin H, Said LB, Cashman-Kadri S, St-Gelais D, Fliss I (2021) Stability, bioavailability and antifungal activity of reuterin during manufacturing and storage of stirred yoghurt. Int Dairy J 121:105141

    Article  CAS  Google Scholar 

  • Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M, Gil A (2019) Mechanisms of action of probiotics. Adv Nutr 10(suppl_1):S49–S66

    Article  PubMed  PubMed Central  Google Scholar 

  • Quinto EJ, Caro I, Villalobos-Delgado LH, Mateo J, De-Mateo-Silleras B, Redondo-Del-Río MP (2019) Food safety through natural antimicrobials. Antibiotics 8(4):208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratcliffe B, Cole CB, Fuller R, Newport MJ (1986) The effect of yoghurt and milk fermented with a porcine intestinal strain of Lactobacillus reuteri on the performance and gastrointestinal flora of pigs weaned at two days of age. Food Microbiol 3(3):203–211

    Article  Google Scholar 

  • Rodriguez E, Arques JL, Rodriguez R, Nunez M, Medina M (2003) Reuterin production by lactobacilli isolated from pig faeces and evaluation of probiotic traits. Lett Appl Microbiol 37(3):259–263

    Article  CAS  PubMed  Google Scholar 

  • Santos F, Spinler JK, Saulnier D, Molenaar D, Teusink B, de Vos WM et al (2011) Functional identification in Lactobacillus reuteri of a PocR-like transcription factor regulating glycerol utilization and vitamin B12 synthesis. Microb Cell Factories 10(1):1–11

    Article  Google Scholar 

  • Sauvageot N, Gouffi K, Laplace JM, Auffray Y (2000) Glycerol metabolism in Lactobacillus collinoides: production of 3-hydroxypropionaldehyde, a precursor of acrolein. Int J Food Microbiol 55:167–170

    Article  CAS  PubMed  Google Scholar 

  • Schaefer L, Auchtung TA, Hermans KE, Whitehead D, Borhan B, Britton RA (2010) The antimicrobial compound reuterin (3-hydroxypropionaldehyde) induces oxidative stress via interaction with thiol groups. Microbiology 156(Pt 6):1589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlagenhauf U, Jakob L, Eigenthaler M, Segerer S, Jockel-Schneider Y, Rehn M (2016) Regular consumption of Lactobacillus reuteri-containing lozenges reduces pregnancy gingivitis: an RCT. J Clin Periodontol 43(11):948–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slininger PJ, Bothast RJ (1985) Optimizing aerobic conversion of glycerol to 3-hydroxypropionaldehyde. Appl Environ Microbiol 50:1444–1450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slininger PJ, Bothast RJ, Smiley KL (1983) Production of 3 hydroxypropionaldehyde from glycerol. Appl Environ Microbiol 46(1):62–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soderling EM, Marttinen AM, Haukioja AL (2011) Probiotic lactobacilli interfere with Streptococcus mutans biofilm formation in vitro. Curr Microbiol 62(2):618–622

    Article  PubMed  Google Scholar 

  • Soltani S, Couture F, Boutin Y, Said LB, Cashman-Kadri S, Subirade M et al (2021) In vitro investigation of gastrointestinal stability and toxicity of 3-hyrdoxypropionaldehyde (reuterin) produced by Lactobacillus reuteri. Toxicol Rep 8:740–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soltani S, Boutin Y, Couture F, Biron E, Subirade M, Fliss I (2022) In vitro assessment of skin sensitization, irritability and toxicity of bacteriocins and reuterin for possible topical applications. Sci Rep 12(1):1–12

    Article  Google Scholar 

  • Sriramulu DD, Liang M, Hernandez-Romero D, Raux-Deery E, Lünsdorf H, Parsons JB et al (2008) Lactobacillus reuteri DSM 20016 produces cobalamin-dependent diol dehydratase in metabolosomes and metabolizes 1, 2-propanediol by disproportionation. J Bacteriol 190(13):4559–4567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens M, Vollenweider S, Lacroix C, Zurich ETH (2011) The potential of reuterin produced by Lactobacillus reuteri as a broad-spectrum preservative in food. In: Protective cultures, antimicrobial metabolites and bacteriophages for food and beverage biopreservation. Woodhead Publishing, Sawston, pp 129–160

    Chapter  Google Scholar 

  • Stevens MJ, Vollenweider S, Mertes P, Lacroix C (2013) Bisulfite as scavenger for enhanced biotechnological production of 3-hydroxypropionaldehyde by Lactobacillus reuteri. Biochem Eng J 79:239–245

    Article  CAS  Google Scholar 

  • Sun Y, Gutierrez-Maddox N, Mutukumira AN, Maddox IS, Shu Q (2022a) Influence of operating conditions on reuterin production using resting cells of Limosilactobacillus reuteri DPC16. Fermentation 8(5):227

    Article  CAS  Google Scholar 

  • Sun MC, Hu ZY, Li DD, Chen YX, ** JH, Zhao CH (2022b) Application of the reuterin system as food preservative or health-promoting agent: a critical review. Foods 11(24):4000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talarico TL, Dobrogosz WJ (1989) Chemical characterization of an antimicrobial substance produced by Lactobacillus reuteri. Antimicrob Agents Chemother 33(5):674–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talarico TL, Casas IA, Chung TC, Dobrogosz WJ (1988) Production and isolation of reuterin, a growth inhibitor produced by Lactobacillus reuteri. Antimicrob Agents Chemother 32(12):1854–1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tobajas M, Mohedano AF, Casas JA, Rodríguez JJ (2007) A kinetic study of reuterin production by Lactobacillus reuteri PRO 137 in resting cells. Biochem Eng J 35(2):218–225

    Article  CAS  Google Scholar 

  • Toraya T (2000) Radical catalysis of B12 enzymes: structure, mechanism, inactivation, and reactivation of diol and glycerol dehydratases. Cell Mol Life Sci 57(1):106–127

    Article  CAS  PubMed  Google Scholar 

  • U.S. Food and Drug Administration (2008) Generally Recognized as Safe (GRAS) Determination of Lactobacillus reuteri Strain DSM 17938; FDA: Silver S**, MD, USA

    Google Scholar 

  • Van Holm W, Verspecht T, Carvalho R, Bernaerts K, Boon N, Zayed N, Teughels W (2022) Glycerol strengthens probiotic effect of Limosilactobacillus reuteri in oral biofilms: a synergistic synbiotic approach. Mol Oral Microbiol

    Google Scholar 

  • Vancauwenberge JE, Slininger PJ, Bothast RJ (1990) Bacterial conversion of glycerol to beta-hydroxypropionaldehyde. Appl Environ Microbiol 56(2):329–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vollenweider S, Lacroix C (2004) 3-Hydroxypropionaldehyde: applications and perspectives of biotechnological production. Appl Microbiol Biotechnol 64(1):16–27

    Article  CAS  PubMed  Google Scholar 

  • Vollenweider S, Grassi G, König I, Puhan Z (2003) Purification and structural characterization of 3-hydroxypropionaldehyde and its derivatives. J Agric Food Chem 51(11):3287–3293

    Article  CAS  PubMed  Google Scholar 

  • Vollenweider S, Evers S, Zurbriggen K, Lacroix C (2010) Unraveling the hydroxypropionaldehyde (HPA) system: an active antimicrobial agent against human pathogens. J Agric Food Chem 58(19):10315–10322

    Article  CAS  PubMed  Google Scholar 

  • Walter (2008a) L. reuteri is an obligate hetero-fermentative lactobacilli and a natural inhabitant of the gastrointestinal (GI) tract of animals and humans Oh et al., 2010

    Google Scholar 

  • Walter J (2008b) Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research. Appl Environ Microbiol 74(16):4985–4996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Wang Y, Ding X, Wang J, Zhan X (2022) Inhibitory effects of reuterin on biofilm formation, quorum sensing and virulence genes of Clostridium perfringens. LWT 162:113421

    Article  CAS  Google Scholar 

  • Yang KM, Kim JS, Kim HS, Kim YY, Oh JK, Jung HW et al (2021) Lactobacillus reuteri AN417 cell-free culture supernatant as a novel antibacterial agent targeting oral pathogenic bacteria. Sci Rep 11(1):1–16

    Google Scholar 

  • Yunmbam MK, Roberts JF (1992) The in vitro efficacy of reuterin on the culture and bloodstream forms of Trypanosoma brucei brucei. Comp Biochem Physiol C Comp Pharmacol Toxicol 101(2):235–238

    Article  CAS  PubMed  Google Scholar 

  • Yunmbam MK, Roberts JF (1993) In vivo evaluation of reuterin and its combinations with suramin, melarsoprol, DL-alpha-difluoromethylornithine and bleomycin in mice infected with Trypanosoma brucei brucei. Comp Biochem Physiol C Comp Pharmacol Toxicol 105(3):521–524

    Article  CAS  PubMed  Google Scholar 

  • Zeng AP, Biebl H, Schlieker H, Deckwer WD (1993) Pathway analysis of glycerol fermentation by Klebsiella pneumoniae: regulation of reducing equivalent balance and product formation. Enzym Microb Technol 15(9):770–779

    Article  CAS  Google Scholar 

  • Zhang YJ, Li S, Gan RY, Zhou T, Xu DP, Li HB (2015) Impacts of gut bacteria on human health and diseases. Int J Mol Sci 16(4):7493–7519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Sturla S, Lacroix C, Schwab C (2018) Gut microbial glycerol metabolism as an endogenous acrolein source. MBio 9(1):e01947–e01917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Ben Said L, Diarra MS, Fliss I (2021) Inhibitory activity of natural synergetic antimicrobial consortia against Salmonella enterica on broiler chicken carcasses. Front Microbiol 12:656956

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Said LB, Diarra MS, Fliss I (2022) Effects of bacterial-derived antimicrobial solutions on shelf-life, microbiota and sensory attributes of raw chicken legs under refrigerated storage condition. Int J Food Microbiol 383:109958

    Article  CAS  PubMed  Google Scholar 

  • Zhao Q, Maddox IS, Mutukumira A, Lee SJ, Shu Q (2012) The effect of cell immobilization on the antibacterial activity of Lactobacillus reuteri DPC16 cells during passage through a simulated gastrointestinal tract system. World J Microbiol Biotechnol 28(10):3025–3037

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Rajiv Gandhi Science & Technology Commission, Mumbai, for financial support and the FIST grant of DST, New Delhi, for infrastructural facilities provided to the School of Life Sciences and School of Chemical Sciences of KBCNMU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhushan L. Chaudhari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dalal, K.S., Patil, S.P., Pendharkar, G.B., Dalal, D.S., Chaudhari, B.L. (2023). Reuterin: A Broad Spectrum Antimicrobial Agent and Its Applications. In: Verma, P. (eds) Industrial Microbiology and Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-99-2816-3_20

Download citation

Publish with us

Policies and ethics

Navigation