Semiconducting Metal Oxides: Morphology and Sensing Performance

  • Chapter
  • First Online:
Semiconducting Metal Oxides for Gas Sensing

Abstract

The morphology of semiconducting metal oxides is closely related to their microtextures such as the exposed facets, adsorption–desorption behavior, active site density. These parameters have great influence on the gas sensing performance of the semiconducting metal oxide gas sensor, including selectivity, sensitivity and long-term stability. Therefore, considerable efforts have been devoted to develo** methods for the synthesis of semiconducting metal oxides with controllable morphology, which helps understanding the specific relationships between their sensing performance and the sensing process. This chapter will summarize the synthesis methods for semiconducting metal oxides and the strategies for morphology control and sensing performance improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 127.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 159.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Korotcenkov G (2007) Practical aspects in design of one-electrode semiconductor gas sensors: status report. Sens Actuators B 121:664–678. https://doi.org/10.1016/j.snb.2006.04.092

    Article  CAS  Google Scholar 

  2. Korotcenkov G (2005) Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches. Sens Actuators B 107:209–232. https://doi.org/10.1016/j.snb.2004.10.006

    Article  CAS  Google Scholar 

  3. Tsiulyanu D, Marian S, Liess H, Eisele I (2004) Effect of annealing and temperature on the NO2 sensing properties of tellurium based films. Sens Actuators B 100:380–386. https://doi.org/10.1016/j.snb.2004.02.005

    Article  CAS  Google Scholar 

  4. Korotcenkov G, Brinzari V, Schwank J, DiBattista M, Vasiliev A (2001) Peculiarities of SnO2 thin film deposition by spray pyrolysis for gas sensor application. Sens Actuators B 77:244–252. https://doi.org/10.1016/s0925-4005(01)00741-9

    Article  CAS  Google Scholar 

  5. Brinzari V, Korotcenkov G, Golovanov V (2001) Factors influencing the gas sensing characteristics of tin dioxide films deposited by spray pyrolysis: understanding and possibilities of control. Thin Solid Films 391:167–175. https://doi.org/10.1016/s0040-6090(01)00978-6

    Article  CAS  Google Scholar 

  6. Korotcenkov G (2008) The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Mater Sci Eng R Rep 61:1–39. https://doi.org/10.1016/j.mser.2008.02.001

  7. Barsan N, Weimar U (2001) Conduction model of metal oxide gas sensors. J Electroceram 7:143–167. https://doi.org/10.1023/A:1014405811371

    Article  CAS  Google Scholar 

  8. Ogawa H, Nishikawa M, Abe A (1982) Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films. J Appl Phys 53:4448–4455. https://doi.org/10.1063/1.331230

    Article  CAS  Google Scholar 

  9. Rothschild A, Komem Y (2004) The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors. J Appl Phys 95:6374–6380. https://doi.org/10.1063/1.1728314

    Article  CAS  Google Scholar 

  10. Kawamura F, Tsukasa T, Itaru Y, Ichiro S (2001) Impurity effect on <111> and <110> directions of growing SnO2 single crystals in SnO2–Cu2O flux system. J Cryst Growth 233:259–268. https://doi.org/10.1016/s0022-0248(01)01551-2

    Article  CAS  Google Scholar 

  11. Barsan N, Schweizer-Berberich M, Göpel W (1999) Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report. Fresenius J Anal Chem 365:287–304. https://doi.org/10.1007/s002160051490

    Article  CAS  Google Scholar 

  12. Chen F, Zhao T, Fei YY, Lu H, Chen Z, Yang G, Zhu XD (2002) Surface segregation of bulk oxygen on oxidation of epitaxially grown Nb-doped SrTiO3 on SrTiO3(001). Appl Phys Lett 80:2889–2891. https://doi.org/10.1063/1.1473694

    Article  CAS  Google Scholar 

  13. Wang X, Sui Y, Yang Q, Cheng J, Qian Z, Liu Z, Su W (2007) Effect of do** Zn on the magnetoresistance of polycrystalline Sr2FeMoO6. J Alloys Compd 431:6–9. https://doi.org/10.1016/j.jallcom.2006.05.034

    Article  CAS  Google Scholar 

  14. Meier JS, Liu P, Nørskov JK, Stimming U (2004) Nano-scale effects in electrochemistry. Chem Phys Lett 390:440–444. https://doi.org/10.1016/j.cplett.2004.03.149

  15. Castañeda L (2007) Effects of palladium coatings on oxygen sensors of titanium dioxide thin films. Mater Sci Eng B 139:149–154. https://doi.org/10.1016/j.mseb.2007.01.046

  16. Matko I, Gaidi M, Chenevier B, Charai A, Saikaly W, Labeau M (2002) Pt do** of SnO2 thin films: a transmission electron microscopy analysis of the porosity evolution. J Electrochem Soc 149:H153. https://doi.org/10.1149/1.1488919

    Article  CAS  Google Scholar 

  17. Alfredsson M, Richard C, Catlow A (2004) Predicting the metal growth mode and wetting of noble metals supported on c-ZrO2. Surf Sci 561:43–56. https://doi.org/10.1016/j.susc.2004.03.073

    Article  CAS  Google Scholar 

  18. Hyodo T, Abe S, Shimizu Y, Egashira M (2003) Gas-sensing properties of ordered mesoporous SnO2 and effects of coatings thereof. Sens Actuators B 93:590–600. https://doi.org/10.1016/s0925-4005(03)00208-9

    Article  CAS  Google Scholar 

  19. Sberveglieri G, Groppelli S, Nelli P, Camanzi A (1991) A new technique for the preparation of highly sensitive hydrogen sensors based on SnO,(Bi, O,) thin films. Sens Actuators B 5:253–255. https://doi.org/10.1016/0925-4005(91)80258-l

    Article  CAS  Google Scholar 

  20. McAleer JF, Moseley PT, Norris JOW, Williams DE (1987) Tin dioxide gas sensors. J Chem Soc Faraday Trans 1:1323–1346. https://doi.org/10.1039/f19878301323

    Article  Google Scholar 

  21. Korotcenkov G, Brinzari V, Stetter JR, Blinov I, Blaja V (2007) The nature of processes controlling the kinetics of indium oxide-based thin film gas sensor response. Sens Actuators B 128:51–63. https://doi.org/10.1016/j.snb.2007.05.028

    Article  CAS  Google Scholar 

  22. Wang J, Gan M, Shi J (2007) Detection and characterization of penetrating pores in porous materials. Mater Charact 58:8–12. https://doi.org/10.1016/j.matchar.2006.02.016

    Article  CAS  Google Scholar 

  23. Rumyantseva MN, Gaskov AM, Rosman N, Pagnier T, Morante JR (2005) Raman surface vibration modes in nanocrystalline SnO2: correlation with gas sensor performances. Chem Mater 17:893–901. https://doi.org/10.1021/cm0490470

    Article  CAS  Google Scholar 

  24. Min B (2004) SnO2 thin film gas sensor fabricated by ion beam deposition. Sens Actuators B 98:239–246. https://doi.org/10.1016/j.snb.2003.10.023

    Article  CAS  Google Scholar 

  25. Korotcenkov G, Ivanov M, Blinov I, Stetter JR (2007) Kinetics of indium oxide-based thin film gas sensor response: the role of “redox” and adsorption/desorption processes in gas sensing effects. Thin Solid Films 515:3987–3996. https://doi.org/10.1016/j.tsf.2006.09.044

    Article  CAS  Google Scholar 

  26. Williams DE, Pratt KFE (2000) Microstructure effects on the response of gas-sensitive resistors based on semiconducting oxides. Sens Actuators B 70:214–221. https://doi.org/10.1016/s0925-4005(00)00572-4

    Article  CAS  Google Scholar 

  27. Tan OK, Zhu W, Yan Q, Kong LB (2000) Size effect and gas sensing characteristics of nanocrystalline xSnO2-(1–x)a-Fe2O3 ethanol sensors. Sens Actuators B 65:361–365. https://doi.org/10.1016/s0925-4005(99)00414-1

    Article  CAS  Google Scholar 

  28. Hench LL, West JK (1990) The sol-gel process. Chem Rev 90:33. https://doi.org/10.1021/cr00099a003

    Article  CAS  Google Scholar 

  29. Vioux A (1997) Nonhydrolytic sol-gel routes to oxides. Chem Mater 9:2292–2299. https://doi.org/10.1504/ijenm.2016.078967

    Article  CAS  Google Scholar 

  30. Trentler TJ, Denler TE, Bertone JF, Agrawal A, Colvin VL (1999) Synthesis of TiO2 nanocrystals by nonhydrolytic solution-based reactions. J Am Chem Soc 121:1613–1614. https://doi.org/10.1021/ja983361b

    Article  CAS  Google Scholar 

  31. Zhang Z, Zhong X, Liu S, Li D, Han M (2005) Aminolysis route to monodisperse titania nanorods with tunable aspect ratio. Angew Chem Int Ed 44(22):3466–3470. https://doi.org/10.1002/anie.200500410

    Article  CAS  Google Scholar 

  32. Esposito S (2019) “Traditional” sol-gel chemistry as a powerful tool for the preparation of supported metal and metal oxide catalysts. Materials 12:668–693. https://doi.org/10.3390/ma12040668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE(E = S, Se, Te) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715. https://doi.org/10.1021/ja00072a025

    Article  CAS  Google Scholar 

  34. Kumar S, Nann T (2006) Shape control of II–VI semiconductor nanomaterials. Small 2:316–329. https://doi.org/10.1002/smll.200500357

    Article  CAS  PubMed  Google Scholar 

  35. Nel A, **a T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627. https://doi.org/10.1126/science.1114397

    Article  CAS  PubMed  Google Scholar 

  36. Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946. https://doi.org/10.1021/cr030027b

    Article  CAS  PubMed  Google Scholar 

  37. Cabanas A, Darr JA, Poliakoff M, Lester E (2000) A continuous and clean one-step synthesis of nano-particulate Ce1−xZrxO2 solid solutions in near-critical water. Chem Commun 11:901–902. https://doi.org/10.1039/b001424i

    Article  Google Scholar 

  38. Djerdj I, Arčon D, Jagličić Z, Niederberger M (2008) Nonaqueous synthesis of metal oxide nanoparticles: short review and doped titanium dioxide as case study for the preparation of transition metal-doped oxide nanoparticles. J Solid State Chem 181:1571–1581. https://doi.org/10.1016/j.jssc.2008.04.016

    Article  CAS  Google Scholar 

  39. Rao CNR, Cheetham AK, Thirumurugan A (2008) Hybrid inorganic-organic materials: a new family in condensed matter physics. J Phys Condens Matter 20:083202. https://doi.org/10.1088/0953-8984/20/8/083202

  40. Liu J, Sun Z, Deng Y, Zou Y, Li C, Guo X, **ong L, Gao Y, Li F, Zhao D (2009) Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. Angew Chem Int Ed 48:5875–5879. https://doi.org/10.1002/anie.200901566

    Article  CAS  Google Scholar 

  41. Titirici MM, Antonietti M, Thomas A (2006) A generalized synthesis of metal oxide hollow spheres using a hydrothermal approach. Chem Mater 18:3808–3812. https://doi.org/10.1021/cm052768u

    Article  CAS  Google Scholar 

  42. **ao HM, Fu SY, Zhu LP, Li YQ, Yang G (2007) Controlled synthesis and characterization of CuO nanostructures through a facile hydrothermal route in the presence of sodium citrate. Eur J Inorg Chem 14:1966–1971. https://doi.org/10.1002/ejic.200601029

    Article  CAS  Google Scholar 

  43. Jia CJ, Sun LD, Luo F, Han XD, Heyderman LJ, Yan ZL, Yan CH, Zheng K, Zhang Z, Takano M, Hayashi N, Eltschka M, Klaui M, Rudiger U, Kasama T, Cervera-Gontard L, Dunin-Borkowski RE, Tzvetkov G, Raabe J (2008) Large-scale synthesis of single-crystalline iron oxide magnetic nanorings. J Am Chem Soc 130:16968–16977. https://doi.org/10.1021/ja805152t

    Article  CAS  PubMed  Google Scholar 

  44. Wang SB, Min YL, Yu SH (2007) Synthesis and magnetic properties of uniform hematite nanocubes. J Phys Chem C 111:3551–3554. https://doi.org/10.1021/jp068647e

    Article  CAS  Google Scholar 

  45. Greta RP, Alexej M, Frank K, Reinhard N, Jan-Dierk G, Alfons B (2004) One-step synthesis of submicrometer fibers of MoO3. Chem Mater 16:1126–1134. https://doi.org/10.1021/cm031057y

  46. Nagappa B, Chandrappa GT, Livage J (2005) Synthesis, characterization and applications of nanostructural/nanodimensional metal oxides. Pramana-J Phys 65:917–213. https://doi.org/10.1007/bf02704092

    Article  CAS  Google Scholar 

  47. Uchiyama H, Ohgi H, Imai H (2006) Selective preparation of SnO2 and SnO crystals with controlled morphologies in an aqueous solution system. Cryst Growth Des 6:2186–2190. https://doi.org/10.1021/cg060328p

    Article  CAS  Google Scholar 

  48. Cheng B, Russell JM, Shi ZL, Samulski ET (2004) Large-scale, solution-phase growth of single-crystalline SnO2 nanorods. J Am Chem Soc 126:5972–5973. https://doi.org/10.1021/ja0493244

    Article  CAS  PubMed  Google Scholar 

  49. Menzel R, Peiró AM, Durrant JR, Shaffer MSP (2006) Impact of hydrothermal processing conditions on high aspect ratio titanate nanostructures. Chem Mater 18:6059–6068. https://doi.org/10.1021/cm061721l

    Article  CAS  Google Scholar 

  50. Reyes-Coronado D, Rodríguez-Gattorno G, Espinosa-Pesqueira ME, Cab C, de Coss R, Oskam G (2008) Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology 19:145605. https://doi.org/10.1088/0957-4484/19/14/145605

  51. Chandrappa GT, Steunou N, Cassaignon S, Bauvais C, Livage J (2003) Hydrothermal synthesis of vanadium oxide nanotubes from V2O5 gels. Catal Today 78:85–89. https://doi.org/10.1016/s0920-5861(02)00298-5

    Article  CAS  Google Scholar 

  52. Clavel G, Willinger MG, Zitoun D, Pinna N (2007) Solvent dependent shape and magnetic properties of doped ZnO Nanostructures. Adv Funct Mater 17:3159–3169. https://doi.org/10.1002/adfm.200601142

    Article  CAS  Google Scholar 

  53. Zhang L, Wang W, Zhou L, Xu H (2007) Bi2WO6 Nano- and Microstructures: shape control and associated visible-light-driven photocatalytic activities. Small 3:1618–1625. https://doi.org/10.1002/smll.200700043

    Article  CAS  PubMed  Google Scholar 

  54. Zhou Y, Vuille K, Heel A, Patzke GR (2009) Studies on nanostructured Bi2WO6: convenient hydrothermal and TiO2-coating pathways. Z Anorg Allg Chem 635:1848–1855. https://doi.org/10.1002/zaac.200900187

    Article  CAS  Google Scholar 

  55. Sun L, Guo Q, Wu X, Luo S, Pan W, Huang K, Lu J, Ren L, Cao M, Hu C (2007) Synthesis and photoluminescent properties of strontium tungstate nanostructures. J Phys Chem C 111:532–537. https://doi.org/10.1021/jp064923d

    Article  CAS  Google Scholar 

  56. Kiebach R, Pienack N, Bensch W, Grunwaldt JD, Michailovski A, Baiker A, Fox T, Zhou Y, Patzke GR (2008) Hydrothermal formation of W/Mo-Oxides: a multidisciplinary study of growth and shape. Chem Mater 20:3022–3033. https://doi.org/10.1021/cm7028036

    Article  CAS  Google Scholar 

  57. Michailovski A, Wörle M, Sheptyakov D, Patzke GR (2011) Hydrothermal synthesis of anisotropic alkali and alkaline earth vanadates. J Mater Res 22:5–18. https://doi.org/10.1557/jmr.2007.0002

    Article  Google Scholar 

  58. Lee SH, Kim TW, Park DH, Choy JH, Hwang SJ (2007) Single-step synthesis, characterization, and application of nanostructured KxMn1-yCoyO2-a with controllable chemical compositions and crystal structures. Chem Mater 19:5010–5017. https://doi.org/10.1002/chin.200749017

    Article  CAS  Google Scholar 

  59. Hu Y, Gu H, Hu Z, Di W, Yuan Y, You J, Cao W, Wang Y, Chan HLW (2008) Controllable hydrothermal synthesis of KTa1-xNbxO3 nanostructures with various morphologies and their growth mechanisms. Cryst Growth Des 8:832–837. https://doi.org/10.1021/cg070230q

    Article  CAS  Google Scholar 

  60. Wei X, Xu G, Ren Z, Wang Y, Shen G, Han G (2008) Composition and shape control of single-crystalline Ba1−xSrxTiO3 (x=0-1) nanocrystals via a solvothermal route. J Cryst Growth 310:4132–4137. https://doi.org/10.1016/j.jcrysgro.2008.04.039

    Article  CAS  Google Scholar 

  61. Prades M, Beltrán H, Masó N, Cordoncillo E, West AR (2008) Phase transition hysteresis and anomalous Curie-Weiss behavior of ferroelectric tetragonal tungsten bronzes Ba2RETi2Nb3O15:RE=Nd. Sm J Appl Phys 104:104118. https://doi.org/10.1063/1.3021460

    Article  CAS  Google Scholar 

  62. Su Y, Li L, Li G (2008) Synthesis and optimum luminescence of CaWO4-based red phosphors with codo** of Eu3+ and Na+. Chem Mater 20:6060–6067. https://doi.org/10.1021/cm8014435

    Article  CAS  Google Scholar 

  63. Zhang L, Fu H, Zhang C, Zhu Y (2008) Effects of Ta5+ substitution on the structure and photocatalytic behavior of the Ca2Nb2O7 photocatalyst. J Phys Chem C 112:3126–3133. https://doi.org/10.1021/jp074092r

    Article  CAS  Google Scholar 

  64. Hu Y (2006) Hydrothermal synthesis of nano Ce–Zr–Y oxide solid solution for automotive three-way catalyst. J Am Ceram Soc 89:2949–2951. https://doi.org/10.1111/j.1551-2916.2006.01130.x

    Article  CAS  Google Scholar 

  65. Gözüak F, Köseoğlu Y, Baykal A, Kavas H (2009) Synthesis and characterization of CoxZn1−xFe2O4 magnetic nanoparticles via a PEG-assisted route. J Magn Magn Mater 321:2170–2177. https://doi.org/10.1016/j.jmmm.2009.01.008

    Article  CAS  Google Scholar 

  66. Zhang T, ** CG, Qian T, Lu XL, Bai JM, Li XG (2004) Hydrothermal synthesis of single-crystalline La0.5Ca0.5MnO3 nanowires at low temperature. J Mater Chem 14:2787. https://doi.org/10.1039/b405288a

  67. Niu J, Deng J, Liu W, Zhang L, Wang G, Dai H, He H, Zi X (2007) Nanosized perovskite-type oxides La1−xSrxMO3−δ (M=Co, Mn; x=0, 0.4) for the catalytic removal of ethylacetate. Catal Today 126:420–429. https://doi.org/10.1016/j.cattod.2007.06.027

    Article  CAS  Google Scholar 

  68. Chen TY, Fung KZ (2008) Synthesis of and densification of oxygen-conducting La0.8Sr0.2Ga0.8Mg0.2O2.8 nano powder prepared from a low temperature hydrothermal urea precipitation process. J Eur Ceram Soc 28:803–810. https://doi.org/10.1016/j.jeurceramsoc.2007.08.006

    Article  CAS  Google Scholar 

  69. Zhou L, Liang Y, Hu L, Han X, Yi Z, Sun J, Yang S (2008) Much improved capacity and cycling performance of LiVMoO6 cathode for lithium ion batteries. J Alloys Compd 457:389–393. https://doi.org/10.1016/j.jallcom.2007.02.126

    Article  CAS  Google Scholar 

  70. Zhang Q, Zhu M, Zhang Q, Li Y, Wang H (2009) Synthesis and characterization of carbon nanotubes decorated with manganese-zinc ferrite nanospheres. Mater Chem Phys 116:658–662. https://doi.org/10.1016/j.matchemphys.2009.05.029

    Article  CAS  Google Scholar 

  71. Sanfiz AC, Hansen TW, Girgsdies F, Timpe O, Rödel E, Ressler T, Trunschke A, Schlögl R (2008) Preparation of phase-pure M1 MoVTeNb oxide catalysts by hydrothermal synthesis-influence of reaction parameters on structure and morphology. Top Catal 50:19–32. https://doi.org/10.1007/s11244-008-9106-z

    Article  CAS  Google Scholar 

  72. Min Y, Akbulut M, Kristiansen K, Golan Y, Israelachvili J (2008) The role of interparticle and external forces in nanoparticle assembly. Nat Mater 7:527–538. https://doi.org/10.1038/nmat2206

    Article  CAS  PubMed  Google Scholar 

  73. Pinheiro AV, Han D, Shih WM, Yan H (2011) Challenges and opportunities for structural DNA nanotechnology. Nat Nanotechnol 6:763–772. https://doi.org/10.1038/nnano.2011.187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dill KA, MacCallum JL (2012) The protein-folding problem, 50 years on. Science 338:1042–1046. https://doi.org/10.1126/science.1219021

    Article  CAS  PubMed  Google Scholar 

  75. Chen IA, Walde P (2010) From self-assembled vesicles to protocells. cold spring harbor perspectives in biology 2:1–13. https://doi.org/10.1101/cshperspect.a002170

  76. Bates FS, Hillmyer MA, Lodge TP, Bates CM, Delaney KT, Fredrickson HF (2012) Multiblock polymers: panacea or pandora’s box? Science 336:434–440. https://doi.org/10.1126/science.1215368

    Article  CAS  PubMed  Google Scholar 

  77. Kim SH, Lee SY, Yang SM, Yi GR (2011) Self-assembled colloidal structures for photonics. NPG Asia Mater 3:25–33. https://doi.org/10.1038/asiamat.2010.192

    Article  CAS  Google Scholar 

  78. Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992. https://doi.org/10.1126/science.287.5460.1989

    Article  CAS  PubMed  Google Scholar 

  79. Murray CB, Kagan CR (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci 30:545–610. https://doi.org/10.1146/annurev.matsci.30.1.545

    Article  CAS  Google Scholar 

  80. Claridge SA, Castleman AW Jr, Khanna SN, Murray CB, Sen A, Weiss PS (2009) Cluster-assembled materials. ACS Nano 3:244–245. https://doi.org/10.1021/nn800820e

    Article  CAS  PubMed  Google Scholar 

  81. Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96:1533–1554. https://doi.org/10.1021/cr9502357

    Article  CAS  PubMed  Google Scholar 

  82. Vericat C, Vela ME, Benitez G, Carro P, Salvarezza RC (2010) Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system. Chem Soc Rev 39:1805. https://doi.org/10.1039/b907301a

    Article  CAS  PubMed  Google Scholar 

  83. Batista CAS, Larson RG, Kotov NA (2015) Nonadditivity of nanoparticle interactions. Science 350:1242477-1242471–1242410. https://doi.org/10.1126/science.1242477

    Article  CAS  Google Scholar 

  84. Piner RD, Zhu J, Xu F, Hong S, Mirkin CA (1999) “Dip-Pen” nanolithography. Science 283:661–663. https://doi.org/10.1126/science.283.5402.661

    Article  CAS  PubMed  Google Scholar 

  85. Lin XM, Jaeger HM, Sorensen CM, Klabunde KJ (2001) Formation of long-range-ordered nanocrystal superlattices on silicon nitride substrates. J Phys Chem B 105:3353–3357. https://doi.org/10.1021/jp0102062

    Article  CAS  Google Scholar 

  86. Talapin DV, Murray CB (2005) PbSe nanocrystal solids for n-and p-channel thin film field-effect transistors. Science 310:86–89. https://doi.org/10.1126/science.1116703

    Article  CAS  PubMed  Google Scholar 

  87. Bigioni TP, Lin XM, Nguyen TT, Corwin EI, Witten TA, Jaeger HM (2006) Kinetically driven self assembly of highly ordered nanoparticle monolayers. Nat Mater 5:265–270. https://doi.org/10.1038/nmat1611

    Article  CAS  PubMed  Google Scholar 

  88. Bodnarchuk MI, Kovalenko MV, Heiss W, Talapin DV (2010) Energetic and entropic contributions to self-assembly of binary nanocrystal superlattices: temperature as the structure-directing factor. J Am Chem Soc 132:11967–11977. https://doi.org/10.1021/ja103083q

    Article  CAS  PubMed  Google Scholar 

  89. Dong A, Chen J, Vora PM, Kikkawa JM, Murray CB (2010) Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface. Nature 466:474–477. https://doi.org/10.1038/nature09188

    Article  CAS  PubMed  Google Scholar 

  90. Aleksandrovic V, Greshnykh D, Randjelovic I, Fromsdorf A, Kornowski A, Roth SV, Klinke C, Weller H (2008) Preparation and electrical properties of cobaltplatinum nanoparticle monolayers deposited by the Langmuir blodgett technique. ACS Nano 2:1123–1130. https://doi.org/10.1021/nn800147a

    Article  CAS  PubMed  Google Scholar 

  91. Rupich SM, Shevchenko EV, Bodnarchuk MI, Lee B, Talapin DV (2010) Size-dependent multiple twinning in nanocrystal superlattices. J Am Chem Soc 132:289–296. https://doi.org/10.1021/ja9074425

    Article  CAS  PubMed  Google Scholar 

  92. Chayen NE (2004) Turning protein crystallisation from an art into a science. Curr Opin Struct Biol 14:577–583. https://doi.org/10.1016/j.sbi.2004.08.002

    Article  CAS  PubMed  Google Scholar 

  93. Yang P, Zhao D, Margolese DI, Chmelka BF, Stucky GD (1998) Generalized syntheses of large-poremesoporous metal oxides with semicrystalline frameworks. Nature 396:152–155. https://doi.org/10.1038/24132

    Article  CAS  Google Scholar 

  94. Zhu Y, Zhao Y, Ma J, Cheng X, **e J, Xu P, Liu H, Liu H, Zhang H, Wu M, Elzatahry AA, Alghamdi A, Deng Y, Zhao D (2017) Mesoporous tungsten oxides with crystalline framework for highly sensitive and selective detection of foodborne pathogens. J Am Chem Soc 139:10365–10373. https://doi.org/10.1021/jacs.7b04221

    Article  CAS  PubMed  Google Scholar 

  95. Deng Y, Wei J, Sun Z, Zhao D (2013) Large-pore ordered mesoporous materials templated from non-pluronic amphiphilic block copolymers. Chem Soc Rev 42:4054–4070. https://doi.org/10.1039/c2cs35426h

    Article  CAS  PubMed  Google Scholar 

  96. Zhang J, Deng Y, Gu D, Wang S, She L, Che R, Wang Z, Tu B, **e S, Zhao D (2011) Ligand-assisted assembly approach to synthesize large-pore ordered mesoporous titania with thermally stable and crystalline framework. Adv Energy Mater 1:241–248. https://doi.org/10.1002/aenm.201000004

    Article  CAS  Google Scholar 

  97. Bera A, Mandal A (2015) Microemulsions: a novel approach to enhanced oil recovery: a review. J Pet Explor Prod Technol 5:255–268. https://doi.org/10.1007/s13202-014-0139-5

    Article  CAS  Google Scholar 

  98. Li X, Wang B, Dai S, Lu H, Huang Z (2020) Ionic liquid-based microemulsions with reversible microstructures regulated by CO2. Langmuir 36:264–272. https://doi.org/10.1021/acs.langmuir.9b03327

    Article  CAS  PubMed  Google Scholar 

  99. Hejazifar M, Lanaridi O, Bica-Schröder K (2020) Ionic liquid based microemulsions: a review. J Mol Liq 303:112264–112286. https://doi.org/10.1016/j.molliq.2019.112264

  100. Kumar H, Sarma AK, Kumar P (2020) A comprehensive review on preparation, characterization, and combustion characteristics of microemulsion based hybrid biofuels. Renew Sust Energ Rev 117:109498–109515. https://doi.org/10.1016/j.rser.2019.109498

    Article  CAS  Google Scholar 

  101. Zhou L, Zhu Q, Feng Y, Wang R (2022) Preparation and characterization of iron oxide low-dimensional nanomaterials. Integr Ferroelectr 225:240–254. https://doi.org/10.1080/10584587.2021.1911259

    Article  CAS  Google Scholar 

  102. Lim C, Kim C, Gwon O, Jeong HY, Song HK, Ju YW, Shin J, Kim G (2018) Nano-perovskite oxide prepared via inverse microemulsion mediated synthesis for catalyst of lithium-air batteries. Electrochim Acta 275:248–255. https://doi.org/10.1016/j.electacta.2018.04.121

    Article  CAS  Google Scholar 

  103. Zhang J, Hou X, Pang Z, Cai Y, Zhou H, Lv P, Wei Q (2017) Fabrication of hierarchical TiO2 nanofibers by microemulsion electrospinning for photocatalysis applications. Ceram Int 43:15911–15917. https://doi.org/10.1016/j.ceramint.2017.08.166

    Article  CAS  Google Scholar 

  104. Knapp CE, Carmalt CJ (2016) Solution based CVD of main group materials. Chem Soc Rev 45:1036–1064. https://doi.org/10.1039/c5cs00651a

    Article  CAS  PubMed  Google Scholar 

  105. Marchand P, Hassan IA, Parkin IP, Carmalt CJ (2013) Aerosol-assisted delivery of precursors for chemical vapour deposition: expanding the scope of CVD for materials fabrication. Dalton Trans 42:9406–9422. https://doi.org/10.1039/c3dt50607j

    Article  CAS  PubMed  Google Scholar 

  106. Guglielmo G, Condorelli GM, Fragalá IL (2007) Engineering of molecular architectures of β-diketonate precursors toward new advanced materials. Coord Chem Rev 251:1931–1950. https://doi.org/10.1016/j.ccr.2007.04.016

  107. Bekermann D, Barreca D, Gasparotto A, Maccato C (2012) Multi-component oxide nanosystems by chemical vapor deposition and related routes: challenges and perspectives. CrystEngComm 14:6347. https://doi.org/10.1039/c2ce25624j

    Article  CAS  Google Scholar 

  108. Guo XJ, Xue CH, Sathasivam S, Page K, He G, Guo J, Promdet P, Heale FL, Carmalt CJ, Parkin IP (2019) Fabrication of robust superhydrophobic surfaces via aerosol-assisted cvd and thermo-triggered healing of superhydrophobicity by recovery of roughness structures. J Mater Chem A 7:17604–17612. https://doi.org/10.1039/C9TA03264A

    Article  CAS  Google Scholar 

  109. Powell MJ, Potter DB, Wilson RL, Darr JA, Parkin IV, Carmalt CJ (2017) Scaling aerosol assisted chemical vapour deposition: exploring the relationship between growth rate and film properties. Mater Des 129:116–124. https://doi.org/10.1016/j.matdes.2017.05.017

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghui Deng .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deng, Y. (2023). Semiconducting Metal Oxides: Morphology and Sensing Performance. In: Semiconducting Metal Oxides for Gas Sensing. Springer, Singapore. https://doi.org/10.1007/978-981-99-2621-3_3

Download citation

Publish with us

Policies and ethics

Navigation