Fundamentals of New-Generation Cement-Based Nanocomposites

  • Chapter
  • First Online:
New-Generation Cement-Based Nanocomposites
  • 216 Accesses

Abstract

Nano science and technology can help understand and control the structures and properties of cement-based composites more fundamentally. Incorporating nanomaterials as fillers is commonly used approach for tailoring the cement-based composites via nano science and technology. The manipulation of nanomaterials on cement-based composites strongly depends on the compositions, structures, processing and properties of nanomaterials as well as the composite methods of nanomaterials with cement-based composites. Recent advances in nano-synthetic technologies, nanocomposite technologies and nano-surface modification technologies are driving the progressive exploitation of advanced nanocomposites. In view of their unique structures and mutual synergy, these advanced nanocomposites are expected to alleviate the dispersion issue of traditional nanomaterials in cement-based composites, improve their nanocomposite effectiveness and efficiency, and impart new properties and functionalities to cement-based composites, thus boosting the development of new-generation cement-based nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Han, S. Ding, J. Wang, J. Ou, Nano-Engineered Cementitious Composites: Principles and Practices (Springer, Singapore, 2019)

    Book  Google Scholar 

  2. B. Han, L. Zhang, J. Ou, Smart and Multifunctional Concrete Toward Sustainable Infrastructures (Springer Singapore, Singapore, 2017)

    Google Scholar 

  3. K. Mehta, J.M. Monteiro, Concrete: Microstructure, Properties, and Materials, 4th edn. (McGraw-Hill Education, New York, 2014)

    Google Scholar 

  4. B. Han, L. Zhang, S. Zeng, S. Dong, X. Yu, R. Yang, J. Ou, Nano-core effect in nano-engineered cementitious composites. Compos. A Appl. Sci. Manuf. 95, 100–109 (2017)

    Article  CAS  Google Scholar 

  5. H. Gleiter, Nanostructured materials: basic concepts and microstructure. Acta Mater. 48, 1–29 (2000)

    Article  CAS  Google Scholar 

  6. X. Wang, D. Feng, X. Shi, J. Zhong, Carbon nanotubes do not provide strong seeding effect for the nucleation of C3S hydration. Mater. Struct. 55, 172 (2022)

    Article  CAS  Google Scholar 

  7. Y. Zhang, Z. Jiang, J. Huang, L.Y. Lim, W. Li, J. Deng, D. Gong, Y. Tang, Y. Lai, Z. Chen, Titanate and titania nanostructured materials for environmental and energy applications: a review. RSC Adv. 5, 79479–79510 (2015)

    Article  CAS  Google Scholar 

  8. R. Siddique, A. Mehta, Effect of carbon nanotubes on properties of cement mortars. Constr. Build. Mater. 50, 116–129 (2014)

    Article  Google Scholar 

  9. M. Barisik, S. Atalay, A. Beskok, S. Qian, Size dependent surface charge properties of silica nanoparticles. J. Phys. Chem. C. 118, 1836–1842 (2014)

    Article  CAS  Google Scholar 

  10. P. Couvreur, G. Barratt, E. Fattal, C. Vauthier, Nanocapsule Technology: A Review, CRT, 19 (2002)

    Google Scholar 

  11. R. Singh, J.W. Lillard, Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol. 86, 215–223 (2009)

    Article  CAS  Google Scholar 

  12. C.N.R. Rao, A. Müller, A.K. Cheetham, The Chemistry of Nanomaterials: Synthesis, Properties and Applications (Wiley-VCH, Germany, 2004)

    Google Scholar 

  13. L. Xu, H. Liang, Y. Yang, S. Yu, Stability and reactivity: positive and negative aspects for nanoparticle processing. Chem. Rev. 118, 3209–3250 (2018)

    Article  CAS  Google Scholar 

  14. T. Hayashi, Y.A. Kim, T. Natsuki, M. Endo, Mechanical properties of carbon nanomaterials. ChemPhysChem 8, 999–1004 (2007)

    Article  CAS  Google Scholar 

  15. C. Wei, K. Cho, D. Srivastava, Tensile strength of carbon nanotubes under realistic temperature and strain rate. Phys. Rev. B 67, 115407 (2003)

    Article  Google Scholar 

  16. Y. Liu, B. **e, Z. Zhang, Q. Zheng, Z. Xu, Mechanical properties of graphene papers. J. Mech. Phys. Solids 60, 591–605 (2012)

    Article  CAS  Google Scholar 

  17. M. Singh, M. Goyal, K. Devlal, Size and shape effects on the band gap of semiconductor compound nanomaterials. J. Taibah Univ. Sci. 12, 470–475 (2018)

    Article  Google Scholar 

  18. L. Liu, A. Corma, Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018)

    Article  CAS  Google Scholar 

  19. S.M. Bergin, Y.-H. Chen, A.R. Rathmell, P. Charbonneau, Z.-Y. Li, B.J. Wiley, The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale 4, 1996–2004 (2012)

    Article  CAS  Google Scholar 

  20. L. Qiu, N. Zhu, Y. Feng, E.E. Michaelides, G. Żyła, D. **g, X. Zhang, P.M. Norris, C.N. Markides, O. Mahian, A review of recent advances in thermophysical properties at the nanoscale: from solid state to colloids. Phys. Rep. 843, 1–81 (2020)

    Article  CAS  Google Scholar 

  21. E. Roduner, Size matters: why nanomaterials are different. Chem. Soc. Rev. 35, 583 (2006)

    Article  CAS  Google Scholar 

  22. A. Akbarzadeh, M. Samiei, S. Davaran, Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res. Lett. 7, 144 (2012)

    Article  Google Scholar 

  23. J. Xu, F. Zhang, J. Sun, J. Sheng, F. Wang, M. Sun, Bio and nanomaterials based on Fe3O4. Molecules 19, 21506–21528 (2014)

    Article  Google Scholar 

  24. S. Rajeshkanna, O. Nirmalkumar, Synthesis and characterization of Cu nanoparticle using high energy ball milling route and compare with Scherrer equation. Int. J. Sci. Eng. Res. 2, 30–35 (2014)

    Google Scholar 

  25. R.W. Kelsall, I.W. Hamley, M. Geoghegan (eds.), Nanoscale Science and Technology (John Wiley, Chichester, England; Hoboken, NJ, 2005)

    Google Scholar 

  26. B. Deng, Z. Liu, H. Peng, Toward mass production of CVD graphene films. Adv. Mater. 31, 1800996 (2018)

    Article  Google Scholar 

  27. Z. Chen, Y. Qi, X. Chen, Y. Zhang, Z. Liu, Direct CVD growth of graphene on traditional glass: methods and mechanisms, Adv. Mater. 31, 1803639 (2018)

    Google Scholar 

  28. C. Tan, X. Cao, X.-J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G.-H. Nam, M. Sindoro, H. Zhang, Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017)

    Article  CAS  Google Scholar 

  29. M. Kumar, Y. Ando, Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J. Nanosci. Nanotechnol. 10, 3739–3758 (2010)

    Article  CAS  Google Scholar 

  30. B.L. Cushing, V.L. Kolesnichenko, C.J. O’Connor, Recent Advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev. 104, 3893–3946 (2004)

    Article  CAS  Google Scholar 

  31. Z.S. Pillai, P.V. Kamat, What factors control the size and shape of silver nanoparticles in the citrate ion reduction method? J. Phys. Chem. B 108, 945–951 (2004)

    Article  CAS  Google Scholar 

  32. R.I. Walton, Subcritical solvothermal synthesis of condensed inorganic materials. Chem. Soc. Rev. 31, 230–238 (2002)

    Article  CAS  Google Scholar 

  33. Thermal Technology, A Technology for Crystal Growth and Materials Processing (Noyes Publications, Norwich, NY, 2001)

    Google Scholar 

  34. B.I. Lee, S. Komarneni (eds.), Chemical Processing of Ceramics, 2nd edn. (Taylor & Francis, Boca Raton, 2005)

    Google Scholar 

  35. C.J. Brinker, G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Elsevier Inc., 2013)

    Google Scholar 

  36. P. Saravanan, R. Gopalan, V. Chandrasekaran, Synthesis and characterisation of nanomaterials. Def. Sci. J. 58, 504–516 (2008)

    Article  CAS  Google Scholar 

  37. I. Capek, Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Adv. Coll. Interface. Sci. 110, 49–74 (2004)

    Article  CAS  Google Scholar 

  38. J. Tanori, M. Paule Pileni, Change in the shape of copper nanoparticles in ordered phases, in Advanced Materials, vol. 7 (1995), pp. 862–864

    Google Scholar 

  39. C.O. Kappe, How to measure reaction temperature in microwave-heated transformations. Chem. Soc. Rev. 42, 4977–4990 (2013)

    Article  CAS  Google Scholar 

  40. D. Nunes, A. Pimentel, L. Santos, P. Barquinha, L. Pereira, E. Fortunato, R. Martins, 2-Synthesis, design, and morphology of metal oxide nanostructures, in Metal Oxide Nanostructures. ed. by D. Nunes, A. Pimentel, L. Santos, P. Barquinha, L. Pereira, E. Fortunato, R. Martins (Elsevier, 2019), pp.21–57

    Google Scholar 

  41. T.D. Chu, H.N. Nguyen, Synthesis and characteristics of multifunctional magneto-luminescent nanoparticles by an ultrasonic wave-assisted stӧber method. J. Phys. Sci. 32, 75–87 (2021)

    Article  CAS  Google Scholar 

  42. M.F. Pantano, H.D. Espinosa, L. Pagnotta, Mechanical characterization of materials at small length scales. J. Mech. Sci. Technol. 26, 545–561 (2012)

    Article  Google Scholar 

  43. Z. Hu, Chapter 6—Characterization of materials, nanomaterials, and thin films by nanoindentation, in Microscopy Methods in Nanomaterials Characterization. ed. by S. Thomas, R. Thomas, A.K. Zachariah, R.K. Mishra (Elsevier, 2017), pp.165–239

    Chapter  Google Scholar 

  44. A.J. Bard, L.R. Faulkner, H.S. White, Electrochemical Methods: Fundamentals and Applications (Wiley-VCH, Germany, 2022)

    Google Scholar 

  45. S. Mohan, F. Okomu, O.S. Oluwafemi, M. Matoetoe, O. Arotiba, Electrochemical behaviour of silver nanoparticle-MWCNTs hybrid nanostructures synthesized via a simple method. Int. J. Electrochem. Sci. 11, 745–753 (2016)

    CAS  Google Scholar 

  46. P.S. Nnamchi, C.S. Obayi, Chapter 4—Electrochemical characterization of nanomaterials, in Characterization of Nanomaterials, eds. by S. Mohan Bhagyaraj, O.S. Oluwafemi, N. Kalarikkal, S. Thomas (Woodhead Publishing, 2018), pp. 103–127

    Google Scholar 

  47. J.L. Wang, M. Gu, X. Zhang, Y. Song, Thermal conductivity measurement of an individual fibre using a T type probe method. J. Phys. D: Appl. Phys. 42,105502 (2009)

    Google Scholar 

  48. M. Fujii, X. Zhang, H. **e, H. Ago, K. Takahashi, T. Ikuta, H. Abe, T. Shimizu, Measuring the thermal conductivity of a single carbon nanotube. Phys. Rev. Lett. 95, 065502 (2005)

    Google Scholar 

  49. L. Qiu, P. Guo, H. Zou, Y. Feng, X. Zhang, S. Pervaiz, D. Wen, Extremely low thermal conductivity of graphene nanoplatelets using nanoparticle decoration. ES Energy Environ. 2, 66–72‬‬‬‬‬‬‬‬‬ (2018)

    Google Scholar 

  50. E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai, Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 6, 96–100 (2006)

    Article  CAS  Google Scholar 

  51. R.M. Costescu, M.A. Wall, D.G. Cahill, Thermal conductance of epitaxial interfaces. Phys. Rev. B 67, 054302 (2003)

    Article  Google Scholar 

  52. H. **e, A. Cai, X. Wang, Thermal diffusivity and conductivity of multiwalled carbon nanotube arrays. Phys. Lett. A 369, 120–123 (2007)

    Article  CAS  Google Scholar 

  53. Q.Y. Li, W.G. Ma, X. Zhang, Laser flash Raman spectroscopy method for characterizing thermal diffusivity of supported 2D nanomaterials. Int. J. Heat Mass Transf. 95, 956–963 (2016)

    Article  CAS  Google Scholar 

  54. C. **ng, T. Munro, C. Jensen, H. Ban, C.G. Copeland, R.V. Lewis, Thermal characterization of natural and synthetic spider silks by both the 3ω and transient electrothermal methods. Mater. Des. 119, 22–29 (2017)

    Article  CAS  Google Scholar 

  55. J. Hou, X. Wang, J. Guo, Thermal characterization of micro/nanoscale conductive and non-conductive wires based on optical heating and electrical thermal sensing. J. Phys. D Appl. Phys. 39, 3362 (2006)

    Article  CAS  Google Scholar 

  56. L.I. Giri, S. Tuli, M. Sharma, P. Bugnon, H. Berger, A. Magrez, Thermal diffusivity measurements of templated nanocomposite using infrared thermography. Mater. Lett. 115, 106–108 (2014)

    Article  CAS  Google Scholar 

  57. L. Qiu, P. Guo, X. Yang, Y. Ouyang, Y. Feng, X. Zhang, J. Zhao, X. Zhang, Q. Li, Electro curing of oriented bismaleimide between aligned carbon nanotubes for high mechanical and thermal performances. Carbon 145, 650–657 (2019)

    Article  CAS  Google Scholar 

  58. A.K. Nair, A. Mayeen, L.K. Shaji, M.S. Kala, S. Thomas, N. Kalarikkal, Chapter 10—Optical characterization of nanomaterials, in Characterization of Nanomaterials, eds. by S. Mohan Bhagyaraj, O.S. Oluwafemi, N. Kalarikkal, S. Thomas (Woodhead Publishing, 2018), pp. 269–299

    Google Scholar 

  59. R. Karoui, Chapter 7—Spectroscopic technique: fluorescence and Ultraviolet-Visible (UV-Vis) spectroscopies, in Modern Techniques for Food Authentication, ed. by D.-W. Sun, 2nd edn (Academic Press, 2018), pp. 219–252

    Google Scholar 

  60. A.M. Smith, S. Nie, Chemical analysis and cellular imaging with quantum dots. Analyst 129, 672–677 (2004)

    Article  CAS  Google Scholar 

  61. J. Alonso, J.M. Barandiarán, L. Fernández Barquín, A. García-Arribas, Chapter 1—Magnetic nanoparticles, synthesis, properties, and applications, in Magnetic Nanostructured Materials, eds. by A.A. El-Gendy, J.M. Barandiarán, R.L. Hadimani (Elsevier, 2018), pp. 1–40

    Google Scholar 

  62. C.S.S.R. Kumar (ed.), Magnetic Characterization Techniques for Nanomaterials. (Springer, Heidelberg, 2017)

    Google Scholar 

  63. F.A. Chyad, The Effects of Metastable Zirconia on the Properties of Ordinary Portland Cement, Ph.D., University of Bradford (1989)

    Google Scholar 

  64. B. Han, X. Yu, J. Ou, Self-Sensing Concrete in Smart Structures, Elsevier, 2014.

    Google Scholar 

  65. S. Ding, Y. **ang, Y.-Q. Ni, V.K. Thakur, X. Wang, B. Han, J. Ou, In-situ synthesizing carbon nanotubes on cement to develop self-sensing cementitious composites for smart high-speed rail infrastructures. Nano Today 43, 101438 (2022)

    Article  CAS  Google Scholar 

  66. L. Zhang, S. Ding, L. Li, S. Dong, D. Wang, X. Yu, B. Han, Effect of characteristics of assembly unit of CNT/NCB composite fillers on properties of smart cement-based materials. Compos. A Appl. Sci. Manuf. 109, 303–320 (2018)

    Article  CAS  Google Scholar 

  67. H. Li, M. Liebscher, I. Curosu, S. Choudhury, S. Hempel, M. Davoodabadi, T.T. Dinh, J. Yang, V. Mechtcherine, Electrophoretic deposition of nano-silica onto carbon fiber surfaces for an improved bond strength with cementitious matrices. Cement Concr. Compos. 114, 103777 (2020)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoguo Han .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ding, S., Wang, X., Han, B. (2023). Fundamentals of New-Generation Cement-Based Nanocomposites. In: New-Generation Cement-Based Nanocomposites. Springer, Singapore. https://doi.org/10.1007/978-981-99-2306-9_1

Download citation

Publish with us

Policies and ethics

Navigation