Tight Junctions and Signaling Pathways in Cancer

  • Chapter
  • First Online:
Tight Junctions in Inflammation and Cancer

Abstract

Tight junctions (TJs) are intercellular connections that close the gap between the individual cells and limit the paracellular entry of harmful antigens, toxins, microbes, etc. In addition, they also regulate vesicle trafficking, signal transduction, transcription, and cytoskeletal dynamics. In contrast to other specialized cell connections such as adherens, gap junctions, and desmosomes, TJs form an uninterrupted intercellular contact at the apical-most end of the lateral side of epithelial cells. Compared to other junctions TJs are made up of different proteins, including claudins, which form the distinctive network of interconnected strands; the multi-PDZ proteins ZO-1, ZO-2, ZO-3, MAGI-1, PatJ, MUPP1, and PALS1, which are interconnected with the transmembrane claudin proteins and are hypothesized to cluster the barrier-forming proteins and enable redundant attachments to the actin cytoskeleton. Disruption of TJ barriers results in the deregulated passage of materials and toxins through the epithelia contributing to a vast array of pathologies. In addition, TJs of endothelial and epithelial cells act as a hub for signaling pathways that determine the proliferative and metastatic ability in cancers. Claudins' function in cancer signaling has been significantly researched. Numerous proof-of-principle studies targeting certain claudins for chemotherapy have been conducted due to the massive overexpression of particular claudins in distinct cancer types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi M, Hamazaki Y, Kobayashi Y, Itoh M, Tsukita S, Furuse M, Tsukita S (2009) Similar and distinct properties of MUPP1 and Patj, two homologous PDZ domain-containing tight-junction proteins. Mol Cell Biol 29(9):2372–2389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agarwal R, D'Souza T, Morin PJ (2005) Claudin-3 and claudin-4 expression in ovarian epithelial cells enhances invasion and is associated with increased matrix metalloproteinase-2 activity. Cancer Res 65(16):7378–7385

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal S, Suzuki T, Taylor WL, Bhargava A, Rao RK (2011) Contrasting effects of ERK on tight junction integrity in differentiated and under-differentiated Caco-2 cell monolayers. Biochem J 433(1):51–63

    Article  CAS  PubMed  Google Scholar 

  • Ahmed I, Chandrakesan P, Tawfik O, **a L, Anant S, Umar S (2012) Critical roles of Notch and Wnt/β-catenin pathways in the regulation of hyperplasia and/or colitis in response to bacterial infection. Infect Immun 80(9):3107–3121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Sadi R, Khatib K, Guo S, Ye D, Youssef M, Ma T (2011) Occludin regulates macromolecule flux across the intestinal epithelial tight junction barrier. Am J Physiol Gastrointest Liver Physiol 300(6):1054–1064

    Article  Google Scholar 

  • Amasheh S, Meiri N, Gitter AH, Schöneberg T, Mankertz J, Schulzke JD, Fromm M (2002) Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells. J Cell Sci 115(Pt 24):4969–4976

    Article  CAS  PubMed  Google Scholar 

  • Anderson JM, Van Itallie CM (2009) Physiology and function of the tight junction. Cold Spring Harb Perspect Biol 1(2):a002584

    Article  PubMed  PubMed Central  Google Scholar 

  • Ando-Akatsuka Y, Yonemura S, Itoh M, Furuse M, Tsukita S (1999) Differential behavior of E-cadherin and occludin in their colocalization with ZO-1 during the establishment of epithelial cell polarity. J Cell Physiol 179(2):115–125

    Article  CAS  PubMed  Google Scholar 

  • Antonetti DA, Barber AJ, Hollinger LA, Wolpert EB, Gardner TW (1999) Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1. A potential mechanism for vascular permeability in diabetic retinopathy and tumors. J Biol Chem 274(33):23463–23467

    Article  CAS  PubMed  Google Scholar 

  • Balda MS, Matter K (2009) Tight junctions and the regulation of gene expression. Biochim Biophys Acta 1788(4):761–767

    Article  CAS  PubMed  Google Scholar 

  • Balda MS, González-Mariscal L, Contreras RG, Macias-Silva M, Torres-Marquez ME, García-Sáinz JA, Cereijido M (1991) Assembly and sealing of tight junctions: possible participation of G-proteins, phospholipase C, protein kinase C and calmodulin. J Membr Biol 122(3):193–202

    Article  CAS  PubMed  Google Scholar 

  • Balda MS, Whitney JA, Flores C, González S, Cereijido M, Matter K (1996) Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical-basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein. J Cell Biol 134(4):1031–1049

    Article  CAS  PubMed  Google Scholar 

  • Barton ES, Forrest JC, Connolly JL, Chappell JD, Liu Y, Schnell FJ, Nusrat A, Parkos CA, Dermody TS (2001) Junction adhesion molecule is a receptor for reovirus. Cell 104(3):441–451

    Article  CAS  PubMed  Google Scholar 

  • Bazzoni G, Martinez-Estrada OM, Orsenigo F, Cordenonsi M, Citi S, Dejana E (2000) Interaction of junctional adhesion molecule with the tight junction components ZO-1, cingulin, and occludin. J Biol Chem 275(27):20520–20526

    Article  CAS  PubMed  Google Scholar 

  • Benais-Pont G, Punn A, Flores-Maldonado C, Eckert J, Raposo G, Fleming TP, Cereijido M, Balda MS, Matter K (2003) Identification of a tight junction-associated guanine nucleotide exchange factor that activates Rho and regulates paracellular permeability. J Cell Biol 160(5):729–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beutel O, Maraspini R, Pombo-García K, Martin-Lemaitre C, Honigmann A (2019) Phase separation of zonula occludens proteins drives formation of tight junctions. Cell 179(4):923–936.e911

    Article  CAS  PubMed  Google Scholar 

  • Bhat AA, Uppada S, Achkar IW, Hashem S, Yadav SK, Shanmugakonar M, Al-Naemi HA, Haris M, Uddin S (1942) Tight junction proteins and signaling pathways in cancer and inflammation: a functional crosstalk. Front Physiol 2018:9

    Google Scholar 

  • Bhat AA, Sharma A, Pope J, Krishnan M, Washington MK, Singh AB, Dhawan P (2012) Caudal homeobox protein Cdx-2 cooperates with Wnt pathway to regulate claudin-1 expression in colon cancer cells. PLoS One 7(6):e37174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolós V, Grego-Bessa J, de la Pompa JL (2007) Notch signaling in development and cancer. Endocr Rev 28(3):339–363

    Article  PubMed  Google Scholar 

  • Boquet P (1999) Bacterial toxins inhibiting or activating small GTP-binding proteins. Ann N Y Acad Sci 886:83–90

    Article  CAS  PubMed  Google Scholar 

  • Bunt-Milam AH, Saari JC, Klock IB, Garwin GG (1985) Zonulae adherentes pore size in the external limiting membrane of the rabbit retina. Invest Ophthalmol Vis Sci 26(10):1377–1380

    CAS  PubMed  Google Scholar 

  • Bürgel N, Bojarski C, Mankertz J, Zeitz M, Fromm M, Schulzke JD (2002) Mechanisms of diarrhea in collagenous colitis. Gastroenterology 123(2):433–443

    Article  PubMed  Google Scholar 

  • Cary LA, Han DC, Guan JL (1999) Integrin-mediated signal transduction pathways. Histol Histopathol 14(3):1001–1009

    CAS  PubMed  Google Scholar 

  • Cereijido M, Valdés J, Shoshani L, Contreras RG (1998) Role of tight junctions in establishing and maintaining cell polarity. Annu Rev Physiol 60:161–177

    Article  CAS  PubMed  Google Scholar 

  • Cereijido M, Shoshani L, Contreras RG (2000) Molecular physiology and pathophysiology of tight junctions. I. Biogenesis of tight junctions and epithelial polarity. Am J Physiol Gastrointest Liver Physiol 279(3):G477–G482

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay N, Wang Z, Ashman LK, Brady-Kalnay SM, Kreidberg JA (2003) alpha3beta1 integrin-CD151, a component of the cadherin-catenin complex, regulates PTPmu expression and cell-cell adhesion. J Cell Biol 163(6):1351–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Lu Q, Schneeberger EE, Goodenough DA (2000) Restoration of tight junction structure and barrier function by down-regulation of the mitogen-activated protein kinase pathway in ras-transformed Madin-Darby canine kidney cells. Mol Biol Cell 11(3):849–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen CJ, Shieh JT, Pickles RJ, Okegawa T, Hsieh JT, Bergelson JM (2001) The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proc Natl Acad Sci U S A 98(26):15191–15196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colegio OR, Van Itallie CM, McCrea HJ, Rahner C, Anderson JM (2002) Claudins create charge-selective channels in the paracellular pathway between epithelial cells. Am J Physiol Cell Physiol 283(1):142–147

    Article  Google Scholar 

  • Cording J, Berg J, Käding N, Bellmann C, Tscheik C, Westphal JK, Milatz S, Günzel D, Wolburg H, Piontek J et al (2013) In tight junctions, claudins regulate the interactions between occludin, tricellulin and marvelD3, which, inversely, modulate claudin oligomerization. J Cell Sci 126(Pt 2):554–564

    Article  CAS  PubMed  Google Scholar 

  • Coyne CB, Vanhook MK, Gambling TM, Carson JL, Boucher RC, Johnson LG (2002) Regulation of airway tight junctions by proinflammatory cytokines. Mol Biol Cell 13(9):3218–3234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dbouk HA, Mroue RM, El-Sabban ME, Talhouk RS (2009) Connexins: a myriad of functions extending beyond assembly of gap junction channels. Cell Commun Signal 7:4

    Article  PubMed  PubMed Central  Google Scholar 

  • de Almeida JB, Holtzman EJ, Peters P, Ercolani L, Ausiello DA, Stow JL (1994) Targeting of chimeric G alpha i proteins to specific membrane domains. J Cell Sci 107(Pt 3):507–515

    Article  PubMed  Google Scholar 

  • De Camilli P, Peluchetti D, Meldolesi J (1974) Structural difference between luminal and lateral plasmalemma in pancreatic acinar cells. Nature 248(445):245–247

    Article  PubMed  Google Scholar 

  • de Souza WF, Fortunato-Miranda N, Robbs BK, de Araujo WM, de Freitas-Junior JC, Bastos LG, Viola JP, Morgado-Díaz JA (2013) Claudin-3 overexpression increases the malignant potential of colorectal cancer cells: roles of ERK1/2 and PI3K-Akt as modulators of EGFR signaling. PLoS One 8(9):e74994

    Article  PubMed  PubMed Central  Google Scholar 

  • Dejana E (2004) Endothelial cell-cell junctions: happy together. Nat Rev Mol Cell Biol 5(4):261–270

    Article  CAS  PubMed  Google Scholar 

  • Dejana E, Tournier-Lasserve E, Weinstein BM (2009) The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev Cell 16(2):209–221

    Article  CAS  PubMed  Google Scholar 

  • Dhawan P, Singh AB, Deane NG, No Y, Shiou SR, Schmidt C, Neff J, Washington MK, Beauchamp RD (2005) Claudin-1 regulates cellular transformation and metastatic behavior in colon cancer. J Clin Invest 115(7):1765–1776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhawan P, Ahmad R, Chaturvedi R, Smith JJ, Midha R, Mittal MK, Krishnan M, Chen X, Eschrich S, Yeatman TJ et al (2011) Claudin-2 expression increases tumorigenicity of colon cancer cells: role of epidermal growth factor receptor activation. Oncogene 30(29):3234–3247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Pierro M, Lu R, Uzzau S, Wang W, Margaretten K, Pazzani C, Maimone F, Fasano A (2001) Zonula occludens toxin structure-function analysis. Identification of the fragment biologically active on tight junctions and of the zonulin receptor binding domain. J Biol Chem 276(22):19160–19165

    PubMed  Google Scholar 

  • Dragsten PR, Blumenthal R, Handler JS (1981) Membrane asymmetry in epithelia: is the tight junction a barrier to diffusion in the plasma membrane? Nature 294(5843):718–722

    Article  CAS  PubMed  Google Scholar 

  • Dudek SM, Garcia JG (2001) Cytoskeletal regulation of pulmonary vascular permeability. J Appl Physiol 91(4):1487–1500

    Article  CAS  PubMed  Google Scholar 

  • Ebnet K, Schulz CU, Zu M, Brickwedde MK, Pendl GG, Vestweber D (2000) Junctional adhesion molecule interacts with the PDZ domain-containing proteins AF-6 and ZO-1. J Biol Chem 275(36):27979–27988

    Article  CAS  PubMed  Google Scholar 

  • Farquhar MG, Palade GE (1963) Junctional complexes in various epithelia. J Cell Biol 17(2):375–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fasano A, Fiorentini C, Donelli G, Uzzau S, Kaper JB, Margaretten K, Ding X, Guandalini S, Comstock L, Goldblum SE (1995) Zonula occludens toxin modulates tight junctions through protein kinase C-dependent actin reorganization, in vitro. J Clin Invest 96(2):710–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fasano A, Not T, Wang W, Uzzau S, Berti I, Tommasini A, Goldblum SE (2000) Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease. Lancet 355(9214):1518–1519

    Article  CAS  PubMed  Google Scholar 

  • Fujibe M, Chiba H, Kojima T, Soma T, Wada T, Yamashita T, Sawada N (2004) Thr203 of claudin-1, a putative phosphorylation site for MAP kinase, is required to promote the barrier function of tight junctions. Exp Cell Res 295(1):36–47

    Article  CAS  PubMed  Google Scholar 

  • Fujisawa H, Morioka H, Nakamura H, Watanabe K (1976) Gap junctions in the differentiated neural retinae of newly hatched chickens. J Cell Sci 22(3):597–606

    Article  CAS  PubMed  Google Scholar 

  • Furuse M, Itoh M, Hirase T, Nagafuchi A, Yonemura S, Tsukita S, Tsukita S (1994) Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions. J Cell Biol 127(6 Pt 1):1617–1626

    Article  CAS  PubMed  Google Scholar 

  • Furuse M, Furuse K, Sasaki H, Tsukita S (2001) Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin-Darby canine kidney I cells. J Cell Biol 153(2):263–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gassler N, Rohr C, Schneider A, Kartenbeck J, Bach A, Obermüller N, Otto HF, Autschbach F (2001) Inflammatory bowel disease is associated with changes of enterocytic junctions. Am J Physiol Gastrointest Liver Physiol 281(1):G216–G228

    Article  CAS  PubMed  Google Scholar 

  • Glaunsinger BA, Lee SS, Thomas M, Banks L, Javier R (2000) Interactions of the PDZ-protein MAGI-1 with adenovirus E4-ORF1 and high-risk papillomavirus E6 oncoproteins. Oncogene 19(46):5270–5280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González-Mariscal L, Betanzos A, Nava P, Jaramillo BE (2003) Tight junction proteins. Prog Biophys Mol Biol 81(1):1–44

    Article  PubMed  Google Scholar 

  • Günzel D, Fromm M (2012) Claudins and other tight junction proteins. Compr Physiol 2(3):1819–1852

    Article  PubMed  Google Scholar 

  • Hadj-Rabia S, Baala L, Vabres P, Hamel-Teillac D, Jacquemin E, Fabre M, Lyonnet S, De Prost Y, Munnich A, Hadchouel M et al (2004) Claudin-1 gene mutations in neonatal sclerosing cholangitis associated with ichthyosis: a tight junction disease. Gastroenterology 127(5):1386–1390

    Article  CAS  PubMed  Google Scholar 

  • Haenssen KK, Caldwell SA, Shahriari KS, Jackson SR, Whelan KA, Klein-Szanto AJ, Reginato MJ (2010) ErbB2 requires integrin alpha5 for anoikis resistance via Src regulation of receptor activity in human mammary epithelial cells. J Cell Sci 123(Pt 8):1373–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasegawa H, Fujita H, Katoh H, Aoki J, Nakamura K, Ichikawa A, Negishi M (1999) Opposite regulation of transepithelial electrical resistance and paracellular permeability by Rho in Madin-Darby canine kidney cells. J Biol Chem 274(30):20982–20988

    Article  CAS  PubMed  Google Scholar 

  • Hoi Sang U, Saier MH, Ellisman MH (1979) Tight junction formation is closely linked to the polar redistribution of intramembranous particles in aggregating MDCK epithelia. Exp Cell Res 122(2):384–391

    Article  CAS  PubMed  Google Scholar 

  • Hoover KB, Liao SY, Bryant PJ (1998) Loss of the tight junction MAGUK ZO-1 in breast cancer: relationship to glandular differentiation and loss of heterozygosity. Am J Pathol 153(6):1767–1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurd TW, Gao L, Roh MH, Macara IG, Margolis B (2003) Direct interaction of two polarity complexes implicated in epithelial tight junction assembly. Nat Cell Biol 5(2):137–142

    Article  CAS  PubMed  Google Scholar 

  • Ikari A, Ito M, Okude C, Sawada H, Harada H, Degawa M, Sakai H, Takahashi T, Sugatani J, Miwa M (2008) Claudin-16 is directly phosphorylated by protein kinase A independently of a vasodilator-stimulated phosphoprotein-mediated pathway. J Cell Physiol 214(1):221–229

    Article  CAS  PubMed  Google Scholar 

  • Ikari A, Sato T, Watanabe R, Yamazaki Y, Sugatani J (2012) Increase in claudin-2 expression by an EGFR/MEK/ERK/c-Fos pathway in lung adenocarcinoma A549 cells. Biochim Biophys Acta 1823(6):1110–1118

    Article  CAS  PubMed  Google Scholar 

  • Ishizaki T, Chiba H, Kojima T, Fujibe M, Soma T, Miyajima H, Nagasawa K, Wada I, Sawada N (2003) Cyclic AMP induces phosphorylation of claudin-5 immunoprecipitates and expression of claudin-5 gene in blood-brain-barrier endothelial cells via protein kinase A-dependent and -independent pathways. Exp Cell Res 290(2):275–288

    Article  CAS  PubMed  Google Scholar 

  • Itoh M, Nagafuchi A, Moroi S, Tsukita S (1997) Involvement of ZO-1 in cadherin-based cell adhesion through its direct binding to alpha catenin and actin filaments. J Cell Biol 138(1):181–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh M, Furuse M, Morita K, Kubota K, Saitou M, Tsukita S (1999) Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins. J Cell Biol 147(6):1351–1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh M, Tsukita S, Yamazaki Y, Sugimoto H (2012) Rho GTP exchange factor ARHGEF11 regulates the integrity of epithelial junctions by connecting ZO-1 and RhoA-myosin II signaling. Proc Natl Acad Sci U S A 109(25):9905–9910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong SJ, Dasgupta A, Jung KJ, Um JH, Burke A, Park HU, Brady JN (2008) PI3K/AKT inhibition induces caspase-dependent apoptosis in HTLV-1-transformed cells. Virology 370(2):264–272

    Article  CAS  PubMed  Google Scholar 

  • Johnson AH, Frierson HF, Zaika A, Powell SM, Roche J, Crowe S, Moskaluk CA, El-Rifai W (2005) Expression of tight-junction protein claudin-7 is an early event in gastric tumorigenesis. Am J Pathol 167(2):577–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jou TS, Schneeberger EE, Nelson WJ (1998) Structural and functional regulation of tight junctions by RhoA and Rac1 small GTPases. J Cell Biol 142(1):101–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kandouz M, Batist G (2010) Gap junctions and connexins as therapeutic targets in cancer. Expert Opin Ther Targets 14(7):681–692

    Article  CAS  PubMed  Google Scholar 

  • Katahira J, Sugiyama H, Inoue N, Horiguchi Y, Matsuda M, Sugimoto N (1997) Clostridium perfringens enterotoxin utilizes two structurally related membrane proteins as functional receptors in vivo. J Biol Chem 272(42):26652–26658

    Article  CAS  PubMed  Google Scholar 

  • Kim B, Breton S (2016) The MAPK/ERK-signaling pathway regulates the expression and distribution of tight junction proteins in the mouse proximal epididymis. Biol Reprod 94(1):22

    Article  PubMed  Google Scholar 

  • Kinugasa T, Akagi Y, Yoshida T, Ryu Y, Shiratuchi I, Ishibashi N, Shirouzu K (2010) Increased claudin-1 protein expression contributes to tumorigenesis in ulcerative colitis-associated colorectal cancer. Anticancer Res 30(8):3181–3186

    PubMed  Google Scholar 

  • Kinugasa T, Akagi Y, Ochi T, Tanaka N, Kawahara A, Ishibashi Y, Gotanda Y, Yamaguchi K, Shiratuchi I, Oka Y et al (2012) Increased claudin-1 protein expression in hepatic metastatic lesions of colorectal cancer. Anticancer Res 32(6):2309–2314

    PubMed  Google Scholar 

  • Koizumi J, Kojima T, Kamekura R, Kurose M, Harimaya A, Murata M, Osanai M, Chiba H, Himi T, Sawada N (2007) Changes of gap and tight junctions during differentiation of human nasal epithelial cells using primary human nasal epithelial cells and primary human nasal fibroblast cells in a noncontact coculture system. J Membr Biol 218(1-3):1–7

    Article  CAS  PubMed  Google Scholar 

  • Kojima T, Murata M, Go M, Spray DC, Sawada N (2007) Connexins induce and maintain tight junctions in epithelial cells. J Membr Biol 217(1-3):13–19

    Article  CAS  PubMed  Google Scholar 

  • Kottke MD, Delva E, Kowalczyk AP (2006) The desmosome: cell science lessons from human diseases. J Cell Sci 119(Pt 5):797–806

    Article  CAS  PubMed  Google Scholar 

  • Krug SM, Amasheh S, Richter JF, Milatz S, Günzel D, Westphal JK, Huber O, Schulzke JD, Fromm M (2009) Tricellulin forms a barrier to macromolecules in tricellular tight junctions without affecting ion permeability. Mol Biol Cell 20(16):3713–3724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kucharzik T, Walsh SV, Chen J, Parkos CA, Nusrat A (2001) Neutrophil transmigration in inflammatory bowel disease is associated with differential expression of epithelial intercellular junction proteins. Am J Pathol 159(6):2001–2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon MJ, Kim SH, Jeong HM, Jung HS, Kim SS, Lee JE, Gye MC, Erkin OC, Koh SS, Choi YL et al (2011) Claudin-4 overexpression is associated with epigenetic derepression in gastric carcinoma. Lab Investig 91(11):1652–1667

    Article  CAS  PubMed  Google Scholar 

  • Kyuno D, Kojima T, Ito T, Yamaguchi H, Tsujiwaki M, Takasawa A, Murata M, Tanaka S, Hirata K, Sawada N (2011) Protein kinase Cα inhibitor enhances the sensitivity of human pancreatic cancer HPAC cells to Clostridium perfringens enterotoxin via claudin-4. Cell Tissue Res 346(3):369–381

    Article  CAS  PubMed  Google Scholar 

  • Lameris AL, Huybers S, Kaukinen K, Mäkelä TH, Bindels RJ, Hoenderop JG, Nevalainen PI (2013) Expression profiling of claudins in the human gastrointestinal tract in health and during inflammatory bowel disease. Scand J Gastroenterol 48(1):58–69

    Article  CAS  PubMed  Google Scholar 

  • Lee SS, Glaunsinger B, Mantovani F, Banks L, Javier RT (2000) Multi-PDZ domain protein MUPP1 is a cellular target for both adenovirus E4-ORF1 and high-risk papillomavirus type 18 E6 oncoproteins. J Virol 74(20):9680–9693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemmers C, Médina E, Delgrossi MH, Michel D, Arsanto JP, Le Bivic A (2002) hINADl/PATJ, a homolog of discs lost, interacts with crumbs and localizes to tight junctions in human epithelial cells. J Biol Chem 277(28):25408–25415

    Article  CAS  PubMed  Google Scholar 

  • Li D, Mrsny RJ (2000) Oncogenic Raf-1 disrupts epithelial tight junctions via downregulation of occludin. J Cell Biol 148(4):791–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin X, Shang X, Manorek G, Howell SB (2013) Regulation of the epithelial-mesenchymal transition by claudin-3 and claudin-4. PLoS One 8(6):e67496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lioni M, Brafford P, Andl C, Rustgi A, El-Deiry W, Herlyn M, Smalley KS (2007) Dysregulation of claudin-7 leads to loss of E-cadherin expression and the increased invasion of esophageal squamous cell carcinoma cells. Am J Pathol 170(2):709–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipschutz JH, Li S, Arisco A, Balkovetz DF (2005) Extracellular signal-regulated kinases 1/2 control claudin-2 expression in Madin-Darby canine kidney strain I and II cells. J Biol Chem 280(5):3780–3788

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Ding L, Hong H, Hoggard J, Lu Q, Chen YH (2011) Claudin-7 inhibits human lung cancer cell migration and invasion through ERK/MAPK signaling pathway. Exp Cell Res 317(13):1935–1946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mankertz J, Tavalali S, Schmitz H, Mankertz A, Riecken EO, Fromm M, Schulzke JD (2000) Expression from the human occludin promoter is affected by tumor necrosis factor alpha and interferon gamma. J Cell Sci 113(Pt 11):2085–2090

    Article  CAS  PubMed  Google Scholar 

  • Marcus BC, Wyble CW, Hynes KL, Gewertz BL (1996) Cytokine-induced increases in endothelial permeability occur after adhesion molecule expression. Surgery 120(2):411–416; discussion 416-417

    Article  CAS  PubMed  Google Scholar 

  • Martin TA (2014) The role of tight junctions in cancer metastasis. Semin Cell Dev Biol 36:224–231

    Article  CAS  PubMed  Google Scholar 

  • Martin TA, Jiang WG (2001) Tight junctions and their role in cancer metastasis. Histol Histopathol 16(4):1183–1195

    CAS  PubMed  Google Scholar 

  • Martin TA, Jiang WG (2009) Loss of tight junction barrier function and its role in cancer metastasis. Biochim Biophys Acta 1788(4):872–891

    Article  CAS  PubMed  Google Scholar 

  • Mayo LD, Donner DB (2002) The PTEN, Mdm2, p53 tumor suppressor-oncoprotein network. Trends Biochem Sci 27(9):462–467

    Article  CAS  PubMed  Google Scholar 

  • Mellor H, Parker PJ (1998) The extended protein kinase C superfamily. Biochem J 332(Pt 2):281–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng W, Takeichi M (2009) Adherens junction: molecular architecture and regulation. Cold Spring Harb Perspect Biol 1(6):a002899

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyer TN, Schwesinger C, Denker BM (2002) Zonula occludens-1 is a scaffolding protein for signaling molecules. Galpha(12) directly binds to the Src homology 3 domain and regulates paracellular permeability in epithelial cells. J Biol Chem 277(28):24855–24858

    Article  CAS  PubMed  Google Scholar 

  • Michl P, Barth C, Buchholz M, Lerch MM, Rolke M, Holzmann KH, Menke A, Fensterer H, Giehl K, Löhr M et al (2003) Claudin-4 expression decreases invasiveness and metastatic potential of pancreatic cancer. Cancer Res 63(19):6265–6271

    CAS  PubMed  Google Scholar 

  • Mitchell LA, Ward C, Kwon M, Mitchell PO, Quintero DA, Nusrat A, Parkos CA, Koval M (2015) Junctional adhesion molecule A promotes epithelial tight junction assembly to augment lung barrier function. Am J Pathol 185(2):372–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyamori H, Takino T, Kobayashi Y, Tokai H, Itoh Y, Seiki M, Sato H (2001) Claudin promotes activation of pro-matrix metalloproteinase-2 mediated by membrane-type matrix metalloproteinases. J Biol Chem 276(30):28204–28211

    Article  CAS  PubMed  Google Scholar 

  • Mori M, Sawada N, Kokai Y, Satoh M (1999) Role of tight junctions in the occurrence of cancer invasion and metastasis. Med Electron Microsc 32(4):193–198

    Article  PubMed  Google Scholar 

  • Morris MA, Young LS, Dawson CW (2008) DNA tumour viruses promote tumour cell invasion and metastasis by deregulating the normal processes of cell adhesion and motility. Eur J Cell Biol 87(8-9):677–697

    Article  CAS  PubMed  Google Scholar 

  • Murata T, Ishibashi T, Khalil A, Hata Y, Yoshikawa H, Inomata H (1995) Vascular endothelial growth factor plays a role in hyperpermeability of diabetic retinal vessels. Ophthalmic Res 27(1):48–52

    Article  CAS  PubMed  Google Scholar 

  • Nigam SK, Denisenko N, Rodriguez-Boulan E, Citi S (1991) The role of phosphorylation in development of tight junctions in cultured renal epithelial (MDCK) cells. Biochem Biophys Res Commun 181(2):548–553

    Article  CAS  PubMed  Google Scholar 

  • Nunes FD, Lopez LN, Lin HW, Davies C, Azevedo RB, Gow A, Kachar B (2006) Distinct subdomain organization and molecular composition of a tight junction with adherens junction features. J Cell Sci 119(Pt 23):4819–4827

    Article  CAS  PubMed  Google Scholar 

  • Ooshio T, Kobayashi R, Ikeda W, Miyata M, Fukumoto Y, Matsuzawa N, Ogita H, Takai Y (2010) Involvement of the interaction of afadin with ZO-1 in the formation of tight junctions in Madin-Darby canine kidney cells. J Biol Chem 285(7):5003–5012

    Article  CAS  PubMed  Google Scholar 

  • Otani T, Furuse M (2020) Tight junction structure and function revisited. Trends Cell Biol 30(10):805–817

    Article  CAS  PubMed  Google Scholar 

  • Otani T, Nguyen TP, Tokuda S, Sugihara K, Sugawara T, Furuse K, Miura T, Ebnet K, Furuse M (2019) Claudins and JAM-A coordinately regulate tight junction formation and epithelial polarity. J Cell Biol 218(10):3372–3396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozaki H, Ishii K, Horiuchi H, Arai H, Kawamoto T, Okawa K, Iwamatsu A, Kita T (1999) Cutting edge: combined treatment of TNF-alpha and IFN-gamma causes redistribution of junctional adhesion molecule in human endothelial cells. J Immunol 163(2):553–557

    Article  CAS  PubMed  Google Scholar 

  • Papini E, de Bernard M, Milia E, Bugnoli M, Zerial M, Rappuoli R, Montecucco C (1994) Cellular vacuoles induced by Helicobacter pylori originate from late endosomal compartments. Proc Natl Acad Sci U S A 91(21):9720–9724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papini E, Satin B, Norais N, de Bernard M, Telford JL, Rappuoli R, Montecucco C (1998) Selective increase of the permeability of polarized epithelial cell monolayers by Helicobacter pylori vacuolating toxin. J Clin Invest 102(4):813–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pardridge WM (1998) Blood-brain barrier carrier-mediated transport and brain metabolism of amino acids. Neurochem Res 23(5):635–644

    Article  CAS  PubMed  Google Scholar 

  • Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, He X, Perou CM (2010) Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 12(5):R68

    Article  PubMed  PubMed Central  Google Scholar 

  • Rahner C, Stieger B, Landmann L (1996) Structure-function correlation of tight junctional impairment after intrahepatic and extrahepatic cholestasis in rat liver. Gastroenterology 110(5):1564–1578

    Article  CAS  PubMed  Google Scholar 

  • Richter JF, Hildner M, Schmauder R, Turner JR, Schumann M, Reiche J (2019) Occludin knockdown is not sufficient to induce transepithelial macromolecule passage. Tissue Barriers 7(2):1612661

    Article  PubMed  PubMed Central  Google Scholar 

  • Roh MH, Makarova O, Liu CJ, Shin K, Lee S, Laurinec S, Goyal M, Wiggins R, Margolis B (2002) The Maguk protein, Pals1, functions as an adapter, linking mammalian homologues of Crumbs and Discs Lost. J Cell Biol 157(1):161–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh H, Zhong Y, Isomura H, Saitoh M, Enomoto K, Sawada N, Mori M (1996) Localization of 7H6 tight junction-associated antigen along the cell border of vascular endothelial cells correlates with paracellular barrier function against ions, large molecules, and cancer cells. Exp Cell Res 222(2):269–274

    Article  CAS  PubMed  Google Scholar 

  • Sawada N, Murata M, Kikuchi K, Osanai M, Tobioka H, Kojima T, Chiba H (2003) Tight junctions and human diseases. Med Electron Microsc 36(3):147–156

    Article  PubMed  Google Scholar 

  • Schmitz H, Barmeyer C, Fromm M, Runkel N, Foss HD, Bentzel CJ, Riecken EO, Schulzke JD (1999) Altered tight junction structure contributes to the impaired epithelial barrier function in ulcerative colitis. Gastroenterology 116(2):301–309

    Article  CAS  PubMed  Google Scholar 

  • Schramek H, Feifel E, Healy E, Pollack V (1997) Constitutively active mutant of the mitogen-activated protein kinase kinase MEK1 induces epithelial dedifferentiation and growth inhibition in madin-darby canine kidney-C7 cells. J Biol Chem 272(17):11426–11433

    Article  CAS  PubMed  Google Scholar 

  • Schwayer C, Shamipour S, Pranjic-Ferscha K, Schauer A, Balda M, Tada M, Matter K, Heisenberg CP (2019) Mechanosensation of tight junctions depends on ZO-1 phase separation and flow. Cell 179(4):937–952.e918

    Article  CAS  PubMed  Google Scholar 

  • Shen L, Weber CR, Turner JR (2008) The tight junction protein complex undergoes rapid and continuous molecular remodeling at steady state. J Cell Biol 181(4):683–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen L, Weber CR, Raleigh DR, Yu D, Turner JR (2011) Tight junction pore and leak pathways: a dynamic duo. Annu Rev Physiol 73:283–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon DB, Lu Y, Choate KA, Velazquez H, Al-Sabban E, Praga M, Casari G, Bettinelli A, Colussi G, Rodriguez-Soriano J et al (1999) Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 285(5424):103–106

    Article  CAS  PubMed  Google Scholar 

  • Smith CL, Reese TS (2016) Adherens junctions modulate diffusion between epithelial cells in Trichoplax adhaerens. Biol Bull 231(3):216–224

    Article  CAS  PubMed  Google Scholar 

  • Steed E, Balda MS, Matter K (2010) Dynamics and functions of tight junctions. Trends Cell Biol 20(3):142–149

    Article  CAS  PubMed  Google Scholar 

  • Suh Y, Yoon CH, Kim RK, Lim EJ, Oh YS, Hwang SG, An S, Yoon G, Gye MC, Yi JM et al (2013) Claudin-1 induces epithelial-mesenchymal transition through activation of the c-Abl-ERK signaling pathway in human liver cells. Oncogene 32(41):4873–4882

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Kokai Y, Sawada N, Takakuwa R, Kuwahara K, Isogai E, Isogai H, Mori M (2002) SS1 Helicobacter pylori disrupts the paracellular barrier of the gastric mucosa and leads to neutrophilic gastritis in mice. Virchows Arch 440(3):318–324

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Nishizawa T, Tani K, Yamazaki Y, Tamura A, Ishitani R, Dohmae N, Tsukita S, Nureki O, Fujiyoshi Y (2014) Crystal structure of a claudin provides insight into the architecture of tight junctions. Science 344(6181):304–307

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Tani K, Tamura A, Tsukita S, Fujiyoshi Y (2015) Model for the architecture of claudin-based paracellular ion channels through tight junctions. J Mol Biol 427(2):291–297

    Article  CAS  PubMed  Google Scholar 

  • Svensson L, Finlay BB, Bass D, von Bonsdorff CH, Greenberg HB (1991) Symmetric infection of rotavirus on polarized human intestinal epithelial (Caco-2) cells. J Virol 65(8):4190–4197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Nakanishi H, Miyahara M, Mandai K, Satoh K, Satoh A, Nishioka H, Aoki J, Nomoto A, Mizoguchi A et al (1999) Nectin/PRR: an immunoglobulin-like cell adhesion molecule recruited to cadherin-based adherens junctions through interaction with Afadin, a PDZ domain-containing protein. J Cell Biol 145(3):539–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takakuwa Y, Kokai Y, Sasaki K, Chiba H, Tobioka H, Mori M, Sawada N (2002) Bile canalicular barrier function and expression of tight-junctional molecules in rat hepatocytes during common bile duct ligation. Cell Tissue Res 307(2):181–189

    Article  CAS  PubMed  Google Scholar 

  • Tepass U, Theres C, Knust E (1990) crumbs encodes an EGF-like protein expressed on apical membranes of Drosophila epithelial cells and required for organization of epithelia. Cell 61(5):787–799

    Article  CAS  PubMed  Google Scholar 

  • Thomas M, Glaunsinger B, Pim D, Javier R, Banks L (2001) HPV E6 and MAGUK protein interactions: determination of the molecular basis for specific protein recognition and degradation. Oncogene 20(39):5431–5439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tobioka H, Isomura H, Kokai Y, Sawada N (2002) Polarized distribution of carcinoembryonic antigen is associated with a tight junction molecule in human colorectal adenocarcinoma. J Pathol 198(2):207–212

    Article  CAS  PubMed  Google Scholar 

  • Tsukita S, Furuse M (2002) Claudin-based barrier in simple and stratified cellular sheets. Curr Opin Cell Biol 14(5):531–536

    Article  CAS  PubMed  Google Scholar 

  • Tsukita S, Furuse M, Itoh M (2001) Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol 2(4):285–293

    Article  CAS  PubMed  Google Scholar 

  • Van Itallie CM, Tietgens AJ, Anderson JM (2017) Visualizing the dynamic coupling of claudin strands to the actin cytoskeleton through ZO-1. Mol Biol Cell 28(4):524–534

    Article  PubMed  PubMed Central  Google Scholar 

  • van Meer G, Simons K (1986) The function of tight junctions in maintaining differences in lipid composition between the apical and the basolateral cell surface domains of MDCK cells. EMBO J 5(7):1455–1464

    Article  PubMed  PubMed Central  Google Scholar 

  • Vecchio AJ, Rathnayake SS, Stroud RM (2021) Structural basis for Clostridium perfringens enterotoxin targeting of claudins at tight junctions in mammalian gut. Proc Natl Acad Sci U S A 118:15

    Article  Google Scholar 

  • Wan H, Winton HL, Soeller C, Tovey ER, Gruenert DC, Thompson PJ, Stewart GA, Taylor GW, Garrod DR, Cannell MB et al (1999) Der p 1 facilitates transepithelial allergen delivery by disruption of tight junctions. J Clin Invest 104(1):123–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Dentler WL, Borchardt RT (2001) VEGF increases BMEC monolayer permeability by affecting occludin expression and tight junction assembly. Am J Phys Heart Circ Phys 280(1):H434–H440

    CAS  Google Scholar 

  • Wang K, Wang H, Lou W, Ma L, Li Y, Zhang N, Wang C, Li F, Awais M, Cao S et al (2018) IP-10 promotes blood-brain barrier damage by inducing tumor necrosis factor alpha production in Japanese encephalitis. Front Immunol 9:1148

    Article  PubMed  PubMed Central  Google Scholar 

  • Watson CJ, Hoare CJ, Garrod DR, Carlson GL, Warhurst G (2005) Interferon-gamma selectively increases epithelial permeability to large molecules by activating different populations of paracellular pores. J Cell Sci 118(Pt 22):5221–5230

    Article  CAS  PubMed  Google Scholar 

  • Weber CR, Liang GH, Wang Y, Das S, Shen L, Yu AS, Nelson DJ, Turner JR (2015) Claudin-2-dependent paracellular channels are dynamically gated. elife 4:e09906

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilcox ER, Burton QL, Naz S, Riazuddin S, Smith TN, Ploplis B, Belyantseva I, Ben-Yosef T, Liburd NA, Morell RJ et al (2001) Mutations in the gene encoding tight junction claudin-14 cause autosomal recessive deafness DFNB29. Cell 104(1):165–172

    Article  CAS  PubMed  Google Scholar 

  • Wójciak-Stothard B, Potempa S, Eichholtz T, Ridley AJ (2001) Rho and Rac but not Cdc42 regulate endothelial cell permeability. J Cell Sci 114(Pt 7):1343–1355

    Article  PubMed  Google Scholar 

  • Wu S, Lim KC, Huang J, Saidi RF, Sears CL (1998) Bacteroides fragilis enterotoxin cleaves the zonula adherens protein, E-cadherin. Proc Natl Acad Sci U S A 95(25):14979–14984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Z, Nybom P, Magnusson KE (2000) Distinct effects of Vibrio cholerae haemagglutinin/protease on the structure and localization of the tight junction-associated proteins occludin and ZO-1. Cell Microbiol 2(1):11–17

    Article  CAS  PubMed  Google Scholar 

  • Yoon CH, Kim MJ, Park MJ, Park IC, Hwang SG, An S, Choi YH, Yoon G, Lee SJ (2010) Claudin-1 acts through c-Abl-protein kinase Cdelta (PKCdelta) signaling and has a causal role in the acquisition of invasive capacity in human liver cells. J Biol Chem 285(1):226–233

    Article  CAS  PubMed  Google Scholar 

  • Yu AS, Cheng MH, Angelow S, Günzel D, Kanzawa SA, Schneeberger EE, Fromm M, Coalson RD (2009) Molecular basis for cation selectivity in claudin-2-based paracellular pores: identification of an electrostatic interaction site. J Gen Physiol 133(1):111–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu D, Marchiando AM, Weber CR, Raleigh DR, Wang Y, Shen L, Turner JR (2010) MLCK-dependent exchange and actin binding region-dependent anchoring of ZO-1 regulate tight junction barrier function. Proc Natl Acad Sci U S A 107(18):8237–8241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuhan R, Koutsouris A, Savkovic SD, Hecht G (1997) Enteropathogenic Escherichia coli-induced myosin light chain phosphorylation alters intestinal epithelial permeability. Gastroenterology 113(6):1873–1882

    Article  CAS  PubMed  Google Scholar 

  • Zahraoui A, Louvard D, Galli T (2000) Tight junction, a platform for trafficking and signaling protein complexes. J Cell Biol 151(5):31–36

    Article  PubMed Central  Google Scholar 

  • Zhadanov AB, Provance DW Jr, Speer CA, Coffin JD, Goss D, Blixt JA, Reichert CM, Mercer JA (1999) Absence of the tight junctional protein AF-6 disrupts epithelial cell-cell junctions and cell polarity during mouse development. Curr Biol 9(16):880–888

    Article  CAS  PubMed  Google Scholar 

  • Zhan T, Rindtorff N, Boutros M (2017) Wnt signaling in cancer. Oncogene 36(11):1461–1473

    Article  CAS  PubMed  Google Scholar 

  • Zihni C, Mills C, Matter K, Balda MS (2016) Tight junctions: from simple barriers to multifunctional molecular gates. Nat Rev Mol Cell Biol 17(9):564–580

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by Ramalingaswami Re-entry Fellowship (Grant number: D.O. NO.BT/HRD/35/02/2006) from the Department of Biotechnology, Govt. of India, New Delhi and Core Research Grant (CRG/2021/003805) from Science and Engineering Research Board (SERB), Govt. of India, New Delhi to Muzafar A. Macha and Promotion of University Research and Scientific Excellence (PURSE) Grant to the Islamic University of Science and Technology, Awantipora from Department of Biotechnology, Govt. of India. The authors would also like to acknowledge Sidra Medicine Precision Program for funding and constant support to Ajaz A. Bhat and Ammira S.Al-shabeeb Akil.

Declarations

Ethical Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Availability of Supporting Data

Not applicable.

Competing Interests

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khurshid, S. et al. (2023). Tight Junctions and Signaling Pathways in Cancer. In: Bhat, A.A., Haris, M., Macha, M.A., Dhawan, P. (eds) Tight Junctions in Inflammation and Cancer. Springer, Singapore. https://doi.org/10.1007/978-981-99-2415-8_6

Download citation

Publish with us

Policies and ethics

Navigation