Genetically Modified Microbe Mediated Metal Bioaccumulation: A Sustainable Effluent Treatment Strategy

  • Chapter
  • First Online:
Industrial Wastewater Reuse

Abstract

Consistent increase in living standards of humans has resulted in a concomitant rise in demand for heavy metals that have become an indispensable component of electronics and are also extensively used as raw materials for infrastructure as well as advance material formulations. In order to supply such enormous demands, mining and metal-refinery industries often disregard environmental safety and carry out economically feasible but hazardous mining operations which include improper treatment of effluents. Hence, eco-friendly and sustainable mining practices are primarily essential with regards to wastewater effluents containing hazardous heavy metals that may pollute water bodies if discharged without any treatment. Conventional methods of heavy metal removal include chemical precipitation, coagulation/ flocculation, membrane filtration, photocatalysis and adsorption. However, these techniques often produce harmful by-products that require tedious disposal processes that in turn, increase energy requirements. Thus, genetically modified microbe mediated bioaccumulation is one of the alternative approaches for removal of heavy metals from industrial effluents that is cost-effective, eco-friendly and easy to operate. This chapter elaborates in detail application of such genetically modified bacteria for carrying out sustainable removal of heavy metals from effluents. Microbial bioaccumulation is a metabolically active process wherein several bacteria assimilate toxic elements such as arsenic, cadmium, mercury, copper, cobalt and zinc. Several studies have reported improvement of such uptake of heavy metals using genetic recombination and expression of channel proteins, secondary carriers and primary active membrane transporters in bacteria such as Escherichia coli, Corynebacterium glutamicum and Mesorhizobium huakuii. Additionally, some metal-binding proteins and polymers were also genetically encoded for facilitating improved bioaccumulation. Hence, development of bioaccumulation carried out by genetically engineered microorganisms (GEMs) for removal of heavy metals from industrial effluents could be a useful technology in order to alleviate environmental pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 181.89
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Carolin CF, Kumar PS, Saravanan A, Joshiba GJ, Naushad M (2017) Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review. J Environ Chem Eng 5(3):2782–2799

    Article  CAS  Google Scholar 

  • Deng X, Yi XE, Liu G (2007) Cadmium removal from aqueous solution by gene-modified Escherichia coli JM109. J Hazard Mater 139:340–344

    Article  CAS  Google Scholar 

  • Diep P, Mahadevan R, Yakunin AF (2018) Heavy metal removal by bioaccumulation using genetically engineered microorganisms. Front Bioeng Biotechnol 6:157

    Article  Google Scholar 

  • Fomina M, Gadd GM (2014) Biosorption: current perspectives on concept, definition and application. Bioresour Technol 160:3–14

    Article  CAS  Google Scholar 

  • Ghosh S (2020) Toxic metal removal using microbial nanotechnology. In: Rai M, Golinska P (eds) Microbial nanotechnology. CRC Press, Boca Raton. eBook ISBN: 9780429276330

    Google Scholar 

  • Ghosh S, Webster TJ (2021) Nanotechnology for water processing. In: Shah MP, Rodriguez-Couto S, Mehta K (eds) The future of effluent treatment plants-biological treatment systems. Elsevier, pp 335–360. Paperback ISBN: 9780128229569

    Google Scholar 

  • Ghosh S, Bhagwat T, Webster TJ (2021a) Arsenic removal using nanotechnology. In: Kalamdhad A, Haq I (eds) Emerging treatment technologies for waste management. Springer Nature, Singapore, pp 73–102. eBook ISBN: 9789811620157; Paperback ISBN: 9789811620140

    Google Scholar 

  • Ghosh S, Joshi K, Webster TJ (2021b) Removal of heavy metals by microbial communities. In: Shah MP, Couto SR (eds) Waste Water treatment reactors: microbial community structure. Elsevier, pp 537–566. eBook ISBN: 978-0-12-824244-5; Paperback ISBN: 978-0-12-823991-9

    Google Scholar 

  • Ghosh S, Khunt N, Webster TJ (2021c) Arsenic removing prokaryotes as potential biofilters. In: Shah M Couto SR, Biswas JK (eds) An innovative role of biofiltration in Waste Water Treatment Plants (WWTPs). Elsevier, pp 65–111. Paperback ISBN: 9780128239469; eBook ISBN: 9780128239476

    Google Scholar 

  • Ghosh S, Selvakumar G, Ajilda AAK, Webster TJ (2021d) Microbial biosorbents for heavy metal removal. In: Shah MP, Couto SR, Rudra VK (eds) New trends in removal of heavy metals from industrial wastewater. Elsevier B.V., Amsterdam, Netherlands, pp 213–262. eBook ISBN: 978-0-12-823108-1; Paperback ISBN: 978-0-12-822965-1

    Google Scholar 

  • Ghosh S, Sharma I, Nath S, Webster TJ (2021e) Bioremediation—the natural solution. In: Shah MP, Couto SR (eds) Microbial ecology of Waste Water Treatment Plants (WWTPs). Elsevier, pp 11–40. eBook ISBN: 978-0-12-822504-2; Paperback ISBN: 978-0-12-822503-5

    Google Scholar 

  • He Y, Ma W, Li Y, Liu J, **g W, Wang L (2014) Expression of metallothionein of freshwater crab (Sinopotamon henanense) in Escherichia coli enhances tolerance and accumulation of zinc, copper and cadmium. Ecotoxicology 23:56–64

    Article  CAS  Google Scholar 

  • Kang SH, Singh S, Kim JY, Lee W, Mulchandani A, Chen W (2007) Bacteria metabolically engineered for enhanced phytochelatin production and cadmium accumulation. Appl Environ Microbiol 73(19):6317–6320

    Article  CAS  Google Scholar 

  • Li H, Cong Y, Lin J, Chang Y (2015) Enhanced tolerance and accumulation of heavy metal ions by engineered Escherichia coli expressing Pyrus calleryana phytochelatin synthase. J Basic Microbiol 55:398–405

    Article  CAS  Google Scholar 

  • Ma Y, Lin J, Zhang C, Ren Y, Lin J (2011) Cd (II) and As (III) bioaccumulation by recombinant Escherichia coli expressing oligomeric human metallothioneins. J Hazard Mater 185:1605–1608

    Article  CAS  Google Scholar 

  • Mahapatra B, Dhal NK, Pradhan A, Panda BP (2020) Application of bacterial extracellular polymeric substances for detoxification of heavy metals from contaminated environment: a mini-review. Mater Today Proc 30:283–288

    Article  CAS  Google Scholar 

  • Mathivanan K, Chandirika JU, Vinothkanna A, Yin H, Liu X, Meng D (2021) Bacterial adaptive strategies to cope with metal toxicity in the contaminated environment—a review. Ecotoxicol Environ Saf 226:112863

    Article  CAS  Google Scholar 

  • Priyadarshanee M, Das S (2020) Biosorption and removal of toxic heavy metals by metal tolerating bacteria for bioremediation of metal contamination: a comprehensive review. J Environ Chem Eng 9(1):104686

    Article  Google Scholar 

  • Raghu G, Balaji V, Venkateswaran G, Rodrigue A, Mohan PM (2008) Bioremediation of trace cobalt from simulated spent decontamination solutions of nuclear power reactors using E. coli expressing NiCoT genes. Appl Microbiol Biotechnol 81:571–578

    Article  CAS  Google Scholar 

  • Ruiz ON, Alvarez D, Gonzalez-Ruiz G, Torres C (2011) Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase. BMC Biotechnol 11:82

    Article  CAS  Google Scholar 

  • Sauge-Merle S, Lecomte-Pradines C, Carrier P, Cuiné S, DuBow M (2012) Heavy metal accumulation by recombinant mammalian metallothionein within Escherichia coli protects against elevated metal exposure. Chemosphere 88:918–924

    Article  CAS  Google Scholar 

  • Shahpiri A, Mohammadzadeh A (2018) Mercury removal by engineered Escherichia coli cells expressing different rice metallothionein isoforms. Ann Microbiol 68:145–152

    Article  CAS  Google Scholar 

  • Sharma P, Pandey AK, Kim SH, Singh SP, Chaturvedi P, Varjani S (2021) Critical review on microbial community during in-situ bioremediation of heavy metals from industrialwastewater. Environ Technol Innov 24:101826

    Article  CAS  Google Scholar 

  • Singh S, Mulchandani A, Chen W (2008) Highly selective and rapid arsenic removal by metabolically engineered Escherichia coli cells expressing Fucus vesiculosus metallothionein. Appl Environ Microbiol 74(9):2924–2927

    Article  CAS  Google Scholar 

  • Sriprang R, Hayashi M, Ono H, Takagi M, Hirata K, Murooka Y (2003) Enhanced accumulation of Cd2+ by a Mesorhizobium sp. transformed with a gene from Arabidopsis thaliana coding for phytochelatin synthase. Appl Environ Microbiol 69(3):1791–1796

    Google Scholar 

  • Su YJ, Lin JQ, Lin JQ, Hao DH (2009) Bioaccumulation of arsenic in recombinant Escherichia coli expressing human metallothionein. Biotechnol Bioprocess Eng 14:565–570

    Article  CAS  Google Scholar 

  • Tarekegn MM, Salilih FZ, Ishetu AI (2020) Microbes used as a tool for bioremediation of heavy metal from the environment. Cogent Food Agric 6(1):1783174

    Article  Google Scholar 

  • Ueki T, Sakamoto Y, Yamaguchi N, Michibata H (2003) Bioaccumulation of copper ions by Escherichia coli expressing vanabin genes from the vanadium-rich ascidian Ascidia sydneiensis samea. Appl Environ Microbiol 69(11):6442–6446

    Article  CAS  Google Scholar 

  • Villadangos AF, Ordóñez E, Pedre B, Messens J, Gil JA, Mateos LM (2014) Engineered coryneform bacteria as a bio-tool for arsenic remediation. Appl Microbiol Biotechnol 98:10143–10152

    Article  CAS  Google Scholar 

  • Yang T, Liu JW, Gu C, Chen ML, Wang JH (2013) Expression of arsenic regulatory protein in Escherichia coli for selective accumulation of methylated arsenic species. ACS Appl Mater Interfaces 5:2767–2772

    Article  CAS  Google Scholar 

  • Yoshida N, Kato T, Yoshida T, Ogawa K, Yamashita M, Murooka Y (2002) Bacterium-based heavy metal biosorbents: enhanced uptake of cadmium by E. coli expressing a metallothionein fused to β-galactosidase. Biotechniques 32:551–558

    Article  CAS  Google Scholar 

  • Zagorski N, Wilson DB (2004) Characterization and comparison of metal accumulation in two Escherichia coli strains expressing either CopA or MntA, heavy metal-transporting bacterial P-type adenosine triphosphatases. Appl Biochem Biotechnol 117:33–48

    Article  CAS  Google Scholar 

  • Zhao XW, Zhou MH, Li QB, Lu YH, He N, Sun DH, Deng X (2005) Simultaneous mercury bioaccumulation and cell propagation by genetically engineered Escherichia coli. Process Biochem 40:1611–1616

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SG acknowledges Kasetsart University, Bangkok, Thailand for Post-Doctoral Fellowship and funding under Reinventing University Program (Ref. No. 6501.0207/10870 dated 9th November 2021 and Ref. No. 6501.0207/9219 dated 14th September, 2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sougata Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghosh, S., Sarkar, B., Khumphon, J., Thongmee, S. (2023). Genetically Modified Microbe Mediated Metal Bioaccumulation: A Sustainable Effluent Treatment Strategy. In: Shah, M.P. (eds) Industrial Wastewater Reuse. Springer, Singapore. https://doi.org/10.1007/978-981-99-2489-9_11

Download citation

Publish with us

Policies and ethics

Navigation