Recent Progress in the Pharmacology of Phytoestrogens: Emerging Neuromodulators for Treating Anxiety and Depression

  • Chapter
  • First Online:
Recent Advances in Pharmaceutical Innovation and Research
  • 544 Accesses

Abstract

Phytoestrogens are plant-derived non-steroidal xenoestrogens that possess an ability to bind with endogenous estrogen receptors and mildly mimic the estrogenic activity of endogenous estrogens. They are commonly found in soy, beans, red clover, sprouting plants, etc. Several preclinical studies have documented that phytoestrogen improves health and brain functions. As per the WHO, depression and anxiety are significant contributors to the global burden of non-fatal diseases. Depression is ranked as one of the largest contributors to a disability, whereas anxiety disorders are ranked sixth among the global burden of non-fatal diseases. Till now there have been several synthetic treatments for depression and anxiety. However, they present a lot of problems that affect the daily lives of the patients. Therefore, scientists are now focusing on develo** plant-derived drugs to exclude these problems. Over the last decade, phytoestrogens have gained a lot of attention due to the lower prevalence of chronic diseases in the Japanese and Chinese populations taking soy isoflavones in their diet. The promising benefits of various phytoestrogens and the role of different mediators in mediating the antidepressant and anxiolytic effects of phytoestrogens have been widely explored. Inhibition of monoamine oxidase-A (MAO-A), increased serotonergic transmission, activation of the gamma-aminobutyric acid-A receptor (GABAA receptor), oxidative stress reduction, glucocorticoid secretion, and inhibition of cytokines release, etc. are the major modulations produced by the phytoestrogens in eliciting antidepressant and anxiolytic effect. This chapter is designed to discuss the role and possible pathways leading to the antidepressant and anxiolytic effects of best-researched phytoestrogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aguirre-Hernández E, González-Trujano ME, Martínez AL et al (2010) HPLC/MS analysis and anxiolytic-like effect of quercetin and kaempferol flavonoids from Tilia americana var. mexicana. J Ethnopharmacol 127:91–97

    Article  PubMed  Google Scholar 

  • Aldred EM (2008) Pharmacology e-book: a handbook for complementary healthcare professionals. Elsevier, London

    Google Scholar 

  • An J, Tzagarakis-Foster C, Scharschmidt TC et al (2001) Estrogen receptor β-selective transcriptional activity and recruitment of coregulators by phytoestrogens. J Biol Chem 276:17808–17814

    Article  CAS  PubMed  Google Scholar 

  • Andreazza AC, Kauer-Sant’Anna M, Frey BN et al (2008) Oxidative stress markers in bipolar disorder: a meta-analysis. J Affect Disord 111:135–144

    Article  CAS  PubMed  Google Scholar 

  • Aso T (2010) Equol improves menopausal symptoms in Japanese women. J Nutr 140:1386–1389

    Article  Google Scholar 

  • Atteritano M, Mazzaferro S, Bitto A et al (2014) Genistein effects on quality of life and depression symptoms in osteopenic postmenopausal women: a 2-year randomized, double-blind, controlled study. Osteoporos Int 25:1123–1129

    Article  CAS  PubMed  Google Scholar 

  • Bajpai A, Verma AK, Srivastava M et al (2014) Oxidative stress and major depression. J Clin Diagn Res 8:CC04–CC07

    PubMed  PubMed Central  Google Scholar 

  • Baldwin D, Rudge S (1995) The role of serotonin in depression and anxiety. Int Clin Psychopharmacol 4:41–45

    Article  Google Scholar 

  • Barakat R, Park CJ, Perez PA et al (2018) Female antiestrogens. In: Encyclopedia of reproduction. Elsevier, Oxford

    Google Scholar 

  • Barnes S, Peterson TG, Coward L (1995) Rationale for the use of genistein-containing soy matrices in chemoprevention trials for breast and prostate cancer. J Cell Biochem 59:181–187

    Article  Google Scholar 

  • Barr LC, Goodman WK, Price LH (1992) The serotonin hypothesis of obsessive compulsive disorder: implications of pharmacologic challenge studies. J Clin Psychiatry 53:17–28

    PubMed  Google Scholar 

  • Beg T, Jyoti S, Naz F et al (2018) Protective effect of kaempferol on the transgenic drosophila model of Alzheimer’s disease. CNS Neurol Disord Drug Targets 17:421–429

    Article  CAS  PubMed  Google Scholar 

  • Berghe WV, Dijsselbloem N, Vermeulen L et al (2006) Attenuation of mitogen-and stress-activated protein Kinase-1–driven nuclear factor-κB gene expression by soy Isoflavones does not require estrogenic activity. Cancer Res 66:4852–4862

    Article  Google Scholar 

  • Bianchi P, Kunduzova O, Masini E et al (2005) Oxidative stress by monoamine oxidase mediates receptor-independent cardiomyocyte apoptosis by serotonin and postischemic myocardial injury. Circulation 112:3297–3305

    Article  CAS  PubMed  Google Scholar 

  • Biswas SK (2016) Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxid Med Cell Longev 2016:5698931

    Article  PubMed  PubMed Central  Google Scholar 

  • Blake C, Fabick KM, Setchell KD (2011) Neuromodulation by soy diets or equol: anti-depressive & anti-obesity-like influences, age-& hormone-dependent effects. BMC Neurosci 12:28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brasier AR (2006) The NF-κB regulatory network. Cardiovasc Toxicol 6:111–130

    Article  CAS  PubMed  Google Scholar 

  • Carvalho AF, Sharma MS, Brunoni AR et al (2016) The safety, tolerability and risks associated with the use of newer generation antidepressant drugs: a critical review of the literature. Psychother Psychosom 85:270–288

    Article  PubMed  Google Scholar 

  • Cederroth CR, Nef S (2009) Soy, phytoestrogens and metabolism: a review. Mol Cell Endocrinol 304:30–42

    Article  CAS  PubMed  Google Scholar 

  • Chaitidis P, Billett EE, O’Donnell VB et al (2004) Th2 response of human peripheral monocytes involves isoform-specific induction of monoamine oxidase-a. J Immunol 173:4821–4827

    Article  CAS  PubMed  Google Scholar 

  • Chaitidis P, Billett E, Kuban RJ et al (2005) Expression regulation of MAO isoforms in monocytic cells in response to Th2cytokines. Med Sci Monit 11:259–265

    Google Scholar 

  • Chelombitko MA (2018) Role of reactive oxygen species in inflammation: a Minireview. Moscow Univ Biol Sci Bull 73:199–202

    Article  Google Scholar 

  • Chen XW, Garner SC, Anderson JJ (2002) Isoflavones regulate interleukin-6 and osteoprotegerin synthesis during osteoblast cell differentiation via an estrogen-receptor-dependent pathway. Biochem Biophys 295:417–422

    CAS  Google Scholar 

  • Cheng X, Yang YL, Yang H et al (2018) Kaempferol alleviates LPS-induced neuroinflammation and BBB dysfunction in mice via inhibiting HMGB1 release and down-regulating TLR4/MyD88 pathway. Int Immunopharmacol 56:29–35

    Article  CAS  PubMed  Google Scholar 

  • Conklin CM, Bechberger JF, MacFabe D et al (2007) Genistein and quercetin increase connexin43 and suppress growth of breast cancer cells. Carcinogenesis 28:93–100

    Article  CAS  PubMed  Google Scholar 

  • de Kloet ER, Derijk RH, Meijer OC (2007) Therapy insight: is there an imbalanced response of mineralocorticoid and glucocorticoid receptors in depression. Nat Clin Pract Endocrinol Metab 3:168–179

    Article  PubMed  Google Scholar 

  • Delcambre S, Nonnenmacher Y, Hiller K (2016) Dopamine metabolism and reactive oxygen species production. In: Mitochondrial mechanisms of degeneration and repair in Parkinson’s disease. Springer, Cham

    Google Scholar 

  • Dewar D, Glover V, Elsworth J et al (1986) Equol and other compounds from bovine urine as monoamine oxidase inhibitors. J Neural Transm Suppl 65:147–150

    Article  CAS  Google Scholar 

  • Di Marzo V, Fontana A, Cadas H et al (1994) Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature 372:686–691

    Article  PubMed  Google Scholar 

  • Ding M, Pan A, Ding M et al (2016) Consumption of soy foods and isoflavones and risk of type 2 diabetes: a pooled analysis of three US cohorts. Eur J Clin Nutr 70:1381–1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong JY, Qin LQ (2011) Soy isoflavones consumption and risk of breast cancer incidence or recurrence: a meta-analysis of prospective studies. Breast Cancer Res Treat 125:315–323

    Article  CAS  PubMed  Google Scholar 

  • Dornas WC, Cardoso LM, Silva M et al (2017) Oxidative stress causes hypertension and activation of nuclear factor-κB after high-fructose and salt treatments. Sci Rep 7:46051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eden JA (2012) Phytoestrogens formenopausal symptoms: a review. Maturitas 72:157–159

    Article  CAS  PubMed  Google Scholar 

  • Fatemi SH, Folsom TD, Reutiman TJ et al (2008) Expression of astrocytic markers aquaporin 4 and connexin 43 is altered in brains of subjects with autism. Synapse 62:501–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao GY, Li DJ, Keung WM (2001) Synthesis of potential antidipsotropic isoflavones: inhibitors of the mitochondiral monoamine oxidase-aldehyde dehydrogenase pathway. J Med Chem 44:3320–3328

    Article  CAS  PubMed  Google Scholar 

  • Gao W, Wang W, Peng Y et al (2019) Antidepressive effects of kaempferol mediated by reduction of oxidative stress, proinflammatory cytokines and up-regulation of AKT/β-catenin cascade. Metab Brain Dis 34:485–494

    Article  CAS  PubMed  Google Scholar 

  • Gidaro MC, Astorino C, Petzer A et al (2016) Kaempferol as selective human MAO-A inhibitor: analytical detection in calabrian red wines, biological and molecular modeling studies. J Agric Food Chem 64:1394–1400

    Article  CAS  PubMed  Google Scholar 

  • Gilmore TD (2006) Introduction to NF-κB: players, pathways, perspectives. Oncogene 25:6680

    Article  CAS  PubMed  Google Scholar 

  • Glazier MG, Bowman MA (2001) A review of the evidence for the use of phytoestrogens as a replacement for traditional estrogen replacement therapy. Arch Intern Med 161:1161–1172

    Article  CAS  PubMed  Google Scholar 

  • Grases G, Colom MA, Fernandez RA et al (2014) Evidence of higher oxidative status in depression and anxiety. Oxid Med Cell Longev 2014:1. https://doi.org/10.1155/2014/430216

    Article  Google Scholar 

  • Grundmann O, Nakajima JI, Kamata K et al (2009) Kaempferol from the leaves of Apocynum venetum possesses anxiolytic activities in the elevated plus maze test in mice. Phytomedicine 16:295–302

    Article  CAS  PubMed  Google Scholar 

  • Guo P, Feng YY (2017) Anti-inflammatory effects of kaempferol, myricetin, fisetin and ibuprofen in neonatal rats. Trop J Pharm Res 16:1819–1826

    Article  CAS  Google Scholar 

  • Harsha Pedapati S, Wahab RA, Garcia Aloy M et al (2018) Biomarkers of legume intake in human intervention and observational studies: a systematic review. Genes Nutr 13:25

    Article  Google Scholar 

  • Hermida-Ameijeiras Á, Méndez-Álvarez E, Sánchez-Iglesias S et al (2004) Autoxidation and MAO-mediated metabolism of dopamine as a potential cause of oxidative stress: role of ferrous and ferric ions. Neurochem Int 45:103–116

    Article  CAS  PubMed  Google Scholar 

  • Hosseinzadeh H, Motamedshariaty V, Hadizadeh F (2007) Antidepressant effect of kaempferol, a constituent of saffron (crocus sativus) petal, in mice and rats. Pharmacologyonline 2:367–370

    Google Scholar 

  • Hu P, Ma L, Wang YG, Ye F et al (2017) Genistein, a dietary soy isoflavone, exerts antidepressant-like effects in mice: involvement of serotonergic system. Neurochem Int 108:426–435

    Article  CAS  PubMed  Google Scholar 

  • Hu WH, Wang HY, **a YT et al (2020) Kaempferol, a major flavonoid in ginkgo folium, potentiates Angiogenic functions in cultured endothelial cells by binding to vascular endothelial growth factor. Front Pharmacol 11:526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaiswal N, Akhtar J, Singh SP et al (2019) An overview on Genistein and its various formulations. Drug Res (Stuttg) 69:305–313

    Article  CAS  PubMed  Google Scholar 

  • Jiang T, Wang XQ, Ding C et al (2017) Genistein attenuates isoflurane-induced neurotoxicity and improves impaired spatial learning and memory by regulating cAMP/CREB and BDNF-TrkB-PI3K/Akt signaling. Korean J Physiol Pharmacol 21:579–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson SA, Fournier NM, Kalynchuk LE (2006) Effect of different doses of corticosterone on depression-like behavior and HPA axis responses to a novel stressor. Behav Brain Res 168:280–288

    Article  CAS  PubMed  Google Scholar 

  • Kageyama A, Sakakibara H, Zhou W et al (2010) Genistein regulated serotonergic activity in the hippocampus of ovariectomized rats under forced swimming stress. Biosci Biotechnol Biochem 74:2005–2010

    Article  CAS  PubMed  Google Scholar 

  • Kalandakanond-Thongsong S, Daendee S, Poonyachoti S (2007) P29 the effect of Genistein and Daidzein on anxiety levels: in comparison to estrogen in Ovariectomized rat. In: Proceedings Chula Univ Vet Sci Ann Con, p 26–27

    Google Scholar 

  • Kaminska B, Ciereszko R, Kiezun M et al (2013) In vitro effects of genistein and daidzein on the activity of adrenocortical steroidogenic enzymes in mature female pigs. J Physiol Pharmacol 64:103–108

    CAS  PubMed  Google Scholar 

  • Karahalil B (2006) Benefits and risks of phytoestrogens. Phytoestrogens in functional foods. Taylor and Francis, New York, NY

    Google Scholar 

  • Kathuria S, Gaetani S, Fegley D et al (2003) Modulation of anxiety through blockade of anandamide hydrolysis. Nat Med 9:76

    Article  CAS  PubMed  Google Scholar 

  • Kim JM, Lee EK, Kim DH et al (2010) Kaempferol modulates pro-inflammatory NF-κB activation by suppressing advanced glycation endproducts-induced NADPH oxidase. Age 32:197–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kole L, Giri B, Manna SK et al (2011) Biochanin-a, an isoflavon, showed anti-proliferative and anti-inflammatory activities through the inhibition of iNOS expression, p38-MAPK and ATF-2 phosphorylation and blocking NFκB nuclear translocation. Eur J Pharmacol 653:8–15

    Article  CAS  PubMed  Google Scholar 

  • Kolonel LN, Hankin JH, Nomura AM (1986) Multiethnic studies of diet, nutrition and cancer in Hawaii. Diet Nutr Cancer 16:29–40

    Google Scholar 

  • Kong L, Luo C, Li X et al (2013) The anti-inflammatory effect of kaempferol on early atherosclerosis in high cholesterol fed rabbits. Lipids Health Dis 12:115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kowalski J, Samojedny A, Paul M et al (2005) Effect of apigenin, kaempferol and resveratrol on the expression of interleukin-1beta and tumor necrosis factor-alpha genes in J774. 2 macrophages. Pharmacol Rep 57:390–394

    CAS  PubMed  Google Scholar 

  • Lee HG, Kim DH, Kim YS et al (2015) Effects of Kaempferol on Lippolysaccharide-induced inflammation in mouse brain. Korea J Herbology 30:77–84

    Article  Google Scholar 

  • Lethaby A, Marjoribanks J, Kronenberg F et al (2013) Phytoestrogens for menopausal vasomotor symptoms. Cochrane Database Syst Rev 12:Cd001395

    Google Scholar 

  • Lissemore JI, Sookman D, Gravel P et al (2018) Brain serotonin synthesis capacity in obsessive-compulsive disorder: effects of cognitive behavioral therapy and sertraline. Transl Psychiatry 28:82

    Article  Google Scholar 

  • Liu T, Zhang L, Joo D et al (2017) NF-κB signaling in inflammation. Signal Transduct Target Ther 2:17023

    Article  PubMed  PubMed Central  Google Scholar 

  • Lund TD, Rovis T, Chung WCJ et al (2005) Novel actions of estrogen receptor-β on anxiety-related behaviors. Endocrinology 146:797–807

    Article  CAS  PubMed  Google Scholar 

  • Luo H, Rankin GO, Juliano N et al (2012) Kaempferol inhibits VEGF expression and in vitro angiogenesis through a novel ERK-NFκB-cMyc-p21 pathway. Food Chem 130:321–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo G, Tang Z, Li X et al (2019) 3, 9-di-O-substituted coumestrols incorporating basic amine side chains act as novel apoptosis inducers with improved pharmacological selectivity. Bioorg Chem 85:140–151

    Article  CAS  PubMed  Google Scholar 

  • Mahgoub MA, Sara Y, Kavalali ET et al (2006) Reciprocal interaction of serotonin and neuronal activity in regulation of cAMP-responsive element-dependent gene expression. J Pharmacol Exp Ther 317:88–96

    Article  CAS  PubMed  Google Scholar 

  • Mazarati AM, Shin D, Kwon YS et al (2009) Elevated plasma corticosterone level and depressive behavior in experimental temporal lobe epilepsy. Neurobiol Dis 34:457–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mesiano S, Katz SL, Lee JY et al (1999) Phytoestrogens alter adrenocortical function: genistein and daidzein suppress glucocorticoid and stimulate androgen production by cultured adrenal cortical cells. J Clin Endocrinol Metab 84:2443–2448

    CAS  PubMed  Google Scholar 

  • Miguel-Hidalgo JJ, Wilson BA, Hussain S et al (2014) Reduced connexin 43 immunolabeling in the orbitofrontal cortex in alcohol dependence and depression. J Psychiatr Res 55:101–109

    Article  PubMed  PubMed Central  Google Scholar 

  • Mostafavi H, Khaksarian M, Joghataei MT et al (2014) Fluoxetin upregulates connexin 43 expression in astrocyte. Basic Clin Neurosci 5:74

    PubMed  PubMed Central  Google Scholar 

  • Nagy C, Torres-Platas SG, Mechawar N et al (2016) Repression of astrocytic connexins in cortical and subcortical brain regions and prefrontal enrichment of H3K9me3 in depression and suicide. Int J Neuropsychopharmacol 20:50–57

    PubMed Central  Google Scholar 

  • Park SH, Sim YB, Han PL (2010) Antidepressant-like effect of kaempferol and quercitirin, isolated from Opuntia ficus-indica var. saboten. Exp Neurobiol 19:30–38

    Article  PubMed  PubMed Central  Google Scholar 

  • Patisaul HB, Jefferson W (2010) The pros and cons of phytoestrogens. Front Neuroendocrinol 31:400–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peña-Silva RA, Miller JD, Chu Y (2009) Serotonin produces monoamine oxidase-dependent oxidative stress in human heart valves. Am J Physiol Heart Circ Physiol 297:1354–1360

    Article  Google Scholar 

  • Phadnis P, Sarkar PD, Rajput MS (2018) Improved serotonergic neurotransmission by genistein pretreatment regulates symptoms of obsessive-compulsive disorder in streptozotocin-induced diabetic mice. J Basic Clin Physiol Pharmacol 29:421–425

    Article  CAS  PubMed  Google Scholar 

  • Price KR, Fenwick GR (1985) Naturally occurring oestrogens in foods- a review. Food Addit Contam 2:73–106

    Article  CAS  PubMed  Google Scholar 

  • Qiu L, Lin B, Lin Z et al (2012) Biochanin a ameliorates the cytokine secretion profile of lipopolysaccharide-stimulated macrophages by a PPARγ-dependent pathway. Mol Med Rep 5:217–222

    CAS  PubMed  Google Scholar 

  • Ramasamy K, Samayoa C, Krishnegowda N et al (2017) Therapeutic use of estrogen receptor β agonists in prevention and treatment of endocrine therapy resistant breast cancers: observations from preclinical models. Prog Mol Biol Transl Sci 151:177–194

    Article  CAS  PubMed  Google Scholar 

  • Ressler KJ, Nemeroff CB (2000) Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders. Depress Anxiety 12:2–19

    Article  PubMed  Google Scholar 

  • Rietjens IM, Louisse J, Beekmann K (2017) The potential health effects of dietary phytoestrogens. Br J Pharmacol 174:1263–1280

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Gomez A, Filice F, Gotti S et al (2014) Perinatal exposure to genistein affects the normal development of anxiety and aggressive behaviors and nitric oxide system in CD1 male mice. Physiol Behav 133:107–114

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Landa JF, Hernández-Figueroa JD, del Carmen H-CB et al (2009) Anxiolytic-like effect of phytoestrogen genistein in rats with long-term absence of ovarian hormones in the black and white model. Prog Neuropsychopharmacol Biol Psychiatry 33:367–372

    Article  PubMed  Google Scholar 

  • Rodríguez-Landa JF, Hernández-López F, Saavedra M (2012) Involvement of estrogen receptors in the anxiolytic-like effect of phytoestrogen genistein in rats with 12-weeks postovariectomy. Pharmacol Pharm 3:439

    Article  Google Scholar 

  • Rodríguez-Landa JF, Cueto-Escobedo J, Puga-Olguín A et al (2017) The phytoestrogen genistein produces similar effects as 17β-estradiol on anxiety-like behavior in rats at 12 weeks after ovariectomy. Biomed Res Int 2017:9073816

    Article  PubMed  PubMed Central  Google Scholar 

  • Rooke N, Li DJ, Li J et al (2000) The mitochondrial monoamine oxidase-aldehyde dehydrogenase pathway: a potential site of action of diadzin. J Med Chem 43:4169–4179

    Article  CAS  PubMed  Google Scholar 

  • Ryan J, Ancelin ML (2012) Polymorphisms of estrogen receptors and risk of depression. Drugs 72:1725–1738

    Article  CAS  PubMed  Google Scholar 

  • Sarfraz A, Javeed M, Shah MA et al (2020) Biochanin A: a novel bioactive multifunctional compound from nature. Sci Total Environ 12:137907

    Article  Google Scholar 

  • Sárvári M, Szegő ÉM, Barabás K et al (2009) Genistein induces phosphorylation of cAMP response element-binding protein in neonatal hypothalamus in vivo. J Neuroendocrinol 21:1024–1028

    Article  PubMed  Google Scholar 

  • Shen F, Huang WL, **ng BP et al (2018) Genistein improves the major depression through suppressing the expression of miR-221/222 by targeting Connexin 43. Psychiatry Investig 15:919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shields M (2017) Chemotherapeutics. Elsevier, In Pharmacognosy

    Book  Google Scholar 

  • Shishkina GT, Dygalo NN (2017) The glucocorticoid hypothesis of depression: history and prospects. Russ J Genet Appl Res 7:128–133

    Article  Google Scholar 

  • Si H, Yu J, Jiang H et al (2012) Phytoestrogen genistein up-regulates endothelial nitric oxide synthase expression via activation of cAMP response element-binding protein in human aortic endothelial cells. Endocrinology 153:3190–3198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sloley BD, Urichuk LJ, Morley P et al (2000) Identification of kaempferol as a monoamine oxidase inhibitor and potential neuroprotectant in extracts of Ginkgo biloba leaves. J Pharm Pharmacol 52:451–459

    Article  CAS  PubMed  Google Scholar 

  • Smith JA, Das A, Ray SK et al (2012) Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res Bull 87:10–20

    Article  CAS  PubMed  Google Scholar 

  • Song X, Luo X, Sheng J et al (2019) Copper-catalyzed intramolecular cross dehydrogenative coupling approach to coumestans from 2′-hydroxyl-3-arylcoumarins. RSC Adv 9:17391–17398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stein DJ, Fineberg NA, Bienvenu OJ et al (2010) Should OCD be classified as an anxiety disorder in DSM-V. Depress Anxiety 27:495–506

    Article  PubMed  Google Scholar 

  • Sturza A, Popoiu CM, Ionică M et al (2019) Monoamine oxidase-related vascular oxidative stress in diseases associated with inflammatory burden. Oxid Med Cell Longev 3:e000713, 1

    Google Scholar 

  • Sun JD, Liu Y, Yuan YH et al (2012) Gap junction dysfunction in the prefrontal cortex induces depressive-like behaviors in rats. Neuropsychopharmacology 37:1305–1320

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Sun WJ, Li ZY et al (2016) Daidzein increases OPG/RANKL ratio and suppresses IL-6 in MG-63 osteoblast cells. Int Immunopharmacol 40:32–40

    Article  CAS  PubMed  Google Scholar 

  • Taku K, Lin N, Taku K et al (2010) Effects of soy isoflavone extract supplements on blood pressure in adult humans: systematic review and meta-analysis of randomized placebo-controlled trials. J Hypertens 28:1971–1982

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Ohgo Y, Katayanagi Y et al (2014) Anti-inflammatory effects of green soybean extract irradiated with visible light. Sci Rep 4:4732

    Article  PubMed  PubMed Central  Google Scholar 

  • Thors L, Alajakku K, Fowler CJ et al (2007a) The ‘specific’ tyrosine kinase inhibitor genistein inhibits the enzymic hydrolysis of anandamide: implications for anandamide uptake. Br J Pharmacol 150:951–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thors L, Eriksson J, Fowler CJ (2007b) Inhibition of the cellular uptake of anandamide by genistein and its analogue daidzein in cells with different levels of fatty acid amide hydrolase-driven uptake. Br J Pharmacol 152:744–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thors L, Belghiti M, Fowler CJ (2008) Inhibition of fatty acid amide hydrolase by kaempferol and related naturally occurring flavonoids. Br J Pharmacol 155:244–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiller JW (2013) Depression and anxiety. Med J Aust 199:28–31

    Article  Google Scholar 

  • Tsugane S (2021) Why has Japan become the world’s most long-lived country: insights from a food and nutrition perspective. Eur J Clin Nutr 75:921–928

    Article  PubMed  Google Scholar 

  • van Die MD, Bone KM, Williams SG et al (2014) Soy and soy isoflavones in prostate cancer: a systematic review and meta-analysis of randomized controlled trials. BJU Int 113:119–130

    Article  Google Scholar 

  • Veitch NC (2007) Isoflavonoids of the Leguminosae. Nat Prod Rep 24:417–464

    Article  CAS  PubMed  Google Scholar 

  • Vissiennon C, Nieber K, Kelber O et al (2012) Route of administration determines the anxiolytic activity of the flavonols kaempferol, quercetin and myricetin-are they prodrugs. J Nutr Biochem 23:733–740

    Article  CAS  PubMed  Google Scholar 

  • Walf AA, Frye CA (2005) ER β-selective estrogen receptor modulators produce antianxiety behavior when administered systemically to ovariectomized rats. Neuropsychopharmacology 30:1598–1609

    Article  CAS  PubMed  Google Scholar 

  • Walf AA, Frye CA (2007) Administration of estrogen receptor beta-specific selective estrogen receptor modulators to the hippocampus decrease anxiety and depressive behavior of ovariectomized rats. Pharmacol Biochem Behav 86:407–414

    Article  CAS  PubMed  Google Scholar 

  • Walf AA, Frye CA (2010) Raloxifene and/or estradiol decrease anxiety-like and depressive-like behavior, whereas only estradiol increases carcinogen-induced tumorigenesis and uterine proliferation among ovariectomized rats. Behav Pharmacol 21:231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walf AA, Rhodes ME, Frye CA (2004) Antidepressant effects of ERβ-selective estrogen receptor modulators in the forced swim test. Pharmacol Biochem Behav 78:523–529

    Article  CAS  PubMed  Google Scholar 

  • Walf AA, Koonce CJ, Frye CA (2008) Estradiol or diarylpropionitrile decrease anxiety-like behavior of wildtype, but not estrogen receptor beta knockout, mice. Behav Neurosci 122:974–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walia V (2016) Role of enzymes in the pathogenesis of depression. J Crit Rev 3:11–16

    Google Scholar 

  • Wand G (2005) The anxious amygdala: CREB signaling and predisposition to anxiety and alcoholism. J Clin Investig 115:2697–2699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Li H, Moore LB et al (2008) The phytoestrogen coumestrol is a naturally occurring antagonist of the human pregnane X receptor. Mol Endocrinol 22:838–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei J, Bhatt S, Chang LM et al (2012) Isoflavones, genistein and daidzein, regulate mucosal immune response by suppressing dendritic cell function. PloS One 7:e47979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiser MJ, Wu TJ, Handa RJ (2009) Estrogen receptor-beta agonist diarylpropionitrile: biological activities of R- and S- enantiomers on behavior and hormonal response to stress. Endocrinology 150:1817–1825

    Article  CAS  PubMed  Google Scholar 

  • WHO (2017) Depression and other common mental disorders: global health estimates. World Health Organization, Geneva

    Google Scholar 

  • Wu ZM, Ni GL, Shao AM (2017) Genistein alleviates anxiety-like behaviors in post-traumatic stress disorder model through enhancing serotonergic transmission in the amygdala. Psychiatry Res 255:287–291

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Wang L, Hu K et al (2018) Mechanisms and therapeutic targets of depression after intracerebral hemorrhage. Front Psych 9:682

    Article  Google Scholar 

  • **ao HB, Lu XY, Liu ZK et al (2016) Kaempferol inhibits the production of ROS to modulate OPN–α v β 3 integrin pathway in HUVECs. J Physiol Biochem 72:303–313

    Article  CAS  PubMed  Google Scholar 

  • Yan SX, Lang JL, Song YY et al (2015) Studies on anti-depressant activity of four flavonoids isolated from Apocynum venetum Linn (Apocynaceae) leaf in mice. Trop J Pharm Res 14:2269–2277

    Article  CAS  Google Scholar 

  • Yang YL, Cheng X, Li WH (2019) Kaempferol attenuates LPS-induced striatum injury in mice involving anti-neuroinflammation, maintaining BBB integrity, and down-regulating the HMGB1/TLR4 pathway. Int J Mol Sci 20:491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yildiz F (2005) Phytoestrogens in functional foods. Taylor & Francis, Boca Raton, FL

    Book  Google Scholar 

  • Yu C, Zhang P, Lou L et al (2019) Perspectives on the role of Biochanin a in human. Front Pharmacol 10:793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarmouh NO, Messeha SS, Elshami FM et al (2016) Evaluation of the isoflavone genistein as reversible human monoamine oxidase-A and-B inhibitor. Evid Based Complement Alternat Med 2016:1. https://doi.org/10.1155/2016/1423052

    Article  Google Scholar 

  • Zarmouh NO, Eyunni SK, Soliman KF (2017) The Benzopyrone Biochanin-a as a reversible, competitive, and selective monoamine oxidase B inhibitor. BMC Complement Altern Med 17:34

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeng S, Tai F, Zhai P et al (2010) Effect of daidzein on anxiety, social behavior and spatial learning in male Balb/cJ mice. Pharmacol Biochem Behav 96:16–23

    Article  CAS  PubMed  Google Scholar 

  • Zhang JR, Sun DL, Shi JJ et al (2015) Antidepressive-like effect of daidzein in rats and its mechanism. Chin J New Drugs 24:1531–1536

    CAS  Google Scholar 

  • Zhao Y, Ma R, Shen J et al (2008) A mouse model of depression induced by repeated corticosterone injections. Eur J Pharmacol 581:113–120

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lovedeep Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, L., Bhatti, R. (2023). Recent Progress in the Pharmacology of Phytoestrogens: Emerging Neuromodulators for Treating Anxiety and Depression. In: Singh, P.P. (eds) Recent Advances in Pharmaceutical Innovation and Research. Springer, Singapore. https://doi.org/10.1007/978-981-99-2302-1_13

Download citation

Publish with us

Policies and ethics

Navigation