Signaling Pathways Regulating Cartilage Formation

  • Chapter
  • First Online:
Cartilage: From Biology to Biofabrication

Abstract

Over the course of many years of investigation, the molecular processes that regulate the differentiation of chondrocytes throughout the development of cartilage from their initial activation from mesenchymal progenitor cells to their eventual maturation into hypertrophic chondrocytes have been discovered. In this chapter, we take a glance at the interaction between a number of signaling molecules, mechanical cues, and morphological cell characteristics to activate a specific subset of crucial transcription factors that regulate the genetic program that triggers chondrogenesis and chondrocyte divergence, which leads to the formation of cartilage. We also discuss current research on how various signal transduction pathways regulate chondrocyte differentiation and multiplication in the articular surface. In adult normal cartilage, the anabolic and catabolic processes of chondrocyte maturation are delicately balanced. Due to the degradation of joint with age, the body’s ability to maintain homeostasis is compromised, catabolic pathways are triggered, and cartilage is acutely and severely prone to degeneration. Because the differentiation of cartilage and maintenance of cellular metabolism are intricately governed by a complex series of signal transduction and biophysical elements of the system, it appears that recognizing these processes will be beneficial for both exploring the molecular and biological methods for cartilage tissue engineering and identification of the disease-causing major elements for particular therapeutics for management of the disease progression. This chapter will emphasize on the key signaling pathways that can activate the cellular, subcellular, and biochemical mechanisms, controlling functional properties of the cartilage under normal circumstances. These pathways may have an impact on how various cartilage tissue compartments interact. Consequently, the study in this area may result in the development of more efficient cartilage regeneration therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 181.89
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 235.39
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Free ship** worldwide - see info
Hardcover Book
EUR 235.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akiyama H, Chaboissier MC, Martin JF, Schedl A, De Crombrugghe B (2002) The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev 16(21):2813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Archer CW, Morrison H, Pitsillides AA (1995) The cellular aspects of the development of synovial joints and articular cartilage. Ontogenez 26:259–269

    CAS  PubMed  Google Scholar 

  • Baldridge D, Shchelochkov O, Kelley B, Lee B (2010) Signaling pathways in human skeletal dysplasias. Annu Rev Genomics Hum Genet 11:189

    Article  CAS  PubMed  Google Scholar 

  • Bao JP, Chen WP, Wu LD (2011) Lubricin: a novel potential biotherapeutic approaches for the treatment of osteoarthritis. Mol Biol Rep 38(5):2879

    Article  CAS  PubMed  Google Scholar 

  • Baur ST, Mai JJ, Dymecki SM (2000) Combinatorial signaling through BMP receptor IB and GDF5: sha** of the distal mouse limb and the genetics of distal limb diversity. Development 127(3):605

    Article  CAS  PubMed  Google Scholar 

  • Bhanot P, Brink M, Samos CH, Hsieh JC, Wang Y, Macke JP et al (1996) A new member of the frizzled family from Drosophila functions as a wingless receptor. Nature 382(6588):225

    Article  CAS  PubMed  Google Scholar 

  • Bi W, Huang W, Whitworth DJ, Deng JM, Zhang Z, Behringer RR et al (2001) Haploinsufficiency of Sox9 results in defective cartilage primordia and premature skeletal mineralization. Proc Natl Acad Sci U S A 98(12):6698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brent AE, Braun T, Tabin CJ (2005) Genetic analysis of interactions between the somitic muscle, cartilage and tendon cell lineages during mouse development. Development 132(3):515

    Article  CAS  PubMed  Google Scholar 

  • Buxton P, Edwards C, Archer CW, Francis-West P (2001) Growth/differentiation factor-5 (GDF-5) and skeletal development. J Bone Joint Surg Am 83-A Suppl 1:S23–S30

    CAS  PubMed  Google Scholar 

  • Camarero-Espinosa S, Rothen-Rutishauser B, Foster EJ, Weder C (2016) Articular cartilage: from formation to tissue engineering, vol 4. Biomater Sci, p 734

    Google Scholar 

  • Caplan AI, Elyaderani M, Mochizuki Y, Wakitani S, Goldberg VM (1997) Principles of cartilage repair and regeneration. Clin Orthop Relat Res 342:254

    Article  Google Scholar 

  • Carter DR, Beaupré GS, Wong M, Smith RL, Andriacchi TP, Schurman DJ (2004) The mechanobiology of articular cartilage development and degeneration. Clin Orthop Relat Res 427:S69

    Article  Google Scholar 

  • Chen S, Tao J, Bae Y, Jiang MM, Bertin T, Chen Y et al (2013) Notch gain of function inhibits chondrocyte differentiation via Rbpj-dependent suppression of Sox9. J Bone Miner Res 28(3):649

    Article  PubMed  Google Scholar 

  • Chen S, Lee BH, Bae Y (2014) Notch signaling in skeletal stem cells. Calcif Tissue Int 94:68

    Article  CAS  PubMed  Google Scholar 

  • Chubinskaya S, Hakimiyan A, Pacione C, Yanke A, Rappoport L, Aigner T et al (2007) Synergistic effect of IGF-1 and OP-1 on matrix formation by normal and OA chondrocytes cultured in alginate beads. Osteoarthr Cartil 15(4):421

    Article  CAS  Google Scholar 

  • Chun JS, Oh H, Yang S, Park M (2008) Wnt signaling in cartilage development and degeneration. J Biochem Mol Biol 41:485

    CAS  Google Scholar 

  • Cleary MA, Van Osch GJVM, Brama PA, Hellingman CA, Narcisi R (2015) FGF, TGFβ and Wnt crosstalk: embryonic to in vitro cartilage development from mesenchymal stem cells. J Tissue Eng Regen Med 9(4):332

    Article  CAS  PubMed  Google Scholar 

  • Coleman CM, Tuan RS (2003) Functional role of growth/differentiation factor 5 in chondrogenesis of limb mesenchymal cells. Mech Dev 120(7):823

    Article  CAS  PubMed  Google Scholar 

  • Coleman CM, Vaughan EE, Browe DC, Mooney E, Howard L, Barry F (2013) Growth differentiation factor-5 enhances in vitro mesenchymal stromal cell chondrogenesis and hypertrophy. Stem Cells Dev 22(13):1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coles JM, Zhang L, Blum JJ, Warman ML, Jay GD, Guilak F et al (2010) Loss of cartilage structure, stiffness, and frictional properties in mice lacking PRG4. Arthritis Rheum 62(6):1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danišovič Ľ, Varga I, Polák Š (2012) Growth factors and chondrogenic differentiation of mesenchymal stem cells. Tissue Cell 44:69

    Article  PubMed  Google Scholar 

  • Darling EM, Athanasiou KA (2005) Growth factor impact on articular cartilage subpopulations. Cell Tissue Res 322(3):463

    Article  CAS  PubMed  Google Scholar 

  • Davidson D, Blanc A, Filion D, Wang H, Plut P, Pfeffer G et al (2005) Fibroblast growth factor (FGF) 18 signals through FGF receptor 3 to promote chondrogenesis. J Biol Chem 280(21):20509

    Article  CAS  PubMed  Google Scholar 

  • De Luca F, Barnes KM, Uyeda JA, De-Levi S, Abad V, Palese T et al (2001) Regulation of growth plate chondrogenesis by bone morphogenetic protein-2. Endocrinology 142(1):430

    Article  Google Scholar 

  • Decker RS, Um HB, Dyment NA, Cottingham N, Usami Y, Enomoto-Iwamoto M et al (2017) Cell origin, volume and arrangement are drivers of articular cartilage formation, morphogenesis and response to injury in mouse limbs. Dev Biol 426(1):56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delezoide AL, Benoist-Lasselin C, Legeai-Mallet L, Le Merrer M, Munnich A, Vekemans M et al (1998) Spatio-temporal expression of FGFR 1, 2 and 3 genes during human embryo-fetal ossification. Mech Dev 77(1):19

    Article  CAS  PubMed  Google Scholar 

  • DeLise AM, Fischer L, Tuan RS (2000) Cellular interactions and signaling in cartilage development. Osteoarthr Cartil 8(5):309

    Article  CAS  Google Scholar 

  • Dell’Accio F, De Bari C, El Tawil NMF, Barone F, Mitsiadis TA, O’Dowd J et al (2006) Activation of WNT and BMP signaling in adult human articular cartilage following mechanical injury. Arthritis Res Ther 8(5):R139

    Article  PubMed  PubMed Central  Google Scholar 

  • Dell’Accio F, De Bari C, Eltawil NA, Vanhummelen P, Pitzalis C (2008) Identification of the molecular response of articular cartilage to injury, by microarray screening. Arthritis Rheum 58(5):1410

    Article  PubMed  Google Scholar 

  • Demoor M, Ollitrault D, Gomez-Leduc T, Bouyoucef M, Hervieu M, Fabre H et al (2014) Cartilage tissue engineering: molecular control of chondrocyte differentiation for proper cartilage matrix reconstruction. Biochim Biophys Acta Gen Subj 1840:2414

    Article  CAS  Google Scholar 

  • Deng CX, Wynshaw-Boris A, Shen MM, Daugherty C, Ornitz DM, Leder P (1994) Murine FGFR-1 is required for early postimplantation growth and axial organization. Genes Dev 8(24):3045

    Article  CAS  PubMed  Google Scholar 

  • Doré S, Pelletier J-P, Dibattista JA, Tardif G, Brazeau P, Martel-Pelletier J (1994) Human osteoarthritic chondrocytes possess an increased number of insulin-like growth factor 1 binding sites but are unresponsive to its stimulation. Arthritis Rheum 37(2):253

    Article  PubMed  Google Scholar 

  • Elder SH, Cooley AJ, Borazjani A, Sowell BL, To H, Tran SC (2009) Production of hyaline-like cartilage by bone marrow mesenchymal stem cells in a self-assembly model. Tissue Eng A 15(10):3025

    Article  CAS  Google Scholar 

  • Ellsworth JL, Berry J, Bukowski T, Claus J, Feldhaus A, Holderman S et al (2002) Fibroblast growth factor-18 is a trophic factor for mature chondrocytes and their progenitors. Osteoarthr Cartil 10(4):308

    Article  CAS  Google Scholar 

  • Eltawil NM, De Bari C, Achan P, Pitzalis C, Dell’Accio F (2009) A novel in vivo murine model of cartilage regeneration. Age and strain-dependent outcome after joint surface injury. Osteoarthr Cartil 17(6):695

    Article  CAS  Google Scholar 

  • Engin F, Lee B (2010) NOTCHing the bone: insights into multi-functionality. Bone 46:274

    Article  CAS  PubMed  Google Scholar 

  • Epstein DJ, Martí E, Scott MP, McMahon AP (1996) Antagonizing cAMP-dependent protein kinase A in the dorsal CNS activates a conserved Sonic hedgehog signaling pathway. Development 122(9):2885

    Article  CAS  PubMed  Google Scholar 

  • Erlacher L, Mccartney J, Piek E, Ten Dijke P, Yanagishita M, Oppermann H et al (1998) Cartilage-derived morphogenetic proteins and osteogenic protein-1 differentially regulate osteogenesis. J Bone Miner Res 13(3):383

    Article  CAS  PubMed  Google Scholar 

  • Feng G, Wan Y, Balian G, Laurencin CT, Li X (2008) Adenovirus-mediated expression of growth and differentiation factor-5 promotes chondrogenesis of adipose stem cells. Growth Factors 26(3):132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson CM (2000) Smad2 and 3 mediate transforming growth factor-1-induced inhibition of chondrocyte maturation. Endocrinology 141(12):4728

    Article  CAS  PubMed  Google Scholar 

  • Flannery CR, Zollner R, Corcoran C, Jones AR, Root A, Rivera-Bermúdez MA et al (2009) Prevention of cartilage degeneration in a rat model of osteoarthritis by intraarticular treatment with recombinant lubricin. Arthritis Rheum 60(3):840

    Article  CAS  PubMed  Google Scholar 

  • Fortier LA, Miller BJ (2006) Signaling through the small G-protein Cdc42 is involved in insulin-like growth factor-I resistance in aging articular chondrocytes. J Orthop Res 24(8):1765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fosang AJ, Beier F (2011) Emerging Frontiers in cartilage and chondrocyte biology. Best Pract Res Clin Rheumatol 25:751

    Article  CAS  PubMed  Google Scholar 

  • Francis-West PH, Abdelfattah A, Chen P, Allen C, Parish J, Ladher R et al (1999) Mechanisms of GDF-5 action during skeletal development. Development 126(6):1305

    Article  CAS  PubMed  Google Scholar 

  • Frenz DA, Jaikaria NS, Newman SA (1989) The mechanism of precartilage mesenchymal condensation: a major role for interaction of the cell surface with the amino-terminal heparin-binding domain of fibronectin. Dev Biol 136(1):97

    Article  CAS  PubMed  Google Scholar 

  • Fukumoto T, Sperling JW, Sanyal A, Fitzsimmons JS, Reinholz GG, Conover CA et al (2003) Combined effects of insulin-like growth factor-1 and transforming growth factor-β1 on periosteal mesenchymal cells during chondrogenesis in vitro. Osteoarthr Cartil 11(1):55

    Article  CAS  Google Scholar 

  • Furumatsu T, Tsuda M, Taniguchi N, Tajima Y, Asahara H (2005) Smad3 induces chondrogenesis through the activation of SOX9 via CREB-binding protein/p300 recruitment. J Biol Chem 280(9):8343

    Article  CAS  PubMed  Google Scholar 

  • Furumatsu T, Ozaki T, Asahara H (2009) Smad3 activates the Sox9-dependent transcription on chromatin. Int J Biochem Cell Biol 41(5):1198

    Article  CAS  PubMed  Google Scholar 

  • Furumatsua T, Asahara H (2010) Histone acetylation influences the activity of Sox9-related transcriptional complex. Acta Med Okayama 64:351–357

    Google Scholar 

  • Goldring MB, Marcu KB (2009) Cartilage homeostasis in health and rheumatic diseases. Arthritis Res Ther 11:224

    Article  PubMed  PubMed Central  Google Scholar 

  • Golovchenko S, Hattori T, Hartmann C, Gebhardt M, Gebhard S, Hess A et al (2013) Deletion of beta catenin in hypertrophic growth plate chondrocytes impairs trabecular bone formation. Bone 55(1):102

    Article  CAS  PubMed  Google Scholar 

  • Han C, Ren Y, Jia Y, Kong L, Eerdun T, Wu L (2016) The effective mode of growth and differentiation factor-5 in promoting the chondrogenic differentiation of adipose-derived stromal cells. Cell Tissue Bank 17(1):105

    Article  CAS  PubMed  Google Scholar 

  • Harada M, Takahara M, Zhe P, Otsuji M, Iuchi Y, Takagi M et al (2007) Developmental failure of the intra-articular ligaments in mice with absence of growth differentiation factor 5. Osteoarthr Cartil 15(4):468

    Article  CAS  Google Scholar 

  • Hartmann C, Tabin CJ (2001) Wnt-14 plays a pivotal role in inducing synovial joint formation in the develo** appendicular skeleton. Cell 104(3):341

    Article  CAS  PubMed  Google Scholar 

  • Hattori T, Müller C, Gebhard S, Bauer E, Pausch F, Schlund B et al (2010) SOX9 is a major negative regulator of cartilage vascularization, bone marrow formation and endochondral ossification. Development 137(6):901

    Article  CAS  PubMed  Google Scholar 

  • Hill A, Waller KA, Cui Y, Allen JM, Smits P, Zhang LX et al (2015) Lubricin restoration in a mouse model of congenital deficiency. Arthritis Rheumatol 67(11):3070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holtz AM, Peterson KA, Nishi Y, Morin S, Song JY, Charron F et al (2013) Essential role for ligand-dependent feedback antagonism of vertebrate hedgehog signaling by PTCH1, PTCH2 and HHIP1 during neural patterning. Development 140(16):3423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes LC, Archer CW, Ap GI (2005) The ultrastructure of mouse articular cartilage: collagen orientation and implications for tissue functionality. A polarised light and scanning electron microscope study and review. Eur Cell Mater 9:68–84

    Article  CAS  PubMed  Google Scholar 

  • Hunziker EB (2002) Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr Cartil 10(6):432

    Article  CAS  Google Scholar 

  • Itoh S, Kanno S, Gai Z, Suemoto H, Kawakatsu M, Tanishima H et al (2008) Trps1 plays a pivotal role downstream of Gdf5 signaling in promoting chondrogenesis and apoptosis of ATDC5 cells. Genes Cells 13(4):355

    Article  CAS  PubMed  Google Scholar 

  • Johnstone B, Alini M, Cucchiarini M, Dodge GR, Eglin D, Guilak F et al (2012) Tissue engineering for articular cartilage repair - the state of the art. Eur Cell Mater 25:248–267

    Article  Google Scholar 

  • Karlsson C, Brantsing C, Kageyama R, Lindahl A (2010) HES1 and hes5 are dispensable for cartilage and endochondral bone formation. Cells Tissues Organs 192(1):17

    Article  CAS  PubMed  Google Scholar 

  • Karp SJ, Schipani E, St-Jacques B, Hunzelman J, Kronenberg H, McMahon AP (2000) Indian Hedgehog coordinates endochondral bone growth and morphogenesis via parathyroid hormone related-protein-dependent and -independent pathways. Development 127(3):543

    Article  CAS  PubMed  Google Scholar 

  • Karsenty G, Kronenberg HM, Settembre C (2009) Genetic control of bone formation. Annu Rev Cell Dev Biol 25:629

    Article  CAS  PubMed  Google Scholar 

  • Khalid S, Ekram S, Salim A, Chaudhry GR, Khan I (2022) Transcription regulators differentiate mesenchymal stem cells into chondroprogenitors, and their in vivo implantation regenerated the intervertebral disc degeneration. World J Stem Cells 14(2):163

    Article  PubMed  PubMed Central  Google Scholar 

  • Kohn A, Rutkowski TP, Liu Z, Mirando AJ, Zuscik MJ, O’Keefe RJ et al (2015) Notch signaling controls chondrocyte hypertrophy via indirect regulation of Sox9. Bone Res 3:15021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozhemyakina E, Lassar AB, Zelzer E (2015) A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation. Development 142(5):817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koziel L, Wuelling M, Schneider S, Vortkamp A (2005) Gli3 acts as a repressor downstream of Ihh in regulating two distinct steps of chondrocyte differentiation. Development 132(23):5249

    Article  CAS  PubMed  Google Scholar 

  • Kulyk WM, Rodgers BJ, Greer K, Kosher RA (1989) Promotion of embryonic chick limb cartilage differentiation by transforming growth factor-β. Dev Biol 135(2):424

    Article  CAS  PubMed  Google Scholar 

  • Kwon H, Paschos NK, Hu JC, Athanasiou K (2016) Articular cartilage tissue engineering: the role of signaling molecules. Cell Mol Life Sci 73:1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanske B, Karaplis AC, Lee K, Luz A, Vortkamp A, Pirro A et al (1996) PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science 273:663

    Article  CAS  PubMed  Google Scholar 

  • Leboy P, Grasso-Knight G, D’Angelo M, Volk SW, Lian JV, Drissi H et al (2001) Smad-Runx interactions during chondrocyte maturation. J Bone Joint Surg Am 83-A Suppl 1:S15–S22

    CAS  PubMed  Google Scholar 

  • Lefebvre V, Bhattaram P (2010) Vertebrate skeletogenesis. Curr Top Dev Biol 90:291–317

    Article  PubMed  PubMed Central  Google Scholar 

  • Leung VYL, Gao B, Leung KKH, Melhado IG, Wynn SL, Au TYK et al (2011) SOX9 governs differentiation stage-specific gene expression in growth plate chondrocytes via direct concomitant transactivation and repression. PLoS Genet 7(11):e1002356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Zhao Z, Liu J, Huang N, Long D, Wang J et al (2010) MEK/ERK and p38 MAPK regulate chondrogenesis of rat bone marrow mesenchymal stem cells through delicate interaction with TGF-β1/Smads pathway. Cell Prolif 43(4):333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao J, Hu N, Zhou N, Lin L, Zhao C, Yi S et al (2014) Sox9 potentiates BMP2-induced chondrogenic differentiation and inhibits BMP2-induced osteogenic differentiation. PLoS One 9(2):e89025

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Lavine KJ, Hung IH, Ornitz DM (2007) FGF18 is required for early chondrocyte proliferation, hypertrophy and vascular invasion of the growth plate. Dev Biol 302(1):80

    Article  CAS  PubMed  Google Scholar 

  • Lodewyckx L, Cailotto F, Thysen S, Luyten FP, Lories RJ (2012) Tight regulation of wingless-type signaling in the articular cartilage - subchondral bone biomechanical unit: transcriptomics in Frzb-knockout mice. Arthritis Res Ther 14(1):R16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loeser RF, Shanker G, Carlson CS, Gardin JF, Shelton BJ, Sonntag WE (2000) Reduction in the chondrocyte response to insulin-like growth factor 1 in aging and osteoarthritis: studies in a non-human primate model of naturally occurring disease. Arthritis Rheum 43(9):2110

    Article  CAS  PubMed  Google Scholar 

  • Loeser RF, Carlson CS, Del Carlo M, Cole A (2002) Detection of nitrotyrosine in aging and osteoarthritic cartilage: correlation of oxidative damage with the presence of interleukin-1β and with chondrocyte resistance to insulin-like growth factor 1. Arthritis Rheum 46(9):2349

    Article  CAS  PubMed  Google Scholar 

  • Long F, Ornitz DM (2013) Development of the endochondral skeleton. Cold Spring Harb Perspect Biol 5:a008334

    Article  PubMed  PubMed Central  Google Scholar 

  • Longobardi L, O’Rear L, Aakula S, Johnstone B, Shimer K, Chytil A et al (2006) Effect of IGF-I in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of TGF-β signaling. J Bone Miner Res 21(4):626

    Article  CAS  PubMed  Google Scholar 

  • Luyten FP, Hascall VC, Nissley SP, Morales TI, Reddi AH (1988) Insulin-like growth factors maintain steady-state metabolism of proteoglycans in bovine articular cartilage explants. Arch Biochem Biophys 267(2):416

    Article  CAS  PubMed  Google Scholar 

  • Ma B, Landman EBM, Miclea RL, Wit JM, Robanus-Maandag EC, Post JN et al (2013) WNT signaling and cartilage: of mice and men. Calcif Tissue Int 92:399

    Article  CAS  PubMed  Google Scholar 

  • Martin JA, Ellerbroek SM, Buckwalter JA (1997) Age-related decline in chondrocyte response to insulin-like growth factor-I: the role of growth factor binding proteins. J Orthop Res 15(4):491

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki T, Alvarez-Garcia O, Mokuda S, Nagira K, Olmer M, Gamini R et al (2018) FoxO transcription factors modulate autophagy and proteoglycan 4 in cartilage homeostasis and osteoarthritis. Sci Transl Med 10(428):eaan0746

    Article  PubMed  PubMed Central  Google Scholar 

  • Mau E, Whetstone H, Yu C, Hopyan S, Wunder JS, Alman BA (2007) PTHrP regulates growth plate chondrocyte differentiation and proliferation in a Gli3 dependent manner utilizing hedgehog ligand dependent and independent mechanisms. Dev Biol 305(1):28

    Article  CAS  PubMed  Google Scholar 

  • Mead TJ, Yutzey KE (2009) Notch pathway regulation of chondrocyte differentiation and proliferation during appendicular and axial skeleton development. Proc Natl Acad Sci U S A 106(34):14420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medical Advisory Secretariat (2005) Osteogenic protein-1 for long bone nonunion: an evidence-based analysis. Ont Health Technol Assess Ser 5(6):1–57

    PubMed Central  Google Scholar 

  • Miao D, Liu H, Plut P, Niu M, Huo R, Goltzman D et al (2004) Impaired endochondral bone development and osteopenia in Gli2-deficient mice. Exp Cell Res 294(1):210

    Article  CAS  PubMed  Google Scholar 

  • Miljkovic ND, Cooper GM, Marra KG (2008) Chondrogenesis, bone morphogenetic protein-4 and mesenchymal stem cells. Osteoarthr Cartil 16:1121

    Article  CAS  Google Scholar 

  • Minina E, Wenzel HM, Kreschel C, Karp S, Gaffield W, McMahon AP et al (2001) BMP and lhh/PTHrP signaling interact to coordinate chondrocyte proliferation and differentiation. Development 128(22):4523

    Article  CAS  PubMed  Google Scholar 

  • Minina E, Kreschel C, Naski MC, Ornitz DM, Vortkamp A (2002) Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. Dev Cell 3(3):439

    Article  CAS  PubMed  Google Scholar 

  • Miyazono K, Kamiya Y, Morikawa M (2010) Bone morphogenetic protein receptors and signal transduction. J Biochem 147:35

    Article  CAS  PubMed  Google Scholar 

  • Morales TI (2008) The quantitative and functional relation between insulin-like growth factor-I (IGF) and IGF-binding proteins during human osteoarthritis. J Orthop Res 26(4):465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murakami S, Kan M, McKeehan WL, De Crombrugghe B (2000) Up-regulation of the chondrogenic Sox9 gene by fibroblast growth factors is mediated by the mitogen-activated protein kinase pathway. Proc Natl Acad Sci U S A 97(3):1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy MK, Huey DJ, Hu JC, Athanasiou KA (2015) TGF-β1, GDF-5, and BMP-2 stimulation induces chondrogenesis in expanded human articular chondrocytes and marrow-derived stromal cells. Stem Cells 33(3):762

    Article  CAS  PubMed  Google Scholar 

  • Nakamura K, Shirai T, Morishita S, Uchida S, Saeki-Miura K, Makishima F (1999) p38 mitogen-activated protein kinase functionally contributes to chondrogenesis induced by growth/differentiation factor-5 in ATDC5 cells. Exp Cell Res 250(2):351

    Article  CAS  PubMed  Google Scholar 

  • Nalesso G, Sherwood J, Bertrand J, Pap T, Ramachandran M, de Bari C et al (2011) WNT-3A modulates articular chondrocyte phenotype by activating both canonical and noncanonical pathways. J Cell Biol 193(3):551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nusse R (2005) Wnt signaling in disease and in development. Cell Res 15:28

    Article  CAS  PubMed  Google Scholar 

  • Oberlender SA, Tuan RS (1994) Expression and functional involvement of N-cadherin in embryonic limb chondrogenesis. Development 120(1):177

    Article  CAS  PubMed  Google Scholar 

  • Oh CD, Chun JS (2003) Signaling mechanisms leading to the regulation of differentiation and apoptosis of articular chondrocytes by insulin-like growth factor-1. J Biol Chem 278(38):36563–36571

    Article  CAS  PubMed  Google Scholar 

  • Ornitz DM, Marie PJ (2002) FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev 16:1446

    Article  CAS  PubMed  Google Scholar 

  • Peters KG, Werner S, Chen G, Williams LT (1992) Two FGF receptor genes are differentially expressed in epithelial and mesenchymal tissues during limb formation and organogenesis in the mouse. Development 114(1):233

    Article  CAS  PubMed  Google Scholar 

  • Pogue R, Lyons K (2006) BMP signaling in the cartilage growth plate. Curr Top Dev Biol 76:1–48

    Article  CAS  PubMed  Google Scholar 

  • Poole AR, Kojima T, Yasuda T, Mwale F, Kobayashi M, Laverty S (2001) Composition and structure of articular cartilage. Clin Orthop Relat Res 391:S26

    Article  Google Scholar 

  • Rasheed Z, Akhtar N, Haqqi TM (2011) Advanced glycation end products induce the expression of interleukin-6 and interleukin-8 by receptor for advanced glycation end product-mediated activation of mitogen-activated protein kinases and nuclear factor-κB in human osteoarthritis chondrocytes. Rheumatology 50(5):838

    Article  CAS  PubMed  Google Scholar 

  • Raucci A, Laplantine E, Mansukhani A, Basilico C (2004) Activation of the ERK1/2 and p38 mitogen-activated protein kinase pathways mediates fibroblast growth factor-induced growth arrest of chondrocytes. J Biol Chem 279(3):1747–1756

    Article  CAS  PubMed  Google Scholar 

  • Riobó NA, Lu K, Ai X, Haines GM, Emerson CP (2006) Phosphoinositide 3-kinase and Akt are essential for Sonic Hedgehog signaling. Proc Natl Acad Sci U S A 103(12):4505

    Article  PubMed  PubMed Central  Google Scholar 

  • Rutkowski TP, Kohn A, Sharma D, Ren Y, Mirando AJ, Hilton MJ (2016) HES factors regulate specific aspects of chondrogenesis and chondrocyte hypertrophy during cartilage development. J Cell Sci 129(11):2145–2155

    CAS  PubMed  PubMed Central  Google Scholar 

  • Samsa WE, Zhou X, Zhou G (2017) Signaling pathways regulating cartilage growth plate formation and activity. Semin Cell Dev Biol 62:3

    Article  CAS  PubMed  Google Scholar 

  • Sassi N, Laadhar L, Allouche M, Achek A, Kallel-Sellami M, Makni S et al (2014) WNT signaling and chondrocytes: from cell fate determination to osteoarthritis physiopathology. J Recept Signal Transduct Res 34:73

    Article  CAS  PubMed  Google Scholar 

  • Schumacher BL, Block JA, Schmid TM, Aydelotte MB, Kuettner KE (1994) A novel proteoglycan synthesized and secreted by chondrocytes of the superficial zone of articular cartilage. Arch Biochem Biophys 311(1):144

    Article  CAS  PubMed  Google Scholar 

  • Settle SH, Rountree RB, Sinha A, Thacker A, Higgins K, Kingsley DM (2003) Multiple joint and skeletal patterning defects caused by single and double mutations in the mouse Gdf6 and Gdf5 genes. Dev Biol 254(1):116

    Article  CAS  PubMed  Google Scholar 

  • Shah MR, Kaplan KM, Meislin RJ, Bosco JA (2007) Articular cartilage restoration of the knee. Bull NYU Hosp Jt Dis 65(1):51–60

    PubMed  Google Scholar 

  • Sharma AR, Jagga S, Lee SS, Nam JS (2013) Interplay between cartilage and subchondral bone contributing to pathogenesis of osteoarthritis. Int J Mol Sci 14:19805

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith GD, Knutsen G, Richardson JB (2005) A clinical review of cartilage repair techniques. J Bone Joint Surg B 87:445

    Article  CAS  Google Scholar 

  • Smits P, Li P, Mandel J, Zhang Z, Deng JM, Behringer RR et al (2001) The transcription factors L-Sox5 and Sox6 are essential for cartilage formation. Dev Cell 1(2):277

    Article  CAS  PubMed  Google Scholar 

  • Sophia Fox AJ, Bedi A, Rodeo SA (2009) The basic science of articular cartilage: structure, composition, and function. Sports Health 1(6):461

    Article  PubMed  PubMed Central  Google Scholar 

  • Staines KA, Macrae VE, Farquharson C (2012) Cartilage development and degeneration: a Wnt Wnt situation. Cell Biochem Funct 30:633

    Article  CAS  PubMed  Google Scholar 

  • Storm EE, Kingsley DM (1996) Joint patterning defects caused by single and double mutations in members of the bone morphogenetic protein (BMP) family. Development 122(12):3969

    Article  CAS  PubMed  Google Scholar 

  • Storm EE, Kingsley DM (1999) GDF5 coordinates bone and joint formation during digit development. Dev Biol 209(1):11

    Article  CAS  PubMed  Google Scholar 

  • Storm EE, Huynh TV, Copeland NG, Jenkins NA, Kingsley DM, Lee SJ (1994) Limb alterations in brachypodism mice due to mutations in a new member of the TGFβ-superfamily. Nature 368(6472):639

    Article  CAS  PubMed  Google Scholar 

  • Takahara M, Harada M, Guan D, Otsuji M, Naruse T, Takagi M et al (2004) Developmental failure of phalanges in the absence of growth/differentiation factor 5. Bone 35(5):1069

    Article  CAS  PubMed  Google Scholar 

  • Thomas JT, Lin K, Nandedkar M, Camargo M, Cervenka J, Luyten FP (1996) A human chondrodysplasia due to a mutation in a TGF-β super-family member. Nat Genet 12(3):315

    Article  CAS  PubMed  Google Scholar 

  • Thomas JT, Kilpatrick MW, Lin K, Erlacher L, Lembessis P, Costa T et al (1997) Disruption of human limb morphogenesis by a dominant negative mutation in CDMP1. Nat Genet 17(1):58

    Article  CAS  PubMed  Google Scholar 

  • Tian Y, Xu Y, Fu Q, Chang M, Wang Y, Shang X et al (2015) Notch inhibits chondrogenic differentiation of mesenchymal progenitor cells by targeting Twist1. Mol Cell Endocrinol 403:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsumaki N, Tanaka K, Arikawa-Hirasawa E, Nakase T, Kimura T, Terrig Thomas J et al (1999) Role of CDMP-1 in skeletal morphogenesis: promotion of mesenchymal cell recruitment and chondrocyte differentiation. J Cell Biol 144(1):161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umlauf D, Frank S, Pap T, Bertrand J (2010) Cartilage biology, pathology, and repair. Cell Mol Life Sci 67:4197

    Article  CAS  PubMed  Google Scholar 

  • Valta MP, Hentunen T, Qu Q, Valve EM, Harjula A, Seppänen JA et al (2006) Regulation of osteoblast differentiation: a novel function for fibroblast growth factor 8. Endocrinology 147(5):2171

    Article  CAS  PubMed  Google Scholar 

  • Vautier S, da Glória Sousa M, Brown GD (2010) C-type lectins, fungi and Th17 responses. Cytokine Growth Factor Rev 21(6):405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, Tabin CJ (1996) Regulation of rate of cartilage differentiation by Indian Hedgehog and PTH-related protein. Science 273:613

    Article  CAS  PubMed  Google Scholar 

  • Wang E, Wang J, Chin E, Zhou J, Bondy CA (1995) Cellular patterns of insulin-like growth factor system gene expression in murine chondrogenesis and osteogenesis. Endocrinology 136(6):2741

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Shen J, ** H, Im HJ, Sandy J, Chen D (2011a) Recent progress in understanding molecular mechanisms of cartilage degeneration during osteoarthritis. Ann N Y Acad Sci 1240:61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Cheng Z, Elalieh HZ, Nakamura E, Nguyen MT, MacKem S et al (2011b) IGF-1R signaling in chondrocytes modulates growth plate development by interacting with the PTHrP/Ihh pathway. J Bone Miner Res 26(7):1437

    Article  CAS  PubMed  Google Scholar 

  • Widelitz RB, Jiang T-X, Murray BA, Chuong C-M (1993) Adhesion molecules in skeletogenesis: II. Neural cell adhesion molecules mediate precartilaginous mesenchymal condensations and enhance chondrogenesis. J Cell Physiol 156(2):399

    Article  CAS  PubMed  Google Scholar 

  • Wieland HA, Michaelis M, Kirschbaum BJ, Rudolphi KA (2005) Osteoarthritis - an untreatable disease? Nat Rev Drug Discov 4:331

    Article  CAS  PubMed  Google Scholar 

  • Wolfman NM, Hattersley G, Cox K, Celeste AJ, Nelson R, Yamaji N et al (1997) Ectopic induction of tendon and ligament in rats by growth and differentiation factors 5, 6, and 7, members of the TGF-β gene family. J Clin Invest 100(2):321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worster AA, Brower-Toland BD, Fortier LA, Bent SJ, Williams J, Nixon AJ (2001) Chondrocytic differentiation of mesenchymal stem cells sequentially exposed to transforming growth factor-β1 in monolayer and insulin-like growth factor-I in a three-dimensional matrix. J Orthop Res 19(4):738

    Article  CAS  PubMed  Google Scholar 

  • Yamagata M, Suzuki S, Akiyama SK, Yamada KM, Kimata K (1989) Regulation of cell-substrate adhesion by proteoglycans immobilized on extracellular substrates. J Biol Chem 264(14):8012

    Article  CAS  PubMed  Google Scholar 

  • Yasuhara R, Ohta Y, Yuasa T, Kondo N, Hoang T, Addya S et al (2011) Roles of Β-catenin signaling in phenotypic expression and proliferation of articular cartilage superficial zone cells. Lab Investig 91(12):1739

    Article  CAS  PubMed  Google Scholar 

  • Yi SE, Daluiski A, Pederson R, Rosen V, Lyons KM (2000) The type I BMP receptor BMPRIB is required for chondrogenesis in the mouse limb. Development 127(3):621

    Article  CAS  PubMed  Google Scholar 

  • Yoo JU, Barthel TS, Nishimura K, Solchaga L, Caplan AI, Goldberg VM et al (1998) The chondrogenic potential of human bone-marrow-derived mesenchymal progenitor cells. J Bone Joint Surg Am 80(12):1745

    Article  CAS  PubMed  Google Scholar 

  • Yoon BS, Ovchinnikov DA, Yoshii I, Mishina Y, Behringer RR, Lyons KM (2005) Bmpr1a and Bmpr1b have overlap** functions and are essential for chondrogenesis in vivo. Proc Natl Acad Sci U S A 102(14):5062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zehentner BK, Dony C, Burtscher H (1999) The transcription factor Sox9 is involved in BMP-2 signaling. J Bone Miner Res 14(10):1734

    Article  CAS  PubMed  Google Scholar 

  • Zhou G, Zheng Q, Engin F, Munivez E, Chen Y, Sebald E et al (2006) Dominance of SOX9 function over RUNX2 during skeletogenesis. Proc Natl Acad Sci U S A 103(50):19004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irfan Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramzan, F., Salim, A., Khan, I. (2023). Signaling Pathways Regulating Cartilage Formation. In: Baghaban Eslaminejad, M., Hosseini, S. (eds) Cartilage: From Biology to Biofabrication. Springer, Singapore. https://doi.org/10.1007/978-981-99-2452-3_6

Download citation

Publish with us

Policies and ethics

Navigation