Tuning of Structural, Electrical and Magnetic Properties of Ferrites

  • Chapter
  • First Online:
Engineered Ferrites and Their Applications

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 223 Accesses

Abstract

Ferrites with compositional expression as X. Fe2O4 where X is any dopant (mono, divalent and trivalent ion) are a class of materials which are semiconductors in nature and can also be easily magnetized, acquiring excellent electrical and magnetic properties. Ferrites comprise iron oxide (Fe2O3) in combination with chemically balanced dopants and possess high chemical stability, high Curie temperature, tunable shape and particle size. Ferrites are mainly categorized into soft, hard and mixed ferrites, and due to their superior properties, they can be used as inductors, transformers, electronic absorbers, sensors, etc. The application can also be extended to biomedical, waste water management and in catalysis, etc. Applications are mainly dependent on properties which are tailored to match the operational aspects of ferrites, and this further depends on the dopants used while synthesis. The dopants are selected based on the valency, ionic size, crystal structure, melting point, and magnetic moment and upon do** optimize magnetic and electrical properties. Along with the nature of dopants, the structural properties such as density, Curie temperature and porosity can be modified by selecting different synthesis routes and sintering techniques/conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 181.89
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

FWHM:

Full width half maxima

N :

Avogadro’s number

Oh (B-site):

Octahedral site

Th (A-Site):

Tetrahedral site

XRD:

X-ray diffraction

T C :

Curie temperature

M w :

Molecular weight

M s :

Saturation magnetization

H c :

Coercivity

Mr:

Remanence

FCC:

Face-centered cubic structure

μB:

Magnetic moment

εʹ:

Dielectric constant

εʺ:

Dielectric loss

References

  1. Rodríguez-Carvajal J (2001) Fullprof. CEA/Saclay, France

    Google Scholar 

  2. Mazen SA, Abu-Elsaad NI (2015) Structural, magnetic and electrical properties of the lithium ferrite obtained by ball milling and heat treatment. Appl Nanosci 5:105–114. https://doi.org/10.1007/s13204-014-0297-2

  3. Mazen SA, Abdallah MH, Sabrah BA, Hashem HAM (1992) The effect of titanium on some physical properties of CuFe2O4. Phys Status Solidi (A) Appl Mater Sci 134:263–271. https://doi.org/10.1002/pssa.2211340123

  4. Weil L, Bertaut F, Bochirol L (1950) Propriétésmagnétiques et structure de la phase quadratique du ferrite de cuivre. J Phys Radium 11:208–212. https://doi.org/10.1051/jphysrad:01950001105020800

    Article  CAS  Google Scholar 

  5. Chintala JPK, Bharadwaj S, Varma MC, Choudary GSVRK (2022) Impact of cobalt substitution on cation distribution and elastic properties of Ni–Zn ferrite investigated by X-ray diffraction, infrared spectroscopy, and Mössbauer spectral analysis. J Phys Chem Solids 160:110298. https://doi.org/10.1016/j.jpcs.2021.110298

  6. Buerger MJ (1960) Crystal structure analysis. Wiley, New York

    Google Scholar 

  7. Vara Prasad BBVS, Ramesh KV, Srinivas A (2017) Structural and magnetic studies of nano-crystalline ferrites MFe2O4 (M= Zn, Ni, Cu, and Co) synthesized via citrate gel autocombustion method. J Supercond Nov Magn 30:3523–3535. https://doi.org/10.1007/s10948-017-4153-y

  8. Cullity BD (1956) Elements of X-ray diffraction. Addison-Wesley Publishing

    Google Scholar 

  9. Williamson GK, Hall WH (1953) X-ray line broadening from filed aluminium and wolfram. Acta Mater 1:22–31. https://doi.org/10.1016/0001-6160(53)90006-6

    Article  CAS  Google Scholar 

  10. Dar MA, Batoo KM, Verma V, Siddiqui WA, Kotnala RK (2010) Synthesis and characterization of nano-sized pure and Al-doped lithium ferrite having high value of dielectric constant. J Alloys Compd 493(1–2):553–560. https://doi.org/10.1016/j.jallcom.2009.12.154

    Article  CAS  Google Scholar 

  11. Anu K, Hemalatha J (2022) Synthesis and analysis of structural, compositional, morphological, magnetic, electrical and surface charge properties of Zn-doped nickel ferrite nanoparticles. Ceram Int 48:3417–3425. https://doi.org/10.1016/j.ceramint.2021.10.118

    Article  CAS  Google Scholar 

  12. Devmunde BH, Raut AV, Birajdar SD, Shukla SJ, Shengule DR, Jadhav KM (2016) Structural, electrical, dielectric, and magnetic properties of Cd2. J Nanoparticle Res. https://doi.org/10.1155/2016/4709687

  13. Zaki HM, Al-Heniti SH, Aljwiher MM (2020) Synthesis, structural, magnetic and dielectric studies of aluminum substituted cobalt-copper ferrite. Phys B Condens Matter 597:412382 (2020). https://doi.org/10.1016/j.physb.2020.412382

  14. Arshad MI, Hasan MS, Rehman AU, Akhtar M, Amin N, Mahmood K, Ali A, Trakoolwilaiwan T, Thanh NTK (2022) Structural, optical, electrical, dielectric, molecular vibrational and magnetic properties of La3+ doped Mg–Cd–Cu ferrites prepared by Co-precipitation technique. Ceram Int 48(10):14246–14260. https://doi.org/10.1016/j.ceramint.2022.01.313

    Article  CAS  Google Scholar 

  15. K.Hussain, N.Amin, M.I. Arshad, Evaluation of structural, optical, dielectric, electrical, and magnetic properties of Ce3+ doped Cu0.5Cd0.25Co0.25Fe2-xO4 spinel nano-ferrites. Ceram. Int. 47, 3401–3410 (2021). https://doi.org/10.1016/j.ceramint.2020.09.185

  16. Gul HI, Abbasi AZ, Amin F, Anis-ur-Rehman M, Maqsood A (2007) Structural, magnetic and electrical properties of Co {sub 1-}{sub x} Zn {sub x} Fe {sub 2} O {sub 4} synthesized by co-precipitation method. J Magn Magn Mater 311. https://doi.org/10.1016/j.jmmm.2006.08.005

  17. Amiri S, Shokrollahi H (2013) Magnetic and structural properties of RE doped Co-ferrite (REåNd, Eu, and Gd) nano-particles synthesized by co-precipitation. J Magn Magn Mater 345:18–23. https://doi.org/10.1016/j.jmmm.2013.05.030

    Article  CAS  Google Scholar 

  18. Warsi MF, Iftikhar A, Yousuf MA, Sarwar MI, Yousaf S, Haider S, Aboud MFA, Shakir I, Zulfiqar S (2020) Erbium substituted nickel–cobalt spinel ferrite nanoparticles: Tailoring the structural, magnetic and electrical parameters. Ceram Int 46:24194–24203. https://doi.org/10.1016/j.ceramint.2020.06.199

  19. Zabotto FL, Gualdi AJ, Eiras JA, Oliveira AJAD, Garcia D (2012) Influence of the sintering temperature on the magnetic and electric properties of NiFe2O4 ferrites. Mater Res 15:428–433. https://doi.org/10.1590/S1516-14392012005000043

    Article  CAS  Google Scholar 

  20. Fonseca SGC, Neiva LS, Bonifácio MAR, Santos PRCD, Silva UC, Oliveira JBLD (2018) Tunable magnetic and electrical properties of cobalt and zinc ferrites CO 1-x Zn x Fe 2 O 4 synthesized by combustion route. Mater Res 21. https://doi.org/10.1590/1980-5373-MR-2017-0861

  21. Albalah MA, Alsabah YA, Mustafa DE (2020) Characteristics of co-precipitation synthesized cobalt nanoferrites and their potential in industrial wastewater treatment. SN Appl Sci 2:1–9. https://doi.org/10.1007/s42452-020-2586-6

  22. Anu K, Hemalatha J (2019) Magnetic and electrical conductivity studies of zinc doped cobalt ferrite nanofluids. J Mol Liq 284:445–453. https://doi.org/10.1016/j.molliq.2019.04.018

    Article  CAS  Google Scholar 

  23. Vegard L (1921) Diekonstitution der mischkristalle und die raumfüllung der atome. Z Phys 5:17–26. https://doi.org/10.1007/BF01349680

    Article  CAS  Google Scholar 

  24. Mir A, Qadeer M, Waqas R, Khan SN (2020) Study of morphological, optical and microwave properties of strontium-doped cobalt ferrites. J Electron Mater 49:4801–4808. https://doi.org/10.1007/s11664-020-08212-9

  25. Rahman MM, Hasan N, Hoque MA, Hossen MB, Arifuzzaman M (2022) Structural, dielectric, and electrical transport properties of Al3+ substituted nanocrystalline Ni-Cu spinel ferrites prepared through the sol-gel route. Results Phys 105610. https://doi.org/10.1016/j.rinp.2022.105610

  26. Muthuselvam IP, Bhowmik RN (2010) Mechanical alloyed Ho3+ do** in CoFe2O4 spinel ferrite and understanding of magnetic nanodomains. J Magn Magn Mater 322:767–776. https://doi.org/10.1016/j.jmmm.2009.10.057

    Article  CAS  Google Scholar 

  27. Mane RS, Jadhav V (eds) (2020) Spinel ferrite nanostructures for energy storage devices. Elsevier. https://doi.org/10.1016/B978-0-12-819237-5.00003-1

  28. Rao KS, Kumar AM, Varma MC, Choudary GSVRK, Rao KH (2009) Cation distribution of titanium substituted cobalt ferrites. J Alloys Compd 488:L6–L9. https://doi.org/10.1016/j.jallcom.2009.08.086

  29. Néel L (1984) Magnetic properties of ferrites: ferrimagnetism and antiferromagnetism. Phys Chem Earth Sci 31:18. https://hal.archives-ouvertes.fr/hal-03070529/document

  30. Chinnasamy CN, Narayanasamy A, Ponpandian N, Chattopadhyay K, Guerault H, Greneche JH (2000) Magnetic properties of nanostructured ferrimagnetic zinc ferrite. J Condens Matter Phys 12:7795. https://doi.org/10.1088/0953-8984/12/35/314

    Article  CAS  Google Scholar 

  31. Bhukal S, Namgyal T, Mor S, Bansal S, Singhal S (2012) Structural, electrical, optical and magnetic properties of chromium substituted Co–Zn nanoferrites Co0. 6Zn0. 4CrxFe2− xO4 (0⩽ x⩽ 1.0) prepared via sol–gel auto-combustion method. J Mol Struct 1012:162–167. https://doi.org/10.1016/j.molstruc.2011.12.019

  32. Smart JS (1955) The Néel theory of ferrimagnetism. Am J Phys 23:356–370. https://doi.org/10.1119/1.1934006

    Article  CAS  Google Scholar 

  33. Varma MC, Bharadwaj S, Babu KV (2019) Observation of anomalous site occupancy in Ni-Co-Cu-Cr ferrite system synthesized by sol-gel method. Physica B Condens 556:175–182. https://doi.org/10.1016/j.physb.2018.12.002

    Article  CAS  Google Scholar 

  34. Bharadwaj S, Ramesh T, Murthy SR (2013) Fabrication of microinductor using Nanocrystalline NiCuZn ferrites. J Electroceramics 31:81–87. https://doi.org/10.1007/s10832-013-9799-7

    Article  CAS  Google Scholar 

  35. Aharoni A (2000) Introduction to the theory of ferromagnetism, vol 109. Clarendon Press

    Google Scholar 

  36. Shirsath SE, Liu X, Yasukawa Y, Li S, Morisako A (2016) Switching of magnetic easy-axis using crystal orientation for large perpendicular coercivity in CoFe2O4 thin film. Sci Rep 6:1–11. https://doi.org/10.1038/srep30074

    Article  CAS  Google Scholar 

  37. Limaye MV, Singh SB, Date SK, Kothari D, Reddy VR, Gupta A, Sathe V, Choudhary RJ, Kulkarni SK (2009) High coercivity of oleic acid capped CoFe2O4 nanoparticles at room temperature. J Phys Chem B 113:9070–9076. https://doi.org/10.1021/jp810975v

    Article  CAS  Google Scholar 

  38. Smith J, Wijn HPJ (1959) Ferrites. Wiley Inc, New York, p 229

    Google Scholar 

  39. Viswanathan B, Murthy VRK (eds) (1990) Ferrite materials: science and technology. Springer Verlag, pp 26–27

    Google Scholar 

  40. Barkule RS, Kurmude DV, Raut AV, Waghule NN, Jadhav KM, Shengule DR (2014) Structural and electrical conductivity studies in nickel ferrite nano-particles. Solid State Phenom 209:177–181. https://doi.org/10.4028/www.scientific.net/SSP.209.177

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bharadwaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bharadwaj, S., Kalyana Lakshmi, Y. (2023). Tuning of Structural, Electrical and Magnetic Properties of Ferrites. In: Sharma, P., Bhargava, G.K., Bhardwaj, S., Sharma, I. (eds) Engineered Ferrites and Their Applications. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-99-2583-4_2

Download citation

Publish with us

Policies and ethics

Navigation