Phytoremediation of Metals and Radionuclides

  • Chapter
  • First Online:
Microbial Technologies in Industrial Wastewater Treatment

Abstract

Phytoremediation is a technique implementing the sources of plants for the removal of toxic contaminants from land, soil, and air. Heavy metals like cadmium, chromium, arsenic, mercury, lead, zinc, iron, manganese, nickel, etc., are highly toxic in accumulation, thereby leading to various ill-effects on the environment and living beings. Radionuclides might get deposited in the soil due to mining, milling, leaching, natural weathering, and the time of deposition is a major factor taken into consideration for its quantum. Radionuclides like uranium (234,235,238), radium, cesium-137, plutonium- (238–241), and strontium-90 available in the form of solution create a chance to get along easily with the food chain and henceforth, resulting in the genetic mutations and life-threating diseases. Phytostabilization, phytodegradation, phytovolatalization, phytoextraction, phytoimmobilization, chelate-enhanced phytoremediation, rhizodegradation, and rhizofiltration are the various mechanisms adopted for the treatment of metals and radionuclides. The main advantages of phytoremediation are low cost, ecofriendly, pollution-free, less disruptive, and leading a sustainable environment for the future generations. The recent technique adopted is to increase the production of phytoremediating plants and how to improve the accumulation and uptake rate of heavy metals and radionuclides. This review also comprises the different techniques involved, advantages, disadvantages, limitations, and challenges faced in phytoremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adama M, Esena R, Fosu-Mensah B, Yirenya-Tawiah D (2016) Heavy metal contamination of soils around a hospital waste incinerator bottom ash dumps site. J Environ Public Health 1–6

    Google Scholar 

  • Ahmadpour P, Ahmadpour F, Mahmud TMM, Abdu A, Soleimani M, Tayefeh FH (2012) Phytoremediation of heavy metals: a green technology. Afr J Biotechnol 11:14036–14043

    CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881

    Article  CAS  Google Scholar 

  • Alkorta I, Hernandez-Allica J, Becerril J, Amezaga I, Albizu I, Onaindia M, Garbisu C (2004) Chelate-enhanced phytoremediation of soils polluted with heavy metals. Rev Environ Sci Biotechnol 3:55–70

    Article  CAS  Google Scholar 

  • Alvarenga P, Gonçalves AP, Fernandes RM, de Varennes A, Vallini G, Duarte E, Cunha-Queda AC (2009) Organic residues as immobilizing agents in aided phytostabilization: (I) Effects on soil chemical characteristics. Chemosphere 74:1292–1300

    Article  CAS  Google Scholar 

  • Azevedo R, Rodriguez E (2012) Phytotoxicity of mercury in plants: a review. J Bot 1–6

    Google Scholar 

  • Bergkvist P, Jarvis N, Berggren D, Carlgren K (2003) Long-term effects of sewage sludge applications on soil properties, cadmium availability and distribution in arable soil. Agric Ecosyst Environ 97:167–179

    Article  CAS  Google Scholar 

  • Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manage 105:103–120

    Article  CAS  Google Scholar 

  • Bolan NS, Park JH, Robinson B, Naidu R, Huh KY (2011) Phytostabilization: a green approach to contaminant containment In: Sparks DL (ed) Advances in agronomy, Academic Press

    Google Scholar 

  • Bouazizi H, Jouili H, Geitmann A, Ferjani EE (2010) Copper toxicity in expanding leaves of Phaseolus vulgaris L.: antioxidant enzyme response and nutrient element uptake. Ecotoxicol Environ Saf 73:1304–1308

    Article  CAS  Google Scholar 

  • Chowdhury A, Pradhan S, Saha M, Sanyal N (2008) Impact of pesticides on soil microbiological parameters and possible bioremediation strategies. Indian J Microbiol 48:114–127

    Article  CAS  Google Scholar 

  • Colzi I, Arnetoli M, Gallo A, Doumett S, Bubba MD, Pignattelli S, Gabbrielli R, Gonnelli C (2012) Copper tolerance strategies involving the root cell wall pectins in Silene paradoxa L. Environ Exp Bot 78:91–98

    Article  CAS  Google Scholar 

  • Denys S, Rollin C, Guillot F, Baroudi H (2006) In-situ phytoremediation of PAHs contaminated soils following a bioremediation treatment. Water Air Soil Pollut 6:299–315

    Article  CAS  Google Scholar 

  • Effron D, de la Horra AM, Defrieri RL, Fontanive V, Palma RM (2004) Effect of cadmium, copper, and lead on different enzyme activities in a native forest soil. Commun Soil Sci Plant Anal 35:1309–1321

    Article  CAS  Google Scholar 

  • Fernandes JC, Henriques FS (1991) Biochemical, physiological, and structural effects of excess copper in plants. Bot Rev 57:246–273

    Article  Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its by-products. Appl Ecol Environ Res 3:1–18

    Article  Google Scholar 

  • Harada M (ed) (1982) Minamata disease. In: Jelliffe EFP, Jelliffe DB (ed) Adverse effects of foods, Springer, Boston

    Google Scholar 

  • Hellal J, Vallaeys T, Garnier-Zarli E, Bousserrhine N (2009) Effects of mercury on soil microbial communities in tropical soils of French Guyana. Appl Soil Ecol 41:59–68

    Article  Google Scholar 

  • Hershfinkel M, Sekler SWF, I, (2007) The zinc sensing receptor, a link between zinc and cell signaling. Mol Med 13:331–336

    Article  CAS  Google Scholar 

  • Higueras P, Fernandez Martinez R, Esbri JM, Rucandio I, Loredo J, Ordonez, A, Alvarez R (2014) Mercury soil pollution in Spain: a review. In: Jimenez E, Cabanas B, Lefebvre G (ed) The handbook of environmental chemistry, Springer, Cham

    Google Scholar 

  • Islam A, Ahmed T, Awual MR, Rahman A, Sultana M, Aziz AA, Monir MU, Teo SH, Hasan M (2020) Advances in sustainable approaches to recover metals from e-waste-A review. J Clean Prod 244:118815

    Article  CAS  Google Scholar 

  • Jeevanantham S, Saravanan A, Hemavathy RV, Kumar PS, Yaashikaa PR, Yuvaraj D (2019) Removal of toxic pollutants from water environment by phytoremediation: a survey on application and future prospects. Environ Technol Innov 13:264–276

    Article  Google Scholar 

  • Karaca A, Naseby DC, Lynch JM (2002) Effect of cadmium contamination with sewage sludge and phosphate fertilizer amendments on soil enzyme activities, microbial structure and available cadmium. Biol Fertil Soils 35:428–434

    Article  CAS  Google Scholar 

  • Kasassi A, Rakimbei P, Karagiannidis A, Zabaniotou A, Tsiouvaras K, Nastis A, Tzafeiropoulou K (2008) Soil contamination by heavy metals: measurements from a closed unlined landfill. Bioresour Technol 99:8578–8584

    Article  CAS  Google Scholar 

  • Kirkham MB, Corey JC (1977) Pollen as indicator of radionuclide pollution. J Nucl Agric Biol 6:71–74

    CAS  Google Scholar 

  • Knox AS, Gamerdinger AP, Adriano DC, Kolka RK, Kaplan DI (1999) Sources and practices contributing to soil contamination. In: Adriano JM, Bollag WT, Frankenberger Jr, Sims RC (ed) Bioremediation of contaiminated soils, 37th edn. Ch. 4

    Google Scholar 

  • Kushwaha A, Rani R, Kumar S, Gautam A (2016) Heavy metal detoxification and tolerance mechanisms in plants: implications for phytoremediation. Environ Rev 24:39–51

    Article  CAS  Google Scholar 

  • Limmer M, Burken J (2016) Phytovolatilization of organic contaminants. Environ Sci Technol 50:6632–6643

    Article  CAS  Google Scholar 

  • Maheswari UK, Rajeswari K (2016) Toxicity of heavy metals-phytoremediation techniques. In: Shankar KS, Kumar RN, Pushpanjali, Nagasree K, Nirmala G, Raju NS (ed) Resha** agriculture and nutrition linkages for food and nutrition security, ICAR—Central Research Institute for Dryland Agriculture, Hyderabad, India

    Google Scholar 

  • Mahmood T (2010) Phytoextraction of heavy metals-the process and scope for remediation of contaminated soils. Plant Soil Environ 29:91–109

    CAS  Google Scholar 

  • Marchiol L, Assolari S, Sacco P, Zerbi G (2004) Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil. Environ Pollut 132:21–27

    Article  CAS  Google Scholar 

  • Mohanty M, Pattnaik MM, Mishra AK, Patra HK (2011) Bio-concentration of chromium—an in situ phytoremediation study at South Kaliapani chromite mining area of Orissa, India. Environ Monit Assess 184:1015–1024

    Article  Google Scholar 

  • Muthusaravanan S, Sivarajasekar N, Vivek JS, Paramasivan T, Mu Naushad, J Prakashmaran, Gayathiri V (2018) Suenhancements. Environ Chem Lett 16:1339–1359

    Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    Article  CAS  Google Scholar 

  • Nas FS, Ali M (2018) The effect of lead on plants in terms of growing and biochemical parameters: a review. Ecol Environ Sci 3:265–268

    Google Scholar 

  • Pant D, Joshi D, Upreti MK, Kotnala RK (2012) Chemical and biological extraction of metals present in E waste: a hybrid technology. Waste Manag 32:979–990

    Article  CAS  Google Scholar 

  • Patra M, Sharma A (2000) Mercury toxicity in plants. Bot Rev 66:379–422

    Article  Google Scholar 

  • Ramin M, Ramamurthy AS (2012) Effects of surfactants on rhizodegradation of oil in a contaminated soil. J Environ Sci Health Part A 47:1486–1490

    Article  Google Scholar 

  • Robinson BH, Schulin R, Nowack B, Roulier S, Menon M, Clothier BE, Green S, Mills T (2006) Phytoremediation for the management of metal flux in contaminated sites. Forest Snow Landsc Res 80:221–224

    Google Scholar 

  • Rogiers T, Merroun ML, Williamson A, Leys N, Houdt RV, Boon N, Mijnendonckx K (2021) Cupriavidus metallidurans NA4 actively forms polyhydroxybutyrate—associated uranium-phosphate precipitates. J Hazard Mater 421:126737

    Article  Google Scholar 

  • Sakakibara, M, Watanabe A, Inoue M, Sano S, Kaise T (2010) Phytoextraction and phytovolatilization of arsenic from as-contaminated soils by Pteris vittata. In: Proceedings of the Annual International Conference on Soils, Sediments, Water and Energy, Oct 2006, pp 16–19

    Google Scholar 

  • Seregin IV, Kozhevnikova AD (2006) Physiological role of nickel and its toxic effects on higher plants. Russ J Plant Physiol 53:257–277

    Article  CAS  Google Scholar 

  • Shah Maulin P (2020) Microbial bioremediation & biodegradation. Springer

    Book  Google Scholar 

  • Shackira AM, Puthur JT (2019) Phytostabilization of heavy metals: understanding of principles and practices. In: Srivastava S, Srivastava A, Suprasanna P (ed) Plant-metal interactions. Springer, Cham

    Google Scholar 

  • Shmaefsky BR (2020) Principles of phytoremediation. In: Shmaefsky BR (ed) Phytoremediation In-situ applications, concepts and strategies in plant sciences, 1st edn. Springer, Switzerland

    Google Scholar 

  • Shah Maulin P (2021) Removal of refractory pollutants from wastewater treatment plants. CRC Press

    Book  Google Scholar 

  • Song J, Luo YM, Wu LH (2005) Chelate-enhanced phytoremediation of heavy metal contaminated soil. In: Van Briesen JM (ed) Nowack B. Biogeochemistry of chelating agents, Am Chem Soc, pp 366–382

    Google Scholar 

  • Talerko M, Кovalets I, Lev TD, Igarashi Y, Romanenko O (2021) Simulation study of radionuclide atmospheric transport after wild land fires in the Chernobyl exclusion zone in April 2020. Atmos Pollut Res Published Online

    Google Scholar 

  • Thomas AL, David AN, Ronald LC (2004) Bioremediation of soils contaminated with explosives. J Environ Manage 70(4):291–307

    Article  Google Scholar 

  • Tran TA, Popova LP (2013) Functions and toxicity of cadmium in plants: recent advances and future prospects. Turk J Bot 37:1–13

    CAS  Google Scholar 

  • Utmazian MNDS, Wieshammer G, Vega R, Wenzel WW (2007) Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars. Environ Pollut 148:155–165

    Article  Google Scholar 

  • Vassilev A, Schwitzguebel JP, Thewys T, van der Lelie D, Vangronsveld J (2004) The use of plants for remediation of metal-contaminated soils. Sci World J 4:9–34

    Article  CAS  Google Scholar 

  • Walling DE (1998) Use of 137Cs and other fallout radionuclide in soil erosion investigations: progress, problems and prospects. ISSN 1011–4289 International Atomic Energy Agency (IAEA).Vienna, Austria

    Google Scholar 

  • Wang C, Ji J, Yang Z, Chen L, Browne P, Yu R (2012) Effects of soil properties on the transfer of cadmium from soil to wheat in the Yangtze River delta region, China-a typical industry-agriculture transition area. Biol Trace Elem Res 148:264–274

    Article  CAS  Google Scholar 

  • Wang DY, Qing CL, Guo TY, Guo YJ (1997) Effects of humic acid on transport and transformation of mercury in soil-plant systems. Water Air Soil Pollut 95:35–43

    Article  CAS  Google Scholar 

  • Williams SE, Wollum AG (1981) Effect of cadmium on soil bacteria and actinomycetes. J Environ Qual 10:142

    Article  CAS  Google Scholar 

  • Zhu YZ, Shaw G (2000) Soil contamination with radionuclides and potential remediation. Chemosphere 41:121–128

    Article  CAS  Google Scholar 

  • Zhuang P, Yang QW, Wang HB, Shu WS (2007) Phytoextraction of heavy metals by eight plant species in the field. Water Air Soil Pollut 184:235–242

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sathishkumar Kannaiyan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thulasisingh, A., Kannaiyan, S., Kannan, V.A., Govindarajan, S. (2023). Phytoremediation of Metals and Radionuclides. In: Shah, M.P. (eds) Microbial Technologies in Industrial Wastewater Treatment. Springer, Singapore. https://doi.org/10.1007/978-981-99-2435-6_11

Download citation

Publish with us

Policies and ethics

Navigation