Electrochemical Theory and Overview of Redox Flow Batteries

  • Chapter
  • First Online:
New Paradigms in Flow Battery Modelling

Abstract

Due to the rapid growth in power generation from intermittent sources, the requirement for low-cost and flexible energy storage systems has given rise to many opportunities [1, 2]. Electrochemical redox flow batteries (RFBs) have emerged as a promising and practical technology for storing energy at large scales [3, 4]. Their scales range from kW to multiples of MW, making them suitable for load levelling, power quality control, coupling with renewable energies and uninterrupted power supply [3]. This can be attributed to their design flexibility, allowing for them to be readily scaled up in power and energy output [5]. This chapter provides a concise overview of RFB systems, covering the fundamental theory behind their operation, their historical development, components and materials, applications and latest developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 168.79
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bottling electricity: Storage as a strategic tool for managing variability and capacity concerns in the modern grid. Technical report, The Electricity Advisory Committee (2008)

    Google Scholar 

  2. N. Tokuda, T. Kanno, T. Hara, T. Shigematsu, Y. Tsutsui, A. Ikeuchi, T. Itou, T. Kumamoto, Development of a redox flow battery system. SEI Tech. Rev. 50, 88–94 (1998)

    Google Scholar 

  3. J. Abboud, J. Makansi, Energy storage-the missing link in the electricity value chain, energy storage council white paper (2002)

    Google Scholar 

  4. J. Kondoh, I. Ishii, H. Yamaguchi, A. Murata, K. Otani, K. Sakuta, N. Higuchi, S. Sekine, M. Kamimoto, Electrical energy storage systems for energy network - energy conversion and management. Energy Convers. Manag. 41(17), 1863–1874 (2000)

    Article  Google Scholar 

  5. E. McKeogh, A. Gonzalez, B. Gallachir, Study of electricity storage technologies and their potential to address wind energy intermittency in Ireland, sustainable energy Ireland, 2004. Sustainable energy research group, university college cork, 2004, final report (2004)

    Google Scholar 

  6. Redox flow cell development and demonstration project, redox flow cell development and demonstration project, calendar year 1977. u.s. dept. of energy, national aeronautics and space administration, nasa tm-79067 1-53. Technical report (1979)

    Google Scholar 

  7. T.R. Crompton, Battery Reference Book Battery Reference Book, Chap. 14 (Elsevier Science & Technology Books, Boston, Newnes, Oxford, England, 2000)

    Google Scholar 

  8. C. Ponce de Leon, A. Frias-Ferrer, J. Gonzalez-Garcia, D.A. Szanto, F.C. Walsh, Redox flow cells for energy conversion. J. Power Sources 160, 716–732 (2006)

    Article  CAS  Google Scholar 

  9. A. Joseph, Battery storage systems in electric power systems. ieee power engineering society general meeting (2006)

    Google Scholar 

  10. J.Q. Pan, Y.Z. Sun, J. Cheng, Y.H. Wen, Y.S. Yang, P.Y. Wan, Study on a new single flow acid cu-pbo2 battery. Electrochem. Commun. 10(9), 1226–1229 (2008)

    Article  CAS  Google Scholar 

  11. A. Hazza, D. Pletcher, R. Wills, A novel flow battery: a lead acid battery based on an electrolyte with soluble lead (ii) part i. preliminary studies. J. Phys. Chem. 6, 1773–1778 (2004)

    Google Scholar 

  12. P.K. Leung, X. Li, C. Ponce de Leon, L. Berlouis, C.T.J. Low, F.C. Walsh, Progress in redox flow batteries, remaining challenges and their applications in energy storage. RSC Adv. 2, 10125–10156 (2012)

    Article  CAS  Google Scholar 

  13. L.H. Thaller, Electrically rechargeable redox flow cells, us patent 3996064 (1976)

    Google Scholar 

  14. P.C. Butler, D.W. Miller, A.E. Verardo, Flowing-electrolyte-battery testing and evolution, in Energy Conversion Eng, editor, 17th Intersoc, Los Angeles, Conf (1982)

    Google Scholar 

  15. P.M. Spaziante, A. Pelligri, To oronzio de nori impianti elettrochimici s.p.a., gb patent 2030349. (1978)

    Google Scholar 

  16. M. Skyllas-Kazacos, F. Grossmith, Efficient vanadium redox flow cell. J. Electrochem. Soc. 134(12), 2950 (1987)

    Article  CAS  Google Scholar 

  17. M. Skyllas-Kazacos, M. Rychcik, R.G. Robins, A. Fane, M. Green, New all-vanadium redox flow cell. J. Electrochem. Soc. 133(5), 1057 (1986)

    Article  CAS  Google Scholar 

  18. V-fuel pty ltd., “status of energy storage technologies as enabling systems for renewable energy from the sun, wind, waves and tides.” House of representatives standing committee on industry and resources

    Google Scholar 

  19. B. Fang, S. Iwasa, Y. Wei, T. Arai, M. Kumagai, A study of the ce (iii)/ce (iv) redox couple for redox flow battery. Electrochim. Acta 47, 3971–3976 (2002)

    Article  CAS  Google Scholar 

  20. F.Q. Xue, Y.L. Wang, W.H. Wang, X.D. Wang, Investigation on the electrode process of the mn(ii)/mn(iii) couple in redox flow battery. Electrochim. Acta 53, 6636–6642 (2008)

    Article  CAS  Google Scholar 

  21. R.F. Koontz, R.D. Lucero, Handbook of Batteries, Chap. 39 (McGraw Hill, 1995)

    Google Scholar 

  22. D. Pletcher, R. Wills, A novel flow battery: a lead acid battery based on an electrolyte with soluble lead (ii) part ii. Flow cell studies. Phys. Chem. 6, 1779–1785 (2004)

    Google Scholar 

  23. B. Huskinson, M.P. Marshak, C. Suh, S. Er, M.R. Gerhardt, C.J. Galvin, X. Chen, A. Aspuru-Guzik, R.G. Gordon, M.J. Aziz, A metal-free organic-inorganic aqueous flow battery. Nature 505(7482), 195–198 (2014)

    Article  CAS  Google Scholar 

  24. K.X. Lin, Q. Chen, M.R. Gerhardt, L.C. Tong, S.B. Kim, L. Eisenach, A.W. Valle, D. Hardee, R.G. Gordon, M.J. Aziz, M.P. Marshak, Alkaline quinone flow battery. Science 349(6255), 1529–1532 (2015)

    Article  CAS  Google Scholar 

  25. B. Yang, L. Hoober-Burkhardt, F. Wang, G.K. Surya Prakash, S.R. Narayanan, An inexpensive aqueous flow battery for large-scale electrical energy storage based on water-soluble organic redox couples. J. Electrochem. Soc. 161(9), A1371–A1380 (2014)

    Google Scholar 

  26. M. Futamata, S. Higuchi, O. Nakamura, I. Ogino, Y. Takeda, S. Okazaki, S. Ashimura, S. Takahashi, J. Power Sources 24, 137 (1988)

    Article  CAS  Google Scholar 

  27. Y.H. Wen, H.M. Zhang et al., a study of the fe (iii)/ fe (ii) - triethanolamine complex redox couple flow battery application. Electrochim. Acta 51(18), 3769–3775 (2006)

    Google Scholar 

  28. Y.H. Wen, H.M. Zhang et al., Studies on iron ( fe3+/ fe2+)-complex/ bromine (br2/ br-) redox flow cell in sodium acetate solution. J. Electrochem. Soc 153(5), A929–A934 (2006)

    Article  CAS  Google Scholar 

  29. P. Modiba, A.M. Crouch, Electrochemical study of cerium(iv) in the presence of ethylenediaminetetraacetic acid (edta) and diethylenetriaminepentaacetate (dtpa) ligands. J. Appl. Electrochem. 38(9), 1293–1299 (2008)

    Article  CAS  Google Scholar 

  30. C.H. Bae, E.P.L. Roberts, R.A.W. Dryfe, Chromium redox couples for application to redox flow batteries. Electrochim. Acta 48(3), 279–287 (2002)

    Article  CAS  Google Scholar 

  31. G. Codina, J.R. Perez, M. Lopez-Atalaya, J.L. Vazquez, A. Aldaz, J. Power Sources 48, 293 (1994)

    Article  CAS  Google Scholar 

  32. P. Garces, M.A. Climent, A. Aldaz, An. Quim. Sistemas de almacenamiento de energıa 83, 9 (1987)

    CAS  Google Scholar 

  33. M. Kazacos, M. Skyllas-Kazacos, Performance characteristics of carbon plastic electrodes in the all-vanadium redox cell. J. Electrochem. Soc 136, 2759–2760 (1989)

    Article  CAS  Google Scholar 

  34. B. Fang, S. Iwasa, Y. Wei, T. Arai, M. Kumagai, A study of the ce (iii)/ ce (iv) redox couple for redox flow battery application. Electrochim. Acta 47(24), 3971–3976 (2002)

    Article  CAS  Google Scholar 

  35. P. Zhao, H.M. Zhang, H.T. Zhou, B.L. Yi, Nickel foam and carbon felt applications for sodium polysulfide/bromine redox flow battery electrodes 51(6), 1091–1098 (2005)

    Google Scholar 

  36. R.L. Clarke, B.J. Dougherty, S. Harrison, J.P. Millington, S. Mohanta, Battery with bifunctional electrolyte, us 2006/0063065 a1 (2005)

    Google Scholar 

  37. R.L. Clarke, B.J. Dougherty, S. Harrison, J.P. Millington, S. Mohanta, Cerium batteries, us 2004/ 0202925 a1 (2004)

    Google Scholar 

  38. M. Skyllas-Kazacos, Novel vanadium chloride/polyhalide redox flow battery. J. Power Sources 124(1), 299–302 (2003)

    Article  CAS  Google Scholar 

  39. P. Leung, A.A. Shah, L. Sanz, C. Flox, J.R. Morante, Q. Xu, M.R. Mohamed, C.P.d. Leon, F.C. Walsh, Recent developments in organic redox flow batteries: a critical review 360, 243–283 (2017)

    Google Scholar 

  40. J. Doria, M.C.D. Andres, C. Armenta, Proc. 9th solar energy soc. 3, 1500 (1985)

    Google Scholar 

  41. M. Skyllas-Kazacos, M. Rychcik, R. Robins, Au patent 575247 (1986)

    Google Scholar 

  42. M. Skyllas-Kazacos, C. Menictas, The vanadium redox battery for emergency back-up applications, in 19th International Telecommunications Energy Conference, INTELEC 97 (1997), pp. 463–471

    Google Scholar 

  43. M. Kazakos, M. Skyllas-Kazacos, A. Mousa, Metal bromide redox flow cell. pct application, 2003, pct/gb2003/001757 (2003)

    Google Scholar 

  44. A. Paulenova, S.E. Creager, J.D. Navratil, Y. Wei, Redox potentials and kinetics of the ce3+/ce4+ redox reaction and solubility of cerium sulfates in sulfuric acid solutions. J. Power Sources 109(2), 431–438 (2002)

    Article  CAS  Google Scholar 

  45. R.P. Kreh, R.M. Spotnitz, J.T. Lundquist, Mediated electrochemical synthesis of aromatic aldehydes, ketones, and quinones using ceric methanesulfonate. J. Org. Chem. 54(7), 1526–1531 (1989)

    Article  CAS  Google Scholar 

  46. F.C. Walsh, Electrochemical technology for environmental treatment and clean energy conversion. Pure Appl. Chem 73(12), 1819–1837 (2001)

    Article  CAS  Google Scholar 

  47. T. Yamamura, Y. Shiokawa, H. Yamana, H. Moriyama, Electrochemical investigation of uranium?-diketonates for all-uranium redox flow battery. Electrochim. Acta 48(1), 43–50 (2002)

    Article  CAS  Google Scholar 

  48. Y. Shiokawa, T. Yamamura, K. Shirasaki, Energy efficiency of an uranium redox-flow battery evaluated by the butler-volmer equation. J. Phys. Soc. Jpn. 75, 137–142 (2006)

    Article  Google Scholar 

  49. T. Yamamura, N. Watanabe, Y. Shiokawa, Energy efficiency of neptunium redox battery in comparison with vanadium battery. J. Alloys Compd. 408, 1260–1266 (2006)

    Article  Google Scholar 

  50. T. Yamamura, N. Watanabe, T. Yano, Y. Shiokawa, Electron-transfer kinetics of np [sup 3+] np [sup 4+], npo [sub 2][sup+]? npo [sub 2][sup 2+], v [sup 2+] v [sup 3+], and vo [sup 2+]? vo [sub 2][sup+] at carbon electrodes. J. Electrochem. Soc 152(4), A830 (2005)

    Article  CAS  Google Scholar 

  51. K. Hasegawa, A. Kimura, T. Yamamura, Y. Shiokawa, Estimation of energy efficiency in neptunium redox flow batteries by the standard rate constants. J. Phys. Chem. Solids 66(2–4), 593–595 (2005)

    Article  CAS  Google Scholar 

  52. C. Lotspeich, A comparative assessment of flow battery technologies. Proceedings of the electrical energy storage systems applications and technologies, in San Francisco, editor, International Conference 2002 (EESAT2002) (2002)

    Google Scholar 

  53. D. Pletcher, R. Wills, A novel flow battery: a lead acid battery based on an electrolyte with soluble lead (ii) part ii. flow cell studies. Phys. Chem. Chem. Phys. 6(8), 1779–1785 (2004)

    Google Scholar 

  54. A. Hazza, D. Pletcher, R. Wills, A novel flow battery: a lead acid battery based on an electrolyte with soluble lead(ii) part i: preliminary studies. Phys. Chem. Chem. Phys 6, 1773–1778 (2004)

    Article  CAS  Google Scholar 

  55. D. Pletcher, R. Wills, A novel flow battery-a lead acid battery based on an electrolyte with soluble lead(ii): Iii. the influence of conditions on battery performance. J. Power Sources 149, 96–102 (2005)

    Google Scholar 

  56. A. Hazza, D. Pletcher, R. Wills, A novel flow battery-a lead acid battery based on an electrolyte with soluble lead(ii): Iv. the influence of additives. J. Power Sources 149, 103–111 (2005)

    Google Scholar 

  57. D. Pletcher, H.T. Zhou, G. Kear, C.T.J. Low, F.C. Walsh, R.G.A. Wills, A novel flow battery - a lead-acid battery based on an electrolyte with soluble lead(ii) part vi. studies of the lead dioxide positive electrode. J. Power Sources 180(1), 630–634 (2008)

    Google Scholar 

  58. J. Cheng, L. Zhang, Y.S. Yang, Y.H. Wen, G.P. Cao, X.D. Wang, Preliminary study of single flow zinc-nickel battery. Electrochem. Commun. 9(11), 2639–2642 (2007)

    Article  CAS  Google Scholar 

  59. L. Zhang, J. Cheng, Y.S. Yang, Y.H. Wen, X.D. Wang, G.P. Cao, Study of zinc electrodes for single flow zinc/ nickel battery application. J. Power Sources 179(1), 381–387 (2008)

    Article  CAS  Google Scholar 

  60. P.C. Symons, Soc. electrochem, in International Conference on electrolytes for power sources, Brighton. Soc. Electrochem (1973)

    Google Scholar 

  61. P.C. Symons, Process for electrical energy using solid halogen hydrates, usp- 3713,888 (1970)

    Google Scholar 

  62. http://www.zbbenergy.com/

  63. J. Jorn, J.T. Kim, D. Kralik, The zinc-chlorine battery: half-cell overpotential measurements. J. Appl. Electrochem. 9, 573–579 (1979)

    Article  Google Scholar 

  64. H.S. Lim, A.M. Lackner, R.C. Knechtli, Zinc-bromine secondary battery. J. Electrochem. Soc. 124(8), 1154–1157 (1977)

    Article  CAS  Google Scholar 

  65. H.T. Zhou, H.M. Zhang, P. Zhao, B.L. Yi, A comparative study of carbon felt and activated carbon based electrodes for sodium polysulfide/bromine redox flow battery. Electrochim. Acta 51(28), 6304–6312 (2006)

    Article  CAS  Google Scholar 

  66. V-fuel pty ltd., house of representatives standing committee on industry and resources

    Google Scholar 

  67. L.W. Hruska, R.F. Savinell, Investigation of factors affecting performance of the iron-redox battery. J. Electrochem. Soc. 128(1), 18–25 (1981)

    Article  CAS  Google Scholar 

  68. A. Frias-Ferrer, J. Gonzalez-Garcaa, V. Suez, C. Ponce de Leon, F.C. Walsh, The effects of manifold flow on mass transport in electrochemical filter-press reactors. AIChE J. 54(3), 811–823 (2008)

    Article  CAS  Google Scholar 

  69. Y.M. Zhang, Q.M. Huang, W.S. Li, H.Y. Peng, S.J. Hu, Graphite-acetylene black composite electrodes for all vanadium redox flow battery. J. Inorg. Mater 22, 1051–1055 (2007)

    Google Scholar 

  70. M. Rychcik, M. Skyllas-Kazacos, Evaluation of electrode materials for vanadium redox cell. J. Power Sources 19(1), 45–54 (1987)

    Article  CAS  Google Scholar 

  71. B. Sun, M. Skyllas-Kazacos, Modification of graphite electrode materials for vanadium redox flow battery application i. thermal treatment. Electrochimica acta 37(7), 1253–1260 (1992)

    Google Scholar 

  72. H. Kaneko, K. Nozaki, Y. Wada, T. Aoki, A. Negishi, M. Kamimoto, Vanadium redox reactions and carbon electrodes for vanadium redox flow battery. Electrochimica Acta 36(7), 1191–1196 (1991)

    Article  CAS  Google Scholar 

  73. J. Cathro, K. Cedzynska, D.C. Constable, Preparation and performance of plastic-bonded-carbon bromine electrodes. J. Power Sources 19, 337 (1987)

    Article  CAS  Google Scholar 

  74. H. Zhou, H. Zhang, P. Zhao, B. Yi, A comparative study of carbon felt and activated carbon based electrodes for sodium polysulfide/bromine redox flow battery. Electrochimica Acta 51(28), 6304–6312 (2006)

    Article  CAS  Google Scholar 

  75. V. Haddadi-Asl, M. KAZACos, M. Skyllas-Kazacos, Conductive carbon-polypropylene composite electrodes for vanadium redox battery. J. Appl. Electrochem. 25(1), 29–33 (1995)

    Google Scholar 

  76. W.H. Wang, X.D. Wang, Investigation of ir-modified carbon felt as the positive electrode of an all-vanadium redox flow battery (ir-modified carbon felt). Electrochim. Acta 52(24), 6755–6762 (2007)

    Article  CAS  Google Scholar 

  77. L. Joerissen, J. Garche, C. Fabjan, G. Tomazic, Possible use of vanadium redox-flow batteries for energy storage in small grids and stand-alone photovoltaic systems. J. Power Sources 127, 98–104 (2004)

    Article  CAS  Google Scholar 

  78. H. Kaneko, K. Nozaki, A. Negishi, Y. Wada, T. Aoki, M. Kamimoto, Vanadium redox reactions and carbon electrodes for vanadium redox flow battery. Electrochimica Acta 36(7), 1191–1196 (1991)

    Article  CAS  Google Scholar 

  79. X. Li, K. Horita, Electrochemical characterization of carbon black subjected to rf oxygen plasma. Carbon 38(1), 133–138 (2000)

    Article  CAS  Google Scholar 

  80. M. Santiago, F. Stuber, A. Fortuny, A. Fabregat, J. Font, Modified activated carbons for catalytic wet air oxidation of phenol. Carbon 43(10), 2134–2145 (2005)

    Article  CAS  Google Scholar 

  81. K. Jurewicz, K. Babel, A. Ziolkowski, H. Wachowska, Ammoxidation of active carbons for improvement of supercapacitor characteristics. Electrochimica Acta 48(11), 1491–1498 (2003)

    Article  CAS  Google Scholar 

  82. N.S. Jacobson, D.M. Curry, Oxidation microstructure studies of reinforced carbon/carbon. Carbon 44(7), 1142–1150 (2006)

    Article  CAS  Google Scholar 

  83. X.G. Li, K.L. Huang, S.Q. Liu, L.Q. Chen, Electrochemical behavior of diverse vanadium ions at modified graphite felt electrode in sulphuric solution. J. Cent. South Univ. Technol. 14(1), 51–56 (2007)

    Article  CAS  Google Scholar 

  84. M. Skyllas-Kazacos, F. Grossmith, Efficient vanadium redox flow cell. J. Electrochem. Soc 134(12), 2950–2953 (1987)

    Article  CAS  Google Scholar 

  85. C.M. Hagg, M. Skyllas-Kazacos, Novel bipolar electrodes for battery applications. J. Appl. Electrochem 32(10), 1063–1069 (2002)

    Article  CAS  Google Scholar 

  86. K. Kinoshita, S.C. Leach, Mass transport of carbon-felt flow through electrode. Electrochem. Soc., J. 129, 1993–1997 (1982)

    Google Scholar 

  87. M. Rychcik, M. Skyllas-Kazacos, Evaluation of electrode materials for vanadium redox cell. J. Power Sources 19(1), 45–54 (1987)

    Article  CAS  Google Scholar 

  88. K.J. Kim, M.S. Park, Y.J. Kim, J.H. Kim, S.X. Dou, M. Skyllas-Kazacos, A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries. J. Mater. Chem. A 3, 16913–16933 (2015)

    Article  CAS  Google Scholar 

  89. Z. He, L. Liu, C. Gao, Z. Zhou, X. Liang, Y. Lei, Z. He, S. Liu, Carbon nanofibers grown on the surface of graphite felt by chemical vapour deposition for vanadium redox flow batteries. RSC Adv. 3(43), 19774–19777 (2013)

    Article  CAS  Google Scholar 

  90. R. Wang, Y.S. Li, Y.L. He, Achieving gradient-pore-oriented graphite felt for vanadium redox flow batteries: meeting improved electrochemical activity and enhanced mass transport from nano- to micro-scale. J. Mater. Chem. A 7, 10962–10970 (2019)

    Article  CAS  Google Scholar 

  91. B. Sun, M. Skyllas-Kazacos, Chemical modification and electrochemical behaviour of graphite fibre in acidic vanadium solution. Electrochim. Acta 36, 513–517 (1991)

    Article  CAS  Google Scholar 

  92. C. Fabjan, J. Garche, B. Harrer, L. Jorissen, C. Kolbeck, F. Philippi, G. Tomazic, F. Wagner, The vanadium redox-battery: an efficient storage unit for photovoltaic systems. Electrochim. Acta 47(5), 825–831 (2001)

    Article  CAS  Google Scholar 

  93. J.M. Friedrich, C. Ponce de Leon, G.W. Reade, F.C. Walsh, Reticulated vitreous carbon as an electrode material. J. Electroanal. Chem. 561, 203–217 (2004)

    Article  CAS  Google Scholar 

  94. M. Mastragostino, S. Valcher, Polymeric salt as bromine complexing agent in a zn-br 2 model battery. Electrochim. Acta 28, 501–505 (1983)

    Article  CAS  Google Scholar 

  95. Y. Liu, X. **a, H. Liu, Studies on cerium (ce4+/ce3+) -vanadium (v2+/v3+) redox flow cell-cyclic voltammogram response of ce4+/ce3+ redox couple in h2so4 solution. J. Power Sources 130(1–2), 299–305 (2004)

    Article  CAS  Google Scholar 

  96. X.G. Li, K.L. Huang, S.Q. Liu, L.Q. Chen, Electrochemical behavior of diverse vanadium ions at modified graphite felt electrode in sulphuric solution. J. Cent. South Univ. Technol. (English Edition) 14(1), 51–56 (2007)

    Article  CAS  Google Scholar 

  97. B. Tian, F.H. Wang, C.W. Yan, Proton conducting composite membrane from daramic/nafion for vanadium redox flow battery. J. Membr. Sci. 234(1-2), 51–54 (2004)

    Google Scholar 

  98. M. Skyllas-Kazacos, wo/1989/005526, 47." PCT Int. Appl., 1989 (1989)

    Google Scholar 

  99. S.H. Ge, B.L. Yi, H.M. Zhang, Study of a high power density sodium polysulfide/bromine energy storage cell. J. Appl. Electrochem. 34(2), 181–185 (2004)

    Article  CAS  Google Scholar 

  100. C.M. Hagg, M. Skyllas-Kazacos, Novel bipolar electrodes for battery applications. J. Appl. Electrochem. 32(10), 1063–1069 (2002)

    Article  CAS  Google Scholar 

  101. K. Fushimi, H. Tsunakaw, K. Yonahara, Electrically conductive plastic complex material us pat, 4551267 (1985)

    Google Scholar 

  102. G. Tomazic, Process for the manufacture of bipolar electrodes and separators us pat, 4615108 (1986)

    Google Scholar 

  103. C. Herscovici, Porous and porous-nonporous composites for battery electrodes. US Pat, 4920017 (1990)

    Google Scholar 

  104. C. Herscovici, A. Leo, A. Charkey, Stable carbon-plastic electrodes and method of preparation thereof us pat. 4758473 (1988)

    Google Scholar 

  105. G. Iemmi, D. Macerata, Graphite-resin composite electrode structure, and a process for its manufacture, us pat. 4294893 (1981)

    Google Scholar 

  106. G.J. Hwang, H. Ohya, Crosslinking of anion exchange membrane by accelerated electron radiation as a separator for the all-vanadium redox flow battery. J. Membr. Sci. 132(1), 55–61 (1997)

    Article  CAS  Google Scholar 

  107. D.G. Oei, Permeation of vanadium cations through anionic and cationic membranes. J. Appl. Electrochem. 15, 231–235 (1985)

    Article  CAS  Google Scholar 

  108. S.C. Chieng, M. Kazacos, M. Skyllas-Kazacos, Preparation and evaluation of composite membrane for vanadium redox battery applications. J. Power Sources 39, 11–19 (1992)

    Article  CAS  Google Scholar 

  109. H. Vafiadis, M. Skyllas-Kazacos, Evaluation of membranes for the novel vanadium bromine redox flow cell. J. Membr. Sci. 279(1–2), 394–402 (2006)

    Article  CAS  Google Scholar 

  110. F.C. Walsh, A First Course in Electrochemical Engineering (Electrochemical Consultancy, UK, 1993)

    Google Scholar 

  111. S.C. Chieng, Ph.D. thesis, University of New South Wales, Sydney, Australia (1993)

    Google Scholar 

  112. J.Y. Qiu, M.Y. Li, J.F. Ni, M.L. Zhai, J. Peng, L. Xu, H.H. Zhou, J.Q. Li, G.S. Wei, Preparation of etfe-based anion exchange membrane to reduce permeability of vanadium ions in vanadium redox battery. J. Membr. Sci. 297, 174–180 (2007)

    Article  CAS  Google Scholar 

  113. H. Tasai, T. Horigome, N. Nozaki, H. Kaneko, A. Negishi, Y. Wada, Characteristics of vanadium redox flow cell, in The 31th Denchi Touron Kouengai Yousisyu (Japan, 1990), pp. 301–302

    Google Scholar 

  114. M. Skyllas-Kazacos, D. Kasherman, D.R. Hong, M. Kazacos, Characteristics and performance of 1 kw unsw vanadium redox battery. J. Power Sources 35, 399–404 (1991)

    Article  CAS  Google Scholar 

  115. T. Mohammadi, M. Skyllas-Kazacos, Evaluation of the chemical stability of some membranes in vanadium solution. J. Appl. Electrochem. 27(2), 153–160 (1997)

    Google Scholar 

  116. X.L. Luo, Z.Z. Lu, J.Y. **, Z.H. Wu, W.T. Zhu, L.Q. Chen, X.P. Qiu, Influences of permeation of vanadium ions through pvdf-g-pssa membranes on performances of vanadium redox flow batteries. J. Phys. Chem. B 109(43), 20310–20314 (2005)

    Article  CAS  Google Scholar 

  117. T. Mohammadi, M. Skyllas-Kazacos, Preparation of sulfonated composite membrane for vanadium redox flow battery applications. J. Membr. Sci. 107(1–2), 35–45 (1995)

    Article  CAS  Google Scholar 

  118. G.J. Hwang, H. Ohya, Preparation of cation exchange membrane as a separator for the all-vanadium redox flow battery. J. Membr. Sci. 120(1), 55–67 (1996)

    Article  CAS  Google Scholar 

  119. J.Y. Qiu, L. Zhao, M.L. Zhai, J.F. Ni, H.H. Zhou, J. Peng, J.Q. Li, G.S. Wei, Pre-irradiation grafting of styrene and maleic anhydride onto pvdf membrane and subsequent sulfonation for application in vanadium redox batteries. J. Power Sources 177(2), 617–623 (2008)

    Article  CAS  Google Scholar 

  120. G.J. Hwang, H. Ohya, Preparation of anion-exchange membrane based on block copolymers. Part 1. amination of the chloromethylated copolymers. J. Membr. Sci. 140, 195–203 (1998)

    Google Scholar 

  121. Q.T. Luo, H.M. Zhang, J. Chen, D.J. You, C.X. Sun, Y. Zhang, Preparation and characterization of nafion/speek layered composite membrane and its application in vanadium redox flow battery. J. Memb. Sci. 325, 553–558 (2008)

    Article  CAS  Google Scholar 

  122. T. Mohammadi, M. Skyllas-Kazacos, Use of polyelectrolyte for incorporation of ion-exchange groups in composite membranes for vanadium redox flow battery applications. J. Power Sources 56(1), 91–96 (1995)

    Article  CAS  Google Scholar 

  123. A. Fraas-Ferrer, J. Gonzalez-Garcia, V.S.E. Exposito, C.M. Sanchez-Sanchez, V. Montiel, A. Aldaz, F.C. Walsh, The entrance and exit effects in exit effects in small electrochemical filter-press reactors used in the laboratory. J. Chem. Edu. 82, 1395–1398 (2005)

    Article  Google Scholar 

  124. A. Leo, Status of zinc-bromine battery development, in Energy Conversion Engineering Conference, editor, Proceedings of the 24th Intersociety , Energy Research Corporation, IECEC-89, 3 (1989), pp. 1303–1309

    Google Scholar 

  125. A. Ponce de Leon, G.W. Reade, I. Whyte, S.E. Male, F.C. Walsh, Characterization of the reaction environment in a filter-press redox flow reactor. Electrochim. Acta 52(19), 5815–5823 (2007)

    Article  CAS  Google Scholar 

  126. I. Tsuda, K. Kurokawa, K. Nozaki, Development of intermittent redox flow battery for pv system, in Photovoltaic Energy Conversion, Conference Record of the Twenty Fourth IEEE Photovoltaic Specialists Conference - 1994, 1994 IEEE First World Conference 1, 1994 (1994), pp. 946–949

    Google Scholar 

  127. R.A. Scannell, F.C. Walsh, Comparative mass transfer and electrode area in electrochemical reactors. Inst. Chem. Engr. Symp. Ser. 112, 59–71 (1989)

    CAS  Google Scholar 

  128. L.Y. Li, S.W. Kim, W. Wang, M. Vijaayakumar, Z.M. Nie, B.W. Chen, J.L. Zhang, G.G. **a, J.Z. Hu, G. Graff, J. Liu, Z.G. Yang, A stable vanadium redox-flow battery with high energy density for large-scale energy storage. Adv. Energy Mater. 1(3), 394–400 (2011)

    Article  CAS  Google Scholar 

  129. M.D. Gernon, M. Wu, T. Buszta, P. Janney, Environmental benefits of methanesulfonic acid. Green Chem. 1, 127–140 (1999)

    Article  CAS  Google Scholar 

  130. K.V. Kordesch, C. Fabjan, J. Daniel-Ivad, J. Oliveira, Rechargeable zinc-carbon hybrid cells. J. Power Sources 65, 77–80 (1997)

    Article  CAS  Google Scholar 

  131. D.S. Aaron, Q. Liu, Z. Tang, G.M. Grim, A.B. Papandrew, A. Turhan, T.A. Zawodzinski, M.M. Mench, Dramatic performance gains in vanadium redox flow batteries through modified cell architecture. J. Power Sources 206, 450–453 (2012)

    Article  CAS  Google Scholar 

  132. P.R. Roberge, Handbook of Corrosion Engineering, Chap. 10 (McGraw-Hill,, 2000)

    Google Scholar 

  133. A. Price, S. Bartley, S. Male, G. Cooley, A novel approach to utility scale energy storage. Power Eng. J. 13(3), 122–129 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akeel A. Shah .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

A. Shah, A., Leung, P., Xu, Q., Sui, PC., **ng, W. (2023). Electrochemical Theory and Overview of Redox Flow Batteries. In: New Paradigms in Flow Battery Modelling. Engineering Applications of Computational Methods, vol 16. Springer, Singapore. https://doi.org/10.1007/978-981-99-2524-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-2524-7_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-2523-0

  • Online ISBN: 978-981-99-2524-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation