Highly Carbonized, Porous Activated Carbon Derived from Ziziphus Jujuba for Energy Storage

  • Conference paper
  • First Online:
Advances in Clean Energy and Sustainability (ICAER 2022)

Abstract

Porous carbon is used as an electrode for the energy storage devices. Here, the development of a highly porous carbon electrode is based on the ziziphus jujuba seed, in which the seed content is abundant in comparison to the fruit part. This material has been chosen in order to make the electrode more economical and sustainable. The carbonized ziziphus jujuba seed electrode has been prepared by carbonization and KOH activation. The structural performance of the material is evaluated using XRD, SEM, and elemental analysis. From the structural analyses, high carbon (79.79%), amorphous (broad peak between 22 and 24°), and layered activated carbon is observed. The electrode performance was evaluated with aqueous electrolyte (6 M KOH) using cyclic voltammetry, galvanostatic charge discharge method and electrochemical impedance spectroscopy. The electrochemical performance of the ziziphus jujuba seed is due to its porous structure. The CZJS electrode exhibited a specific capacitance of 55.56, 47.62, 16.67, 5.56 Fg−1 at 1, 2, 4, and 10 A g−1, respectively. This work shows a way to use abundant waste material (seeds of ziziphus jujuba) into a useful energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 199.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 249.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 249.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kandasamy SK, Singaram KN, Krishnamoorthy H, Arumugam C, Palanisamy S, Kandasamy K, Boddula R, Khan A, Asiri AM, Kolosov AE (2021) Microwave assisted graphene based conducting polymer materials for supercapacitors. Handbook of supercapacitor materials: synthesis, characterization, and applications, Wiley-VCH, New Jersey, United States, 299–321

    Google Scholar 

  2. Kandasamy SK, Kandasamy K (2018) J Inorg Organomet Polym 28:559 https://doi.org/10.1007/s10904-018-0779-x

  3. Tamilselvi R, Ramesh M, Lekshmi GS, Bazaka O, Levchenko I, Bazaka K, Mandhakini M (2019) Renew Energy 151:731. https://doi.org/10.1016/j.renene.2019.11.072

  4. Sing DC, Joseph B, Velmurugan V, Ravuri S, Grace AN (2018) Int J of Nanosci 17:1760023. https://doi.org/10.1142/S0219581X17600237

  5. Hendriansyah R, Devianto H, Prakoso T, Widiatmoko P, Nurdin I, Srimurti S, Kusuma KR (2017) In: 4th international conference on electric vehicular technology (ICEVT). https://doi.org/10.1109/ICEVT.2017.8323526

  6. Liu Y, Qu X, Huang G, **ng B, Zhang F, Li B, Zhang C, Cao Y (2020) Nanomaterials 10:1. https://doi.org/10.3390/nano10040808

    Article  Google Scholar 

  7. Khan A, Senthil RA, Pan J, Sun Y, Liu X (2020) Batteries Supercap 3:1. https://doi.org/10.1002/batt.202000046

    Article  Google Scholar 

  8. Manavalan V, Sankar AB, Rohita DS, Nanaji K, Rao TN, Karthik M (2020) Chemistry Select 5:8759. https://doi.org/10.1002/slct.202001877

  9. Kandasamy SK, Arumugam C, Vadivel L, Ganapathi M, Nattudurai N, Kandasamy K (2020) Int J Emerg Technol 11:565

    Google Scholar 

  10. Devendran M, Kandasamy SK, Palanisamy S, Selvaraj S, Vetrivel R, Selvarajan R, Govindasamy M, Kandasamy K (2020) Int J Electrochem Sci 15:4379. https://doi.org/10.20964/2020.05.08

  11. Kandasamy SK, Subramanian B, Krishnamoorthy H, Arumugam C, Suganthi V, Yuvasri M, Shreelogesh D (2021) J New Mate Electrochem Sys 24:78. https://doi.org/10.14447/jnmes.v24i2.a04

  12. Kandasamy SK, Arumugam C, Sajitha AS, Rao SP, Selvaraj S, Vetrivel R, Selvarajan R, Alosaimi AM, Khan A, Hussein MA, Asiri AM (2021) J New Mate Electrochem Sys 24:21. https://doi.org/10.14447/jnmes.v24i1.a04

  13. Cheng P, Gao S, Zang P, Yang X, Bai Y, Xu H, Liu Z, Lei Z (2015) Carbon 93:315. https://doi.org/10.1016/j.carbon.2015.05.056

  14. He Y, **ang K, Wang Y, Zhou W, Zhu Y, **ao L, Chen W, Chen X, Chen H, Cheng H, Lu Z (2019) Carbon 153:330. https://doi.org/10.1016/j.carbon.2019.08.022

  15. Veerakumar P, Maiyalagan T, Raj BGS, Guruprasad K, Jiang Z, Lin KC (2018) Arab J Chem 13:2995. https://doi.org/10.1016/j.arabjc.2018.08.009

  16. Bai X, Wang Z, Luo J, Wu W, Liang Y, Tong X, Zhao Z (2020) Nano Express 15:88. https://doi.org/10.1186/s11671-020-03305-0

  17. Nirmaladevi S, Boopathiraja R, Kandasamy SK, Sathishkumar S, Parthibavarman M (2021) Surf Interfaces 27:101548

    Article  Google Scholar 

  18. Palanisamy S, Kandasamy SK, Thangmuthu S, Dhinesh KK, Marimuthu P, Prasanna VR, Borje SG (2021)

    Google Scholar 

  19. Bhat VS, Kanagavalli P, Sriram G, Prabhu R, John NS, Veerapandian M, Kurkuri M, Hegde G (2020) J Energy Storage 32:101829. https://doi.org/10.1016/j.est.2020.101829

  20. Hong P, Liu X, Zhang X, Peng S, Wang Z, Yang Y, Zhao R, Wang Y (2019) Wil Energy Res 44:988. https://doi.org/10.1002/er.4970

  21. Zhang YL, Tang Z (2020) Waste Manage 106:250. https://doi.org/10.1016/j.wasman.2020.03.032

    Article  Google Scholar 

  22. Huafang Y, Sun X, Zhu H, Yu Y, Zhu Q, Fu Z, Ta S, Wang L, Zhu H, Zhang Q (2020) Ceram Int 46:5811. https://doi.org/10.1016/j.ceramint.2019.11.031

  23. Srinivasan R, Elaiyappillai E, Pandian HP, Vengudusamy R, Johnson PM, Chen SM, Karvembu R (2019) J Electro Anal Chem 849:113382. https://doi.org/10.1016/j.jelechem.2019.113382

  24. Rajasekaran SJ, Raghavan V (2020) Diamond & Related Materials. 109, 108038. https://doi.org/10.1016/j.diamond.2020.108038

  25. Hor AA, Hashmi SA (2020) Electrochimica Acta 356:136826. https://doi.org/10.1016/j.electacta.2020.136826

  26. Lee K, Shabnam L, Faisal SN, Hoang VC,Gomes VG (2020) J Energy Storage 27:101152. https://doi.org/10.1016/j.est.2019.101152

  27. Lan D, Chen M, Liu Y, Liang Q, Tu W, Chen Y, Liang J, Qiu F (2020) Mater Electron 31:18541. https://doi.org/10.1007/s10854-020-04398-0

  28. Taer E, Apriwandi A, Ningsih YS, Taslim RA (2019) Int J Electrochem Sci 14:2462. https://doi.org/10.20964/2019.03.17

  29. Jiang L, Han SO, Pirie M, Kim HH, Seong YH, Kim H, Foord JS (2019) Energy Environ 1. https://doi.org/10.1177/0958305X19882398

  30. Meng Q, Zhang J, Wang W, Wang H, ** Z, Zhao K (2020) Ionics 26:3565. https://doi.org/10.1007/s11581-020-03456-1

  31. Ahirrao J, Dinesh S, Tambat AB, Pandit NJ (2018) Chem Sel 4:2610. https://doi.org/10.1002/slct.201803417

  32. Chen Y, Hu R, Qi J, Sui Y, He Y, Meng Q, Wei F, Ren Y (2019) Material research express 6:95605. https://doi.org/10.1088/2053-1591/ab2d97TI

  33. Palisoc S, Dungo JM, Natividad M (2020) Heliyon 6:3202. https://doi.org/10.1016/j.heliyon.2020.e03202

  34. Casillas DCM, Gutierrez IM, Ramos CEA, Vidales HIV, Bulnes CAA, Sanchez VHR, Gallegos AKC (2019) Carbon 148:403. https://doi.org/10.1016/j.carbon.2019.04.017

  35. Taer E, Natalia K, Apriwandi A, Taslim R, Agustino A, Farma R (2019) Adv Natural Sci Nanosci Nanotech 11:25007. https://doi.org/10.1088/2043-6254/ab8b60

    Article  Google Scholar 

  36. Le PE, Nguyen VY, Sahoo SK, Tseng TY, We KH (2020) Energy materials. J Mater Sci 55:10751. https://doi.org/10.1007/s10853-020-04693-5

  37. Ciftyurek E, Bragg D, Oginni O, Levelle R, Singh K, Sivanandan L, Sabolsky EM (2018) Environ Pro Sustain Energy 38:13030. https://doi.org/10.1002/ep.13030

    Article  Google Scholar 

  38. Liu F, Gao Y, Huang H, Yan C, Chu X, Xu Z, Wang Z, Zhang H, **ao X, Yang W (2019) J Colloid Interface Sci 548:322. https://doi.org/10.1016/j.jcis.2019.04.005

    Article  Google Scholar 

  39. Qu WH, Xu YY, Lu A, Zhang Q, Li WC (2015) Bioresource Technol 189:285. https://doi.org/10.1016/j.biortech.2015.04.005

  40. Kumar KS, Chandrasekaran A, Kannan K, Murugesan G (2018) In: International conference on intelligent computing and communication for smart world (I2C2SW), 241, Erode, India (2018). https://doi.org/10.1109/I2C2SW45816.2018.8997149

  41. Kandasamy SK, Kandasamy K (2019) Int J Electrochem Sci 14:4718. https://doi.org/10.20964/2019.05.57

  42. Kandasamy SK, Kandasamy K (2019) J New Mate Electrochem Sys 22:125. https://doi.org/10.14447/jnmes.v22i3.a02

  43. Jiang J, Lei Z, **nying W, Nancy H, Kishore R, Fanglin C, Shuguo M (2013) Electrochim Acta 113:481–489. https://doi.org/10.1016/j.electacta.2013.09.121

    Article  Google Scholar 

  44. Taer E, Taslim R, Aini Z, Hartati SD, Mustika WS (2017) AIP Conf Proc 1801(1):040004. https://doi.org/10.1063/1.4973093

    Article  Google Scholar 

  45. Senthilkumar ST, Selvan RK (2015) Chem Electro Chem 2(8):1111–1116. https://doi.org/10.1002/celc.201500090

    Article  Google Scholar 

  46. Senthilkumar ST, Fu N, Liu Y, Wang Y, Zhou L, Huang H (2016) Electrochim Acta 211:411–419. https://doi.org/10.1016/j.electacta.2016.06.059

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the FIST, Department of Science and Technology (SR/FST/COLLEGE-096/2017), India for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senthil Kumar Kandasamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kandasamy, S.K. et al. (2023). Highly Carbonized, Porous Activated Carbon Derived from Ziziphus Jujuba for Energy Storage. In: Doolla, S., Rather, Z.H., Ramadesigan, V. (eds) Advances in Clean Energy and Sustainability. ICAER 2022. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-2279-6_48

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-2279-6_48

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-2278-9

  • Online ISBN: 978-981-99-2279-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation