Abstract

The use of microalgae for the biological removal of phosphorus and nitrogen and improving the oxygenated status of wastewater treatment is not only an economic approach but also an ecofriendly one. Algae also have the capacity to remove heavy metals as they have a high capacity for inorganic metal uptake. Indeed, in oxidation ponds, algae grow massively, removing Phosphorus and nitrogen as well as heavy metals and increasing in number while photosynthesizing and releasing oxygen. In Synchrony, heterotrophic bacteria use up this oxygen in respiration and increase in number while biodegrading organic matter thereby purifying wastewater further. The carbon dioxide released from the respiration of organisms found in oxidation ponds is being captured by algae while photosynthesis, hence improving the environment. Moreover, the algal biomass accumulating can be used for several applications including industry, biofuel generation and agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 181.89
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acevedo S, Peñuela GA, Pino NJ (2017) Biomass production of Scenedesmus sp. and removal of nitrogen and phosphorus in domestic wastewater. Ing y compet 19(1):185–193

    Google Scholar 

  • Ahn JH, Kim S, Park H, Rahm B, Pagilla K, Chandran K (2010) N2O emissions from activated sludge processes, 2008−2009: results of a national monitoring survey in the United States. Environ Sci Technol 44:4505–4511

    Google Scholar 

  • Almomani F, Judd S, Bhosale RR, Shurair M, Aljaml K, Khraisheh M (2019) Integrated wastewater treatment and carbon bio-fixation from flue gases using Spirulina platensis and mixed algal culture. Process Saf Environ Prot 124:240–250

    Google Scholar 

  • Álvarez-Díaz PD, Ruiz J, Arbib Z, Barragán J, Garrido-Pérez MC, Perales JA (2015) Wastewater treatment and biodiesel production by Scenedesmus obliquus in a two-stage cultivation process. Bioresour Technol 181:90–96

    Google Scholar 

  • Arun S, Sinharoy A et al (2020) Algae based microbial fuel cells for wastewater treatment and recovery of value-added products. Renew Sust Energ Rev 132 Article 11004

    Google Scholar 

  • Boelee NC, Temmink H, Janssen M, Buisman CJN, Wijffels RH (2011) Nitrogen and phosphorus removal from municipal wastewater effluent using microalgal biofilms. Water Res 45(18):5925–5933

    Article  CAS  Google Scholar 

  • Benemann JR, Koopman B, Weissman J, Goebel R (1980) Development of microalgae harvesting and high rate pond technologies in California. In: Shelef G, Soeder CJ (eds) Algae biomass production and use. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 457–495

    Google Scholar 

  • Bhatnagar A, Bhatnagar M, Chinnasamy S, Das K (2010) Chlorella minutissima—a promising fuel alga for cultivation in municipal wastewaters. Appl Biochem Biotechnol 161:523–536

    Article  CAS  Google Scholar 

  • Bohutskyi P, Chow S, Ketter B, Shek C, Yacar D, Tang Y, Zivojnovich M, Betenbaugh M, Bouwer E (2016) Phytoremediation of agriculture runoff by filamentous algae poly-culture for biomethane production, and nutrient recovery for secondary cultivation of lipid generating microalgae. Bioresour Technology 222:294–308. https://doi.org/10.1016/j.biortech.2016.10.013

  • Borowitzka MA (2013) High-value products from microalgae—their development and commercialisation. J Appl Phycol 25:743–756

    Article  CAS  Google Scholar 

  • Borowitzka MA, Beardall J, Raven J (2016) The physiology of microalgae. Springer International Publishing, Germany

    Book  Google Scholar 

  • Bunce J, Ndam E, Ofiteru I, Moore A, Graham D (2018) A Review of phosphorus removal technologies and their applicability to small-scale domestic wastewater treatment systems. Front Environ Sci 6. https://www.frontiersin.org/article/. https://doi.org/10.3389/fenvs.2018.00008

  • Cabanelas ITD, Ruiz JZ, Arbib FA, Chinalia C, Garrido-Pérez F, Rogalla I, Nascimento A, Perales JA (2013) Comparing the use of different domestic wastewaters for coupling microalgal production and nutrient removal. Bioresour Technol 131:429–436

    Article  CAS  Google Scholar 

  • Cai W, Zhao Z et al (2019) Algae granulation for nutrients uptake and algae harvesting during wastewater treatment. Chemosphere 214:55

    Article  CAS  Google Scholar 

  • Chahal C, van den Akker B, Young F, Franco C, Blackbeard J, Monis P (2016) Pathogen and particle associations in wastewater: significance and implications for treatment and disinfection processes. Adv Appl Microbiol 97:63–119

    Article  CAS  Google Scholar 

  • Chawla P, Malik A et al (2020) Selection of optimum combination via comprehensive comparison of multiple algal cultures for treatment of diverse wastewaters. Environ Technol Innov 18 Article 100758

    Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  Google Scholar 

  • Choi H (2016) Parametric study of brewery wastewater effluent treatment using Chlorella vulgaris. Microalgae. 21:401–408

    Google Scholar 

  • Cragg RJ, Heubeck S, Lundquist TJ, Benemann JR (2011) Algal biofuels from wastewater treatment high rate algal ponds. Water Sci Technol 63:660

    Article  Google Scholar 

  • Cuellar-Bermudez SP, Garcia-Perez JS, Rittmann BE, Parra-Saldivar R (2015) Photosynthetic bioenergy utilizing CO2: an approach on flue gases utilization for third generation biofuels. J Clean Prod 98:53–65

    Article  CAS  Google Scholar 

  • de-Bashan LE, Bashan Y (2010) Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour Technol 101(6):1611–1627. https://doi.org/10.1016/j.biortech.2009.09.043

  • del Morales-Amaral M, Gómez-Serrano C, Acién FG et al (2015) Production of microalgae using centrate from anaerobic digestion as the nutrient source. Algal Res 9:297–305

    Article  Google Scholar 

  • ElMekawy A, Hegab HM, Vanbroekhoven K, Pant D (2014) Techno-productive potential of photosynthetic microbial fuel cells through different configurations. Renew Sustain Energy Rev 39:617–627

    Article  CAS  Google Scholar 

  • European Commission (2007) Pursuant to article 16 of regulation (EC) No 648/2004 of the European Parliament and of the Council of 31 March 2004 on detergents, concerning the use of phosphates. http://www.parliament.bg/pub/ECD/69232COM_2007_234_EN_ACTE_f.pdf

  • Fagerstone KD, Quinn JC, Bradley TH, De Long SK, Marchese AJ (2011) Quantitative measurement of direct nitrous oxide emissions from microalgae cultivation. Environ Sci Technol 45:9449–9456

    Article  CAS  Google Scholar 

  • Falkowski PG, Raven JA (2007) Aquatic photosynthesis, 2nd edn. Princeton University Press, New Jersey, USA

    Google Scholar 

  • Gadd GM (1990) Accumulation of metals by microorganisms and algae. In: Rehm KJ (ed) Biotechnology handbook 6b special microbial processes. Weinheim: VCH Verlagsgesselschaft

    Google Scholar 

  • García D, Alcántara C, Blanco S, Pérez R, Bolado S, Muñoz R (2017) Enhanced carbon, nitrogen and phosphorus removal from domestic wastewater in a novel anoxic-aerobic photobioreactor coupled with biogas upgrading. Chem Eng J 313:424–434

    Google Scholar 

  • Gentili FG (2014) Microalgal biomass and lipid production in mixed municipal, dairy, pulp and paper wastewater together with added flue gases. Biores Technol 169:27–32

    Article  CAS  Google Scholar 

  • Gonçalves AL, Pires JCM, Simões M (2017) A review on the use of microalgal consortia for wastewater treatment. Algal Res 24:403–415

    Article  Google Scholar 

  • Gouveia L, Graça S, Sousa C, Ambrosano B, Ribeiro EP, Botrel PC, Neto AF, Ferreira CMS (2016) Microalgae biomass production using wastewater: treatment and costs scale-up considerations. Algal Res 16:167

    Article  Google Scholar 

  • Guieysse B, Plouviez M, Coilhac M, Cazali L (2013) Nitrous oxide (N2O) production in axenic Chlorella vulgaris microalgae cultures: evidence, putative pathways, and potential environmental impacts. Biogeoscience 10:6737–6746

    Article  CAS  Google Scholar 

  • Gupta PL, Lee SM, Choi HJ (2015) A mini review: photobioreactors for large scale algal cultivation. World J Microbiol Biotechnol 31:1409–1417

    Google Scholar 

  • Gupta PL, Lee SM, Choi HJ (2016) Integration of microalgal cultivation system for wastewater remediation and sustainable biomass production. World J Microbiol Biotechnol 32:139

    Article  Google Scholar 

  • Hendriks ATWM, Langeveld JG (2017) Rethinking wastewater treatment plant effluent standards: nutrient reduction or nutrient control? Environ Sci Technol 51:4735–4737

    Article  CAS  Google Scholar 

  • Hu B, Min M, Zhou W, Li Y, Mohr M, Cheng Y, Lei H, Liu Y, Lin X, Chen P, Ruan R (2012) Influence of exogenous CO2 on biomass and lipid accumulation of microalgae Auxenochlorella protothecoides cultivated in concentrated municipal wastewater. Appl Biochem Biotechnol 166:1661–1673

    Article  CAS  Google Scholar 

  • Igiri E, Okoduwa SIR, Idoko GO, Akabuogu EP, Adeyi AO, Ejiogu IK (2018) Article toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review. J Toxicol 2018. Article ID 2568038, 16. Review Bernard. https://doi.org/10.1155/2018/2568038

  • Jorquera O, Kiperstok A, Sales EA, Embiruçu M, Ghirardi ML (2009) Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol 101:1406–1413. https://doi.org/10.1016/j.biortech.2009.09.038

  • Kesaano M, Gardner RD, Moll K, Lauchnor E, Gerlach R, Peyton BM et al (2015) Dissolved inorganic carbon enhanced growth, nutrient uptake, and lipid accumulation in wastewater grown microalgal biofilms. Bioresour Technol 180:7–15. https://doi.org/10.1016/j.biortech.2014.12.082

  • Knothe G (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol 86:1059–1070

    Article  CAS  Google Scholar 

  • Knothe G (2008) “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuel 22:1358–1364

    Article  CAS  Google Scholar 

  • Kohlheb N, van Afferden M et al (2020) Assessing the life-cycle sustainability of algae and bacteria-based wastewater treatment systems: high-rate algae pond and sequencing batch reactor. J Environ Manag 264:Article 110459

    Google Scholar 

  • Kumar KS, Dahms HU, Won EJ, Lee JS, Shin KH (2015) Microalgae–a promising tool for heavy metal remediation. Ecotoxicol Environ Saf

    Google Scholar 

  • Mahapatra DM, Chanakya HN, Ramachandra TV (2013) Euglena sp. as a suitable source of lipids for potential use as biofuel and sustainable wastewater treatment. J Appl Phycol 25:855–865

    Article  CAS  Google Scholar 

  • Mahdy A, Ballesteros M, González-Fernández C (2016) Enzymatic pretreatment of Chlorella vulgaris for biogas production: influence of urban wastewater as a sole nutrient source on macromolecular profile and biocatalyst efficiency. Bioresour Technol 199:319–325

    Article  CAS  Google Scholar 

  • Matamoros V, Gutiérrez R, Ferrer I et al (2015) Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants: a pilot-scale study. J Hazard Mater 288:34–42

    Article  CAS  Google Scholar 

  • McGriff EC, McKenney RE (1971) Activated algae: a nutrient process. Water Sew Works 118:377

    Google Scholar 

  • McGriff EC, McKinney RC (1972) The removal of nutrients and organics by activated algae. Water Res 6(10):1155

    Article  CAS  Google Scholar 

  • Mohsenpour SF, Hennige S, Willoughby N, Adeloye A, Gutierrez T (2021) Integrating micro-algae into wastewater treatment: a review. Sci Total Environ 752:142168

    Article  CAS  Google Scholar 

  • Naidoo S, Olaniran AO (2013) Treated wastewater effluent as a source of microbial pollution of surface water resources. Int J Environ Res Public Health 11(1):249–270

    Article  Google Scholar 

  • Oswald WJ (1988) Micro-algae and waste-water treatment. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 305–328

    Google Scholar 

  • Oswald WJ (2003) My sixty years in applied algology. J Appl Phycol 15:99–106

    Article  CAS  Google Scholar 

  • Paliwal R, Gusain P, Saun B, Uniyal S, Khanna R, Bhutiani R (2018) Algal potential for inorganic and organic pollutants decontamination algal potential for inorganic and organic pollutants decontamination. Water Biol:207–217

    Google Scholar 

  • Park JBK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Biores Technol 102(1):35–42

    Article  CAS  Google Scholar 

  • Priyadharshini SD, Babu P, Manikandan S, Subbaiya R, Govarthanan M, Karmegam N (2021) Phycoremediation of wastewater for pollutant removal: a green approach to environmental protection and longterm remediation. Environ Pollut 290:117989. https://doi.org/10.1016/j.envpol.2021.117989

  • Qi F, Xu Y, Yu Y, Liang X, Zhang L, Zhao H, Wang H (2017) Enhancing growth of Chlamydomonas reinhardtii and nutrient removal in diluted primary piggery wastewater by elevated CO2 supply. Water Sci Technol 75:2281–2290

    Article  CAS  Google Scholar 

  • Razzak SA, Hossain MM, Lucky RA, Bassi AS, de Lasa H (2013) Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—a review. Renew Sust Energy Rev 27:622–653

    Article  CAS  Google Scholar 

  • Ross ME, Davis K et al (2018) Nitrogen uptake by the macro-algae Cladophora coelothrix and Cladophora parriaudii: influence on growth, nitrogen preference and biochemical composition. Algal Res 30:1

    Article  Google Scholar 

  • Samer M (2015) Biological and chemical wastewater treatment processes. Wastewater Treat Eng IntechOpen. https://doi.org/10.5772/61250

  • Sánchez-Zurano A, Lafarga T, Morales-Amaral MD et al (2021) Wastewater treatment using Scenedesmus almeriensis: effect of operational conditions on the composition of the microalgae-bacteria consortia. J Appl Phycol 33:3885–3897

    Article  Google Scholar 

  • Schindler DW, Hecky RE, Findlay DL, Stainton MP, Parker BR, Paterson MJ, Beaty KG, Lyng M, Kasian SEM (2008) Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. Proc Natl Acad Sci 105:11254–11258

    Article  CAS  Google Scholar 

  • Sepúlveda C, Acién FG, Gómez C et al (2015) Utilization of centrate for the production of the marine microalgae Nannochloropsis gaditana. Algal Res 9:107–116

    Article  Google Scholar 

  • Sforza E, Cipriani R, Morosinotto T, Bertucco A, Giacometti GM (2012) Excess CO2 supply inhibits mixotrophic growth of Chlorella protothecoides and Nannochloropsis salina. Bioresour Technol 104(2012):523–529

    Article  CAS  Google Scholar 

  • Sforza E, Ramos-Tercero EA, Gris B, Bettin F, Milani A, Bertucco A (2014) Integration of Chlorella protothecoides production in wastewater treatment plant: from lab measurements to process design. Algal Res 6:223–233

    Google Scholar 

  • Shahid A, Malik S, Zhu H, Xu J, Nawaz MZ, Nawaz S, Asraful Alam M, Mehmood MA (2019) Cultivating microalgae in wastewater for biomass production, pollutant removal, and atmospheric carbon mitigation; a review. Sci Total Environ 20(704):135303

    Google Scholar 

  • Shelef G, Moraine R, Oron G (1978) Photosynthetic biomass production from sewage. Ergeb Der Limnol 2:3–14

    Google Scholar 

  • Shen Q-H, Jiang J-W, Chen L-P, Cheng L-H, Xu XH, Chen HL (2015) Effect of carbon source on biomass growth and nutrients removal of Scenedesmus obliquus for wastewater advanced treatment and lipid production. Bioresour Technol 190(2015):257–263

    Google Scholar 

  • Singh RP, Agrawal M (2008) Potential benefits and risks of land application of sewage sludge. Waste Manage 28:347–358

    Article  CAS  Google Scholar 

  • Singh B, Bauddh K, Bux F (2015) Algae and environmental sustainability, 1st edn. Springer India, New Delhi

    Google Scholar 

  • Sonune A, Ghate R (2004) Developments in wastewater treatment methods. Desalination 167:55–63

    Article  CAS  Google Scholar 

  • Stephenson AL, Kazamia E, Dennis JS, Howe CJ, Scott SA, Smith AG (2010) Life-cycle assessment of potential algal biodiesel production in the United Kingdom: a comparison of raceways and air-lift tubular bioreactors. Energy Fuel 24:4062–4077

    Article  CAS  Google Scholar 

  • Sturm BSM, Lamer SL (2011) An energy evaluation of coupling nutrient removal from wastewater with algal biomass production. Appl Energy 88:3499

    Article  CAS  Google Scholar 

  • Su Y, Mennerich A, Urban B (2011) Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture. Water Res 45:3351–3358

    Article  CAS  Google Scholar 

  • Tam NFY, Wong YS (1989) Wastewater nutrient removal by Chlorella pyrenoidosa and Scenedesmus sp. Environ Pollut 58:19–34

    Article  CAS  Google Scholar 

  • Tartakovsky B, Lebrun FM, Guiot SR (2015) High-rate biomethane production from microalgal biomass in a UASB reactor. Algal Res 7:86–91

    Article  Google Scholar 

  • Valigore JM, Gostomski PA, Wareham DG, O’Sullivan AD (2012) Effects of hydraulic and solids retention times on productivity and settleability of microbial (microalgal-bacterial) biomass grown on primary treated wastewater as a biofuel feedstock. Water Res 46:2957–2964

    Article  CAS  Google Scholar 

  • Wang L, Li Y, Chen P, Min M, Chen Y, Zhu J, Ruan RR (2010a) Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresour Technol 101:2623–2628

    Article  CAS  Google Scholar 

  • Wang L, Min M, Li Y, Chen P, Chen Y, Liu Y, Wang Y, Ruan R (2010b) Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl Biochem Biotechnol 162:1174–1186

    Article  CAS  Google Scholar 

  • Wang S, Yin C, Yang Z, Hu X, Liu Z, Song W (2022) Assessing the potential of Chlorella sp. for treatment and resource utilization of brewery wastewater coupled with bioproduct production. J Clean Prod 367:132939. https://doi.org/10.1016/j.jclepro.2022.132939

  • Whangchenchom W, Chiemchaisri W, Tapaneeyaworawong P, Powtongsook S (2014) Wastewater from instant Noodle factory as the whole nutrients source for the microalga Scenedesmus sp. cultivation. Environ Eng Res 19:283–287. https://doi.org/10.4491/eer.2014.s1.007

    Article  Google Scholar 

  • Woertz I, Feffer A, Lundquist T, Nelson Y (2009) Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. J Environ Eng 135:1115–1122

    Article  CAS  Google Scholar 

  • Yao L, Shi J, Miao X (2015) Mixed wastewater coupled with CO2 for microalgae culturing and nutrient removal. PLoS One 10(9). Article e0139117. https://www.engineeringarticles.org/primary-treatment-of-wastewater/, https://www3.epa.gov/npdes/pubs/mstr-ch3.pdf, https://www.intechopen.com/chapters/49024, (https://www.veoliawatertechnologies.co.uk/technologies/aerobic-treatment)

  • Ye S, Gao L, Zhao J, An M, Wu H, Li M (2020) Simultaneous wastewater treatment and lipid production by Scenedesmus sp. HXY2. Bioresour Technol 302:122903. https://doi.org/10.1016/j.biortech.2020.122903

  • Zhao B, Su Y (2014) Process effect of microalgal-carbon dioxide fixation and biomass production: a review. Renew Sust Energ Rev 31:121–132. https://doi.org/10.1016/j.rser.2013.11.054

Download references

Acknowledgements

Professor El Semary would like to express her gratitude for the financial support funded by the Bank Al Bilad Scholarly chair for food security in Kingdom of Saudi Arabia, Deanship of Scientific research, Vice Presidency for Graduate Studies and Scientific research, King Faisal University, AlAhsa, post code: 31982, KSA. Chair grant number: 107.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nermin El Semary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

El Semary, N. (2023). Use of Algae in Wastewater Treatment. In: Shah, M.P. (eds) Recent Trends in Constructed Wetlands for Industrial Wastewater Treatment. Springer, Singapore. https://doi.org/10.1007/978-981-99-2564-3_8

Download citation

Publish with us

Policies and ethics

Navigation