Analysis Study of the Dynamic Behavior of a 2 MW Grid-Tied DFIG in Case of Asymmetrical Voltage Dips

  • Conference paper
  • First Online:
Proceedings of the 1st International Conference on Advanced Renewable Energy Systems (ICARES 2022)

Part of the book series: Springer Proceedings in Energy ((SPE))

Included in the following conference series:

  • 23 Accesses

Abstract

It is well known that the generator is almost considered as the heart of the wind turbine; thus, in case of grid integration, the deep knowledge of this component in terms of its behavior during dynamical grid conditions such as faults and disturbances has attracted the attention of researchers in order to safe operate the wind turbine while enhancing its degree of protection and its grid fault ride-through capability. This paper presents a case analysis study validated by numerical simulation through MATLAB/Simulink environment of the dynamic behavior of a typical 2 MVA grid-tied doubly fed induction generator under an asymmetrical grid voltage dip scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Global Wind Energy Council (GWEC), Global wind statistics report 2022. www.gwec.net

  2. D. Ikni, Production d’énergie marine: Intégration de la production éolienne offshore dans un bouquet énergétique décentralisé. Thèse de Doctorat en Sciences, Université du Havre, France (2014)

    Google Scholar 

  3. A. Beltran-Pulido et al., Robust Active disturbance rejection control for LVRT capability enhancement of DFIG-based wind turbines. Control. Eng. Pract. 77, 174–189 (2018)

    Article  Google Scholar 

  4. M. Liserre, R. Cardenas, M. Molinas, J. Rodriguez, Overview of multi-MW wind turbines and wind parks. IEEE Trans. Ind. Electron. 58(4), 1081–1095 (2011)

    Article  Google Scholar 

  5. M. Mohseni, S.M. Islam, Review of international grid codes for wind power integration: diversity, technology and a case for global standard. Renew. Sustain. Energy Rev. 16(6), 3876–3890 (2012)

    Article  Google Scholar 

  6. J. Zou et al., A survey of dynamic equivalent modeling for wind farm. Renew. Sustain. Energy Rev. 40, 956–963 (2014)

    Article  Google Scholar 

  7. R. Datta, V.T. Ranganathan, Variable-speed wind power generation using doubly fed wound rotor induction machine—a comparison with alternative schemes. IEEE Trans. Energy Convers. 17(3), 414–421 (2002)

    Article  Google Scholar 

  8. M. Derafshian, N. Amjady, Optimal design of power system stabilizer for power systems including doubly fed induction generator wind turbines. Energy 84, 1–14 (2015)

    Article  Google Scholar 

  9. G. Dimitrios et al., Quantitative and qualitative behavior analysis of a DFIG wind energy conversion system by a wind gust and converter faults. Wind Energy 19(3), 527–546 (2015)

    Google Scholar 

  10. A. Petersson, Analysis, modeling and control of doubly-fed induction generators for wind turbines. Ph.D. Thesis, Chalmers University of Technology Göteborg, Sweden (2005)

    Google Scholar 

  11. R. Pena et al., Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation. IEE Proc. Electr. Power Appl. 143(3), 231–241 (1996)

    Article  Google Scholar 

  12. G. Abad et al., Doubly Fed Induction Machine: Modeling and Control for Wind Energy Generation, 1st ed. (IEEE–Wiley, 2011)

    Google Scholar 

  13. M. Rahimi, M. Parniani, Grid-fault ride-through analysis and control of wind turbines with doubly fed induction generators. Int. J. Electr. Power Syst. Res. 80(2), 184–195 (2010)

    Article  Google Scholar 

  14. A.A. El-Sattar et al., Dynamic response of doubly fed induction generator variable speed wind turbine under fault. Int. J. Electr. Power Syst. Res. 78(3), 1240–1246 (2008)

    Article  Google Scholar 

  15. H.T. Jadhav, R. Roy, A comprehensive review on the grid integration of doubly fed induction generator. Int. J. Electr. Power Energy Syst. 49, 8–18 (2013)

    Google Scholar 

  16. D. **ang et al., Control of a doubly fed induction generator in a wind turbine during grid fault ride through. IEEE Trans. Energy Convers. 21(3), 652–662 (2006)

    Google Scholar 

  17. E.E. Özsoy et al., Modeling and control of a doubly fed induction generator with a disturbance observer: a stator voltage oriented approach. Turk. J. Electr. Eng. Comput. Sci. 24, 961–972 (2016)

    Article  Google Scholar 

  18. J. Lopez et al., Dynamic behavior of the doubly fed induction generator during three-phase voltage dips. IEEE Trans. Energy Convers. 22(3), 709–717 (2007)

    Article  Google Scholar 

  19. S. **ao, H.l. Zhou An LVRT control strategy based on flux linkage tracking for DFIG-based WECS. IEEE Trans. Ind. Electron. 60(7), 2820–2832 (2013)

    Google Scholar 

  20. Fredrik et al., Application of the superposition principle to solar-cell analysis. IEEE Trans. Electron Dev. 26(3) (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ridha Cheikh .

Editor information

Editors and Affiliations

Appendix (DFIG DATA)

Appendix (DFIG DATA)

Sn = 2.0 MVA, fn = 50 Hz, Vsn = 690 V (L–L, rms), Isn = 1760 A (rms), Vrn = 2070 V (L–L, rms), P = 2. Winding connection (stator/rotor): Y–Y, Turns ratio: Ns/Nr = 0.34, Rs = 2.6 mΩ, Lσs = 87 mH, Rr = 26.1 mΩ, L′σr = 783 mH, Lm = 2.5 mH.

Base Power: Sb = 2 MVA, Base frequency: fb = 50 Hz, Base stator voltage (phase, peak value): Vsb = 563.4 V.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheikh, R., Belmili, H., Boualem, B. (2024). Analysis Study of the Dynamic Behavior of a 2 MW Grid-Tied DFIG in Case of Asymmetrical Voltage Dips. In: Mellit, A., Belmili, H., Seddik, B. (eds) Proceedings of the 1st International Conference on Advanced Renewable Energy Systems. ICARES 2022. Springer Proceedings in Energy. Springer, Singapore. https://doi.org/10.1007/978-981-99-2777-7_46

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-2777-7_46

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-2776-0

  • Online ISBN: 978-981-99-2777-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation