Approaches for In Silico Validation of Safety (Toxicity) Data for Cosmetics

  • Chapter
  • First Online:
Skin 3-D Models and Cosmetics Toxicity
  • 221 Accesses

Abstract

It has been proven that computational approaches can be used to find endpoints that can help with a cosmetic safety assessment. Thousands of mice, guinea pigs, rats, and rabbits die each year due to torturous experiments. This paradigm shift has enabled the highest number of regulations of chemical safety assessments while also mandating the use of alternate methodologies, such as in silico approaches, whenever applicable, to evaluate different products for individual users from the US and Europe and other countries worldwide. Some people believe that animal testing is a reliable and quick approach to ensure that items are safe for human consumption as it helps to find the movement of the compound through the biological membrane and its action through it. There is also a practical realization well within the toxicity testing discipline that alternative techniques would not supersede in vivo models on a resembling scale. SEURAT-I was indeed a flagship project creating the academic and develo** foundations necessary to develop strategies to supplement conventional repeated dose systemic toxicity testing consumer monitoring with QSAR methods, read across frameworks, TTC approach, or other omics or other computational techniques. Alternative methods of testing and validating the toxicity of cosmetic products to animals must be incorporated into cosmetic industries to promote business ethics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alexander-White C, Bury D, Cronin M, Dent M, Hack E, Hewitt N et al (2022) A 10-step framework for the use of read-across (RAX) in next generation risk assessment (NGRA) for cosmetics safety assessment. Regul Toxicol Pharmacol 129:105094

    Article  CAS  PubMed  Google Scholar 

  • Amaral R, Ansell J, Boisleve F, Cubberley R, Dent M, Hatao M, Weiss C (2018) Report for international cooperation on cosmetics regulation regulators and industry joint working group (JWG): integrated strategies for safety assessment of cosmetic ingredients: Part 2

    Google Scholar 

  • Ankley G, Bennett R, Erickson R, Hoff D, Hornung M, Johnson R et al (2010) Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem 29(3):730–741

    Article  CAS  PubMed  Google Scholar 

  • Ashby J (1985) Fundamental structural alerts to potential carcinogenicity or non-carcinogenicity. Environ Mutagen 7(6):919–921

    Article  CAS  PubMed  Google Scholar 

  • Bassan A, Alves VM, Amberg A, Anger LT, Auerbach S, Beilke L et al (2021) In silico approaches in organ toxicity hazard assessment: current status and future needs in predicting liver toxicity. Comput Toxicol 20:100187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berggren E, Amcoff P, Benigni R, Blackburn K, Carney E, Cronin M et al (2015) Chemical safety assessment using read-across: assessing the use of novel testing methods to strengthen the evidence base for decision making. Environ Health Perspect 123(12):1232–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berggren E, White A, Ouedraogo G, Paini A, Richarz A, Bois F et al (2017) Ab initio chemical safety assessment: a workflow based on exposure considerations and non-animal methods. Comput Toxicol 4:31–44

    Article  PubMed  PubMed Central  Google Scholar 

  • Bernauer U, Bodin L, Chaudhry Q, Coenraads PJ, Dusinska M, Ezendam J et al (2021) The SCCS notes of guidance for the testing of cosmetic ingredients and their safety evaluation, 11th revision, 30–31 march 2021, SCCS/1628/21. Regul Toxicol Pharmacol 127:105052

    Article  CAS  Google Scholar 

  • Bessems J, Paini A, Gajewska M, Worth A (2017) The margin of internal exposure (MOIE) concept for dermal risk assessment based on oral toxicity data–a case study with caffeine. Toxicology 392:119–129

    Article  CAS  PubMed  Google Scholar 

  • Boobis A, Doe J, Heinrich-Hirsch B, Bette Meek ME, Munn S, Ruchirawat M et al (2008) IPCS framework for analyzing the relevance of a noncancer mode of action for humans. Crit Rev Toxicol 38(2):87–96

    Article  CAS  PubMed  Google Scholar 

  • Burden N, Sewell F, Andersen M, Boobis A, Chipman J, Cronin M et al (2015) Adverse outcome pathways can drive non-animal approaches for safety assessment. J Appl Toxicol 35(9):971–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Business Wire (2022) Global cosmetics market trends, share, size, growth, opportunities and forecast 2022–2027

    Google Scholar 

  • Cherkasov A, Muratov EN, Fourches D, Varnek A, Baskin II, Cronin M et al (2014) QSAR modeling: where have you been? Where are you going to? J Med Chem 57(12):4977–5010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciallella HL, Zhu H (2019) Advancing computational toxicology in the big data era by artificial intelligence: data-driven and mechanism-driven modelling for chemical toxicity. Chem Res Toxicol 32(4):536–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • CIRS (2013) REACH and cosmetics

    Google Scholar 

  • Comiskey D, Api AM, Barrett C, Ellis G, McNamara C, O'Mahony C et al (2017) Integrating habits and practices data for soaps, cosmetics and air care products into an existing aggregate exposure model. Regul Toxicol Pharmacol 88:144–156

    Article  CAS  PubMed  Google Scholar 

  • Cronin M (2015) CORDIS|European Commission|integrated in silico models for the prediction of human repeated dose toxicity of cosmetics to optimise safety

    Google Scholar 

  • Cronin M, Madden J, Richarz A (2012) The COSMOS project: a Foundation for the Future of computational modelling of repeat dose toxicity|AltTox.org

  • Cronin M, Enoch S, Madden J, Rathman J, Richarz A, Yang C (2022) A review of in silico toxicology approaches to support the safety assessment of cosmetics-related materials. Comput Toxicol 21:100213

    Article  CAS  Google Scholar 

  • Daston G, Knight D, Schwarz M, Gocht T, Thomas R, Mahony C, Whelan M (2014) SEURAT: safety evaluation ultimately replacing animal testing—recommendations for future research in the field of predictive toxicology. Arch Toxicol 89(1):15–23

    Article  PubMed  Google Scholar 

  • de Jesus A (2020) Artificial intelligence for beauty and cosmetics-current applications. Emerj, Artificial Intelligence Research

    Google Scholar 

  • Delrue N, Sachana M, Sakuratani Y, Gourmelon A, Leinala E, Diderich R (2016) The adverse outcome pathway concept: a basis for develo** regulatory decision-making tools. Altern Lab Anim 44(5):417–429

    Article  PubMed  Google Scholar 

  • Dent M, Amaral R, Da Silva P, Ansell J, Boisleve F, Hatao M et al (2018) Principles underpinning the use of new methodologies in the risk assessment of cosmetic ingredients. Comput Toxicol 7:20–26

    Article  Google Scholar 

  • Dent M, Vaillancourt E, Thomas R, Carmichael P, Ouedraogo G, Kojima H et al (2021) Paving the way for application of next generation risk assessment to safety decision-making for cosmetic ingredients. Regul Toxicol Pharmacol 125:105026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doke S, Dhawale S (2015) Alternatives to animal testing: a review. Saudi Pharm J 23(3):223–229

    Article  PubMed  Google Scholar 

  • EC (European Commission) (2009). Regulation No 1223/2009 of The European Parliament and of the Council on cosmetic products

    Google Scholar 

  • ECHA (2012a) Guidance on information requirements and chemical safety assessment chapter R.19: uncertainty analysis. European Chemicals Agency, Helsinki

    Google Scholar 

  • ECHA (2012b) Understanding REACH

    Google Scholar 

  • ECHA (2016a) Evaluation under REACH Progress report–executive summary and recommendations to registrants

    Google Scholar 

  • ECHA (2016b) New approach methodologies in regulatory science proceedings of a scientific workshop. Proceedings of a scientific workshop, Helsinki

    Google Scholar 

  • ECHA (2016c) Practical guide–how to use and report (Q)SARs. Report no. 1831–6727

    Google Scholar 

  • ECHA (2017a) The use of alternatives to testing on animals for the REACH regulation

    Google Scholar 

  • ECHA (2017b) Read-across assessment framework (RAAF)

    Google Scholar 

  • Ellison C, Blackburn K, Carmichael P, Clewell H, Cronin M, Desprez B et al (2019) Challenges in working towards an internal threshold of toxicological concern (iTTC) for use in the safety assessment of cosmetics: discussions from the cosmetics Europe iTTC working group workshop. Regul Toxicol Pharmacol 103:63–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • European Commission (2001) White paper: strategy for a future chemicals policy

    Google Scholar 

  • European Commission (2004) Alternative testing methods: European research to replace and reduce animal tests

    Google Scholar 

  • European Commission (2006) REACH regulation (EC)No1907/2006. Regulation concerning the registration, evaluation, authorisation and restriction of chemicals (REACH), establishing ECHA. Off J Eur Communities L396:1–849

    Google Scholar 

  • European Commission (2009) Report from the commission to the European parliament and the council report on the development. Validation and legal acceptance of alternative methods to animal tests in the field of cosmetics

    Google Scholar 

  • European Commission (2010) Directive 2010/63/EU of the European Parliament and of the Council of September 22nd 2010 on the protection of animals used for scientific purposes. Off J Eur Communities 276:33–79

    Google Scholar 

  • European Commission (2018) 10th revision of the SCCS notes of guidance for the testing of cosmetic ingredients and their safety evaluation

    Google Scholar 

  • Fischer I, Milton C, Wallace H (2020) Toxicity testing is evolving! Toxicol Res 9(2):67–80

    Article  Google Scholar 

  • Garthoff B (2005) Alternatives to animal experimentation: the regulatory background. Toxicol Appl Pharmacol 207(2):388–392

    Article  PubMed  Google Scholar 

  • Gellatly N, Sewell F (2019) Regulatory acceptance of in silico approaches for the safety assessment of cosmetic-related substances. Comput Toxicol 11:82–89

    Article  Google Scholar 

  • Gironde C, Dufour C, Furger C (2020) Use of LUCS (light-up cell system) as an alternative live cell method to predict human acute oral toxicity. Toxicol Rep 7:403–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gocht T, Berggren E, Ahr H, Cotgreave I, Cronin M, Daston G et al (2015) The SEURAT-1 approach towards animal free human safety assessment. ALTEX 32(1):9–24

    Article  PubMed  Google Scholar 

  • Hatherell S, Baltazar MT, Reynolds J, Carmichael PL, Dent M, Li H, Ryder S, White A, Walker P, Middleton AM (2020) Identifying and characterizing stress pathways of concern for consumer safety in next-generation risk assessment. Toxicol Sci 176(1):11–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He J, Jia Y (2021) Application of omics technologies in dermatological research and skin management. J Cosmet Dermatol 21(2):451–460

    Article  PubMed  Google Scholar 

  • Hecker M, LaLone C (2019) Adverse outcome pathways: moving from a scientific concept to an internationally accepted framework. Environ Toxicol Chem 38(6):1152–1163

    Article  CAS  PubMed  Google Scholar 

  • Hewitt NJ, Grégoire S, Cubberley R, Duplan H, Eilstein J, Ellison C et al (2020) Measurement of the penetration of 56 cosmetic relevant chemicals into and through human skin using a standardized protocol. J Appl Toxicol 40(3):403–415

    Article  CAS  PubMed  Google Scholar 

  • Hirota M, Fukui S, Okamoto K, Kurotani S, Imai N, Fujishiro M, Kyotani D, Kato Y, Kasahara T, Fujita M (2015) Evaluation of combinations of in vitro sensitization test descriptors for the artificial neural network-based risk assessment model of skin sensitization. J Appl Toxicol 35(11):1333–1347

    Article  CAS  PubMed  Google Scholar 

  • Hirota M, Ashikaga T, Kouzuki H (2018) Development of an artificial neural network model for risk assessment of skin sensitization using human cell line activation test, direct peptide reactivity assay, Keratinosensâ and in silico structure alert parameter. J Appl Toxicol 38(4):514–526

    Article  CAS  PubMed  Google Scholar 

  • Kabene S, Baadel S (2019) Bioethics: a look at animal testing in medicine and cosmetics in the UK. J Med Ethics Hist Med 12:15

    PubMed  PubMed Central  Google Scholar 

  • Kim S, Lee S (2021) Deep learning approach for cosmetic product detection and classification. Comput Mater Contin 69(1):713–725

    Google Scholar 

  • Kim K, Kwack S, Lee J, Kacew S, Lee B (2021) Current opinion on risk assessment of cosmetics. J Toxicol Environ Health Part B 24(4):137–161

    Article  CAS  Google Scholar 

  • Knapen D, Angrish M, Fortin M, Katsiadaki I, Leonard M, Margiotta-Casaluci L et al (2018) Adverse outcome pathway networks I: development and applications. Environ Toxicol Chem 37(6):1723–1733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krewski D, Andersen ME, Tyshenko MG, Krishnan K, Hartung T, Boekelheide K, Wambaugh JF, Jones D, Whelan M, Thomas R et al (2010a) Toxicity testing in the 21st century: Progress in the past decade and future perspectives. Arch Toxicol 94:1–58

    Article  Google Scholar 

  • Krewski D, Acosta D, Anderson M, Anderson H, Bailar J, Boekelheide K et al (2010b) Toxicity testing in the 21st century: a vision and a strategy. J Toxicol Environ Health Part B 13(2–4):51–138

    Article  CAS  Google Scholar 

  • Kuseva C, Schultz T, Yordanova D, Tankova K, Kutsarova S, Pavlov T et al (2019) The implementation of RAAF in the OECD QSAR toolbox. Regul Toxicol Pharmacol 105:51–61

    Article  CAS  PubMed  Google Scholar 

  • Laroche C, Aggarwal M, Bender H, Benndorf P, Birk B, Crozier J et al (2018) Finding synergies for 3Rs–toxicokinetics and read-across: report from an EPAA partners' forum. Regul Toxicol Pharmacol 99:5–21

    Article  PubMed  Google Scholar 

  • Lee B, Choi M, Shin I, Kim J, Choi Z, Kim K et al (2020a) Risk communication for labeling all ingredients in consumer products. J Toxic Environ Health A 83(13–14):509–524

    Article  CAS  Google Scholar 

  • Lee J, Kim H, Kang K, Jeong H, Song M, Tae I et al (2020b) Integration of transcriptomics, proteomics and metabolomics identifies biomarkers for pulmonary injury by polyhexamethylene guanidine phosphate (PHMG-p), a humidifier disinfectant, in rats. Arch Toxicol 94(3):887–909

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Zhang F, Wei H, Xu L (2021) Deep learning method for makeup style transfer: a survey. Cogn Robot 1:182–187

    Article  Google Scholar 

  • Madden J, Tan Y, Blaauboer B, Paini A (2020a) Development and application of physiologically-based kinetic (PBK) models. Comput Toxicol 13:100116

    Article  Google Scholar 

  • Madden JC, Enoch SJ, Paini A, Cronin MT (2020b) A review of in silico tools as alternatives to animal testing: principles, resources and applications. Altern Lab Anim 48(4):146–172

    Article  PubMed  Google Scholar 

  • Meigs L (2018) Animal testing and its alternatives–the most important omics is economics. ALTEX 35:275–305

    Article  PubMed  Google Scholar 

  • Merenyi S (2018) REACH: regulation(EC) no 1907/2006. 152–158

    Google Scholar 

  • Munro I, Ford R, Kennepohl E, Sprenger J (1996) Correlation of structural class with no-observed-effect levels: a proposal for establishing a threshold of concern. Food Chem Toxicol 34(9):829–867

    Article  CAS  PubMed  Google Scholar 

  • Nambiar K (2021) 3 applications of AI in the cosmetic industry

    Google Scholar 

  • NAS (2007) Toxicity testing in the twenty-first century: a vision and a strategy. National Academies Press, Washington DC

    Google Scholar 

  • NAS (2012) Exposure science in the 21st century: a vision and a strategy. National Academies Press, Washington DC

    Google Scholar 

  • NAS (2017) Using 21st century science to improve risk-related evaluations. National Academies Press, Washington, DC

    Google Scholar 

  • National Research Council (2007) Toxicity testing in the 21st century: a vision and a strategy. National Academies Press, Washington, DC

    Google Scholar 

  • OECD (2011a) Series on testing and assessment no. 138: report of the workshop on using mechanistic information in forming chemical categories (176pp)

    Google Scholar 

  • OECD (2011b) Series on testing and assessment no. 139: report of the expert consultation on scientific and regulatory evaluation of organic chemistry based structural alerts for the identification of protein-binding chemicals (100pp)

    Google Scholar 

  • OECD (2012a) OECD series on testing and assessment no 168: the adverse outcome pathway for skin sensitisation initiated by covalent binding to proteins. Part 2: use of the AOP to develop chemical categories and integrated assessment and testing approaches.(46pp)

    Google Scholar 

  • OECD (2012b) OECD series on testing and assessment no. 168: the adverse outcome pathway for skin sensitisation initiated by covalent binding to proteins. Part 1: scientific evidence (59pp)

    Google Scholar 

  • OECD (2013) Guidance document on develo** and assessing adverse outcome pathways. Environment, health and safety publications. Series on testing and assessment, no. 184, Vol. 6

    Google Scholar 

  • OECD (2016a) Guidance document on the reporting of defined approaches to be used within integrated approaches to testing and assessment. Series on testing and assessment no. 255

    Google Scholar 

  • OECD (2016b) Users’ handbook supplement to the guidance document for develo** and assessing adverse outcome pathways. Environment, health and safety publications, series on testing and assessment no. 233

    Google Scholar 

  • OECD (2017a) Guidance document on the reporting of defined approaches and individual information sources to be used within integrated approaches to testing and assessment (IATA) for skin sensitisation. Series on testing and assessment no. 256

    Google Scholar 

  • OECD (2017b) Adverse outcome pathways, molecular screening and toxicogenomics

    Google Scholar 

  • Patlewicz G, Cronin M, Helman G, Lambert J, Lizarraga L, Shah I (2018) Navigating through the minefield of read-across frameworks: a commentary perspective. Comput Toxicol 6:39–54

    Article  Google Scholar 

  • Pirih N, Kunej T (2017) Toward a taxonomy for multi-omics science? Terminology development for whole genome study approaches by omics technology and hierarchy. OMICS 21(1):1–16

    Article  CAS  PubMed  Google Scholar 

  • Potts RO, Guy RH (1992) Predicting skin permeability. Pharm Res 9(5):663–669

    Article  CAS  PubMed  Google Scholar 

  • Pouillot A, Polla B, Polla A (2009) REACH: impact on the US cosmetics industry? J Cosmet Dermatol 8(1):3–7

    Article  PubMed  Google Scholar 

  • REACH (2012) Chemicals–environment—European Commission

    Google Scholar 

  • REACH (2022) Health and safety authority

    Google Scholar 

  • Rise for Animals (2022) Seeking justice for animals in labs

    Google Scholar 

  • Rogiers V, Benfenati E, Bernauer U, Bodin L, Carmichael P, Chaudhry Q et al (2020) The way forward for assessing the human health safety of cosmetics in the EU–workshop proceedings. Toxicology 436:152–421

    Article  Google Scholar 

  • Sachana M (2018) Approaching the development of alternative testing methods using information available in the adverse outcome pathway knowledgebase (AOP-KB). Toxicol Lett 295:S41

    Article  Google Scholar 

  • Safford B, Api AM, Barratt C, Comiskey D, Daly EJ, Ellis G et al (2015) Use of an aggregate exposure model to estimate consumer exposure to fragrance ingredients in personal care and cosmetic products. Regul Toxicol Pharmacol 72(3):673–682

    Article  CAS  PubMed  Google Scholar 

  • Safford B, Api AM, Barratt C, Comiskey D, Ellis G, McNamara C et al (2017) Application of the expanded Creme RIFM consumer exposure model to fragrance ingredients in cosmetic, personal care and air care products. Regul Toxicol Pharmacol 86:148–156

    Article  CAS  PubMed  Google Scholar 

  • Sakuratani Y, Horie M, Leinala E (2018) Integrated approaches to testing and assessment: OECD activities on the development and use of adverse outcome pathways and case studies. Basic Clin Pharmacol Toxicol 123:20–28

    Article  CAS  Google Scholar 

  • SCCS (2016) SCCS notes of guidance for the testing of cosmetic ingredients and their safety evaluation 9th revision. Revision of April 25th 2016

    Google Scholar 

  • SCCS (2018) SCCS notes of guidance for the testing of cosmetic ingredients and their safety evaluation 10th revision, 24–25

    Google Scholar 

  • Schultz T, Amcoff P, Berggren E, Gautier F, Klaric M, Knight D et al (2015) A strategy for structuring and reporting a read-across prediction of toxicity. Regul Toxicol Pharmacol 72:586–601

    Article  CAS  PubMed  Google Scholar 

  • Schultz T, Dimitrova G, Dimitrov S, Mekenyan O (2016) The adverse outcome pathway for skin sensitisation: moving closer to replacing animal testing. Altern Lab Anim 44(5):453–460

    Article  PubMed  Google Scholar 

  • SciForce (2019) Machine learning: changing the beauty industry

    Google Scholar 

  • Sheehan KB, Lee J (2014) What’s cruel about cruelty-free: an exploration of consumers, moral heuristics, and public policy. J Anim Ethics 4(2):1

    Article  Google Scholar 

  • Sturla S, Boobis A, FitzGerald R, Hoeng J, Kavlock R, Schirmer K et al (2014) Systems toxicology: from basic research to risk assessment. Chem Res Toxicol 27(3):314–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanner B (2022) Cosmetic testing–microchem laboratory

    Google Scholar 

  • Taylor K, Rego Alvarez L (2020) Regulatory drivers in the last 20 years towards the use of in silico techniques as replacements to animal testing for cosmetic-related substances. Comput Toxicol 13:100–112

    Article  Google Scholar 

  • Thomas R, Philbert M, Auerbach S, Wetmore B, Devito M, Cote I et al (2013) Incorporating new technologies into toxicity testing and risk assessment: moving from 21st century vision to a data-driven framework. Toxicol Sci 136(1):4–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tintó-Moliner A, Martin M (2020) Quantitative weight of evidence method for combining predictions of quantitative structure-activity relationship models. SAR QSAR Environ Res 31(4):261–279

    Article  PubMed  Google Scholar 

  • Tollefsen K, Scholz S, Cronin M, Edwards S, de Knecht J, Crofton K et al (2014) Applying adverse outcome pathways (AOPs) to support integrated approaches to testing and assessment (IATA). Regul Toxicol Pharmacol 70(3):629–640

    Article  PubMed  Google Scholar 

  • Tozer S, O'Mahony C, Hannah J, O'Brien J, Kelly S, Kosemund-Meynen K, Alexander-White C (2019) Aggregate exposure modelling of vitamin a from cosmetic products, diet and food supplements. Food Chem Toxicol 131:110–549

    Article  Google Scholar 

  • Turley A, Isaacs K, Wetmore B, Karmaus A, Embry M, Krishan M (2019) Incorporating new approach methodologies in toxicity testing and exposure assessment for tiered risk assessment using the RISK21 approach: case studies on food contact chemicals. Food Chem Toxicol 134:110–819

    Article  Google Scholar 

  • Umer S, Mohanta P, Rout R, Pandey H (2020) Machine learning method for cosmetic product recognition: a visual searching approach. Multimed Tools Appl 80(28–29):34997–35023

    Google Scholar 

  • USEPA (2014) Next generation risk assessment: incorporation of recent advances in molecular, computational, and systems biology. National Center for environmental assessment, Office of Research and Development. U.S. Environmental Protection Agency, Washington DC

    Google Scholar 

  • US-FDA (2022) Product testing of cosmetics

    Google Scholar 

  • van Delft J, Mathijs K, Polman J, Coonen M, Szalowska E, Verheyen G et al (2014) Hepatotoxicity screening on in vitro models and the role of omics. In: Kleinjans J (ed) Toxicogenomics-based cellular models. Academic Press, Cambridge, pp 193–212

    Chapter  Google Scholar 

  • Van Der Wielen A (2007) REACH: next step to a sound chemicals management. J Expo Sci Environ Epidemiol 17(1):S2–S6

    Article  PubMed  Google Scholar 

  • Villalobos A, Tenneriello B, Koppisch E, Fagan J (2014) Cosmetic testing on animals

    Google Scholar 

  • Villeneuve D (2015) In response: the path forward for the adverse outcome pathway framework-a regulatory perspective. Environ Toxicol Chem 34(9):1938–1940

    Article  CAS  PubMed  Google Scholar 

  • Villeneuve D, Crump D, Garcia-Reyero N, Hecker M, Hutchinson T, LaLone C et al (2014) Adverse outcome pathway (AOP) development I: strategies and principles. Toxicol Sci 142(2):312–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinardell M, Mitjans M (2017) Alternative methods to animal testing for the safety evaluation of cosmetic ingredients: an overview. Cosmetics 4(3):30

    Article  Google Scholar 

  • Vinken M, Kramer N, Allen T, Hoffmans Y, Thatcher N, Levorato S et al (2020) The use of adverse outcome pathways in the safety evaluation of food additives. Arch Toxicol 94(3):959–966

    Article  CAS  PubMed  Google Scholar 

  • White E (2022) An analysis of animal testing in beauty products and its ethicality

    Google Scholar 

  • Williams F, Rothe H, Barrett G, Chiodini A, Whyte J, Cronin M et al (2016) Assessing the safety of cosmetic chemicals: consideration of a flux decision tree to predict dermally delivered systemic dose for comparison with oral TTC. Regul Toxicol Pharmacol 76:174–186

    Article  CAS  PubMed  Google Scholar 

  • Wilm A, Stork C, Bauer C, Schepky A, Kühnl J, Kirchmair J (2019) Skin doctor: machine learning models for skin sensitization prediction that provide estimates and indicators of prediction reliability. Int J Mol Sci 20(19):33–48

    Article  Google Scholar 

  • Wittwehr C, Munn S, Landesmann B, Whelan M (2015) Adverse outcome pathways knowledge base (AOP-KB). Toxicol Lett 238(2):S309

    Article  Google Scholar 

  • Wittwehr C, Aladjov H, Ankley G, Byrne H, de Knecht J, Heinzle E et al (2016) How adverse outcome pathways can aid the development and use of computational prediction models for regulatory toxicology. Toxicol Sci 155(2):326–336

    Article  PubMed  PubMed Central  Google Scholar 

  • Worth A, Cronin M, Enoch S, Fioravanzo E, Fuart-Gatnik M, Pavan M, Yang C (2012) Applicability of the threshold of toxicological concern (TTC) approach to cosmetics–preliminary analysis. Eur Union 10:5059

    Google Scholar 

  • Wu Y, Wang G (2018) Machine learning based toxicity prediction: from chemical structural description to transcriptome analysis. Int J Mol Sci 19(8):23–58

    Article  Google Scholar 

  • Yamada T, Ashikaga T, Kojima H, Hirose A (2020) Challenge for adverse outcome pathway (AOP)-based chemical safety assessment. Yakugaku Zasshi 140(4):481–484

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Barlow S, Muldoon Jacobs K, Vitcheva V, Boobis A, Felter S et al (2017) Thresholds of toxicological concern for cosmetics-related substances: new database, thresholds, and enrichment of chemical space. Food Chem Toxicol 109:170–193

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Cronin M, Arvidson K, Bienfait B, Enoch S, Heldreth B et al (2021) COSMOS next generation–a public knowledge base leveraging chemical and biological data to support the regulatory assessment of chemicals. Comput Toxicol 19:100–175

    Article  Google Scholar 

  • Zimbardi D (2018) Gene expression screening to identify activation profiles in skin after exposition to cosmetic ingredients. In: 2nd pan-American for conference alternative methods. Natura innovation, Cajamar, SP

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul Kumar Upadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Basu, T., Chugh, R., Gujjar, R.S., Upadhyay, A.K. (2023). Approaches for In Silico Validation of Safety (Toxicity) Data for Cosmetics. In: Pant, A.B., Dwivedi, A., Ray, R.S., Tripathi, A., Upadhyay, A.K., Poojan, S. (eds) Skin 3-D Models and Cosmetics Toxicity. Springer, Singapore. https://doi.org/10.1007/978-981-99-2804-0_11

Download citation

Publish with us

Policies and ethics

Navigation