Deep Learning Techniques for Computer Aided Diagnosis of Various Cancers

  • Living reference work entry
  • First Online:
Handbook of Oncobiology: From Basic to Clinical Sciences

Abstract

Deep learning has emerged as a key machine learning technology in object detection, attracting attention for its results in medical imaging analysis. Convolutional neural networks (CNNs) are the most commonly used deep learning algorithms for this purpose, and they play an important role in the identification and potential early diagnosis of cancer. This chapter presents a survey on the advancements in deep learning techniques for cancer detection and diagnosis and hopes to provide an overview of the progress in this field. The chapter covers the progress in the diagnosis of the deadliest of cancers through computer aided diagnosis (CAD) and discusses the challenges of deep learning techniques used for cancer detection and diagnosis such as segmentation, classification, analysis of region of interest (ROI), cancer, denoising, and filtering using popular state-of-the-art deep learning architectures such as convolutional neural networks, fully convolutional networks, and autoencoders. The chapter presents details of deep learning techniques based on the type of cancer and provides insight into the field’s progress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abraham B, Nair MS (2018) Computer-aided diagnosis of clinically significant prostate cancer from MRI images using sparse autoencoder and random forest classifier. Biocybernetics Biomed Eng 38(3):733–744

    Article  Google Scholar 

  • Alam TM, Shaukat K, Khan WA, Hameed IA, Almuqren LA, Raza MA, Aslam M, Luo S (2022) An efficient deep learning-based skin cancer classifier for an imbalanced dataset. Diagnostics 12(9):2115

    Article  PubMed  PubMed Central  Google Scholar 

  • Albayrak A, Bilgin G (2016) Mitosis detection using convolutional neural network based features. In: 2016 IEEE 17th international symposium on computational intelligence and informatics (CINTI), Nov 17. IEEE, pp 000335–000340

    Google Scholar 

  • Badrinarayanan V, Kendall A, Cipolla R (2017) Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell 39(12):2481–2495

    Article  PubMed  Google Scholar 

  • Bisla D, Choromanska A, Berman RS, Stein JA, Polsky D (2019) Towards automated melanoma detection with deep learning: data purification and augmentation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops 2019

    Google Scholar 

  • Boers TG, Hu Y, Gibson E, Barratt DC, Bonmati E, Krdzalic J, van der Heijden F, Hermans JJ, Huisman HJ (2020) Interactive 3D U-net for the segmentation of the pancreas in computed tomography scans. Phys Med Biol 65(6):065002

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Dai Y, Li R, Zhao Y, Cui L, Yin X (2021) SDFNet: automatic segmentation of kidney ultrasound images using multi-scale low-level structural feature. Expert Syst Appl 185:115619

    Article  Google Scholar 

  • Clark T, Wong A, Haider MA, Khalvati F (2017) Fully deep convolutional neural networks for segmentation of the prostate gland in diffusion-weighted MR images. In: International conference image analysis and recognition. Springer, pp 97–104

    Chapter  Google Scholar 

  • Codella NCF, Gutman D, Celebi ME, Helba B, Marchetti MA, Dusza SW, Kalloo A, Liopyris K, Mishra N, Kittler H et al (2018) Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). In: Proceedings of the 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018), Washington, DC, USA, 4–7 April, pp 168–172

    Chapter  Google Scholar 

  • Cuocolo R, Comelli A, Stefano A et al (2021) Deep learning wholegland and zonal prostate segmentation on a public MRI dataset. J Magn Reson Imaging 54(2):452–459

    Article  PubMed  Google Scholar 

  • DermIS. Available online: https://www.dermis.net/dermisroot/en/

  • Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A, Bray F (2021) Cancer statistics for the year 2020: an overview. Int J Cancer (149):778–789

    Google Scholar 

  • Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2020) Generative adversarial networks. Commun ACM 63(11):139–144

    Article  Google Scholar 

  • Guachi L, Guachi R, Bini F, Marinozzi F (2019) Automatic colorectal segmentation with convolutional neural network. Comput Aided Design Appl 16(5):836–845

    Article  Google Scholar 

  • Guo J, Zeng W, Yu S, **ao J (2021) Rau-net: U-net model based on residual and attention for kidney and kidney tumor segmentation. In: 2021 IEEE international conference on consumer electronics and computer engineering (ICCECE), Jan 15. IEEE, pp 353–356

    Google Scholar 

  • He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision, pp 1026–1034

    Google Scholar 

  • He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778

    Google Scholar 

  • Heller N, Sathianathen N, Kalapara A, Walczak E, Moore K, Kaluzniak H, Rosenberg J, Blake P, Rengel Z, Oestreich M, Dean J (2019) The kits19 challenge data: 300 kidney tumor cases with clinical context, CT semantic segmentations, and surgical outcomes. ar**v. preprint ar**v:1904.00445

    Google Scholar 

  • Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4700–4708

    Google Scholar 

  • Jian J, **ong F, **a W, Zhang R, Gu J, Wu X, Meng X, Gao X (2018) Fully convolutional networks (FCNs)-based segmentation method for colorectal tumors on T2-weighted magnetic resonance images. Australas Phys Eng Sci Med 41(2):393–401

    Article  PubMed  Google Scholar 

  • Juneja M, Saini SK, Gupta J, Garg P, Thakur N, Sharma A, Mehta M, **dal P (2021) Survey of denoising, segmentation and classification of magnetic resonance imaging for prostate cancer. Multimed Tools Appl 80(19):29199–29249

    Article  Google Scholar 

  • Juneja M, Saini SK, Acharjee R, Kaul S, Thakur N, **dal P (2022a) PC‐SNet for automated detection of prostate cancer in multiparametric‐magnetic resonance imaging. Int J Imaging Syst Technol 32(6), 1861–1879

    Google Scholar 

  • Juneja M, Joshi S, Singla N, Ahuja S, Saini SK, Thakur N, **dal P (2022b) Denoising of computed tomography using bilateral median based autoencoder network. Int J Imaging Syst Technol 32(3):935–955

    Article  Google Scholar 

  • Khan S, Islam N, Jan Z, Din IU, Rodrigues JJ (2019) A novel deep learning based framework for the detection and classification of breast cancer using transfer learning. Pattern Recogn Lett 125:1–6

    Article  Google Scholar 

  • Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105

    Google Scholar 

  • LeCun Y, Jackel L, Bottou L, Cortes C, Denker J, Drucker H, Guyon I (1995) Learning algorithms for classification: a comparison on handwritten digit recognition. Neural Netw 261:276

    Google Scholar 

  • Li J, Weng Z, Xu H, Zhang Z, Miao H, Chen W, Liu Z, Zhang X, Wang M, Xu X, Ye Q (2018) Support Vector Machines (SVM) classification of prostate cancer Gleason score in central gland using multiparametric magnetic resonance images: A cross-validated study. Eur J Radiol 98:61–67

    Article  PubMed  Google Scholar 

  • Mahbod A, Schaefer G, Wang C, Ecker R, Ellinge I (2019) Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019-2019 IEEE International conference on acoustics, speech and signal processing (ICASSP), May 12. IEEE, pp 1229–1233

    Chapter  Google Scholar 

  • Majumdar A (2018) Blind denoising autoencoder. IEEE Trans Neural Netw Learn Syst 30(1):312–317

    Article  Google Scholar 

  • Nguyen LD, Lin D, Lin Z, Cao J (2018) Deep CNNs for microscopic image classification by exploiting transfer learning and feature concatenation. In: 2018 IEEE international symposium on circuits and systems (ISCAS), May 27. IEEE, pp 1–5

    Google Scholar 

  • Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12(7):629–639

    Article  Google Scholar 

  • Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, Cham, pp 234–241

    Google Scholar 

  • Saini SK, Bansal V, Kaur R, Juneja M (2020) ColpoNet for automated cervical cancer screening using colposcopy images. Mach Vis Appl 31(3):1–5

    Article  Google Scholar 

  • Simonyan K, Zisserman A. (2014) Very deep convolutional networks for large-scale image recognition. ar**v :1409.1556

    Google Scholar 

  • Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9

    Google Scholar 

  • Tang J, Li J, Xu X (2018) Segnet-based gland segmentation from colon cancer histology images. In: 2018 33rd youth academic annual conference of chinese association of automation (YAC), May 18. IEEE, pp 1078–1082

    Chapter  Google Scholar 

  • Tschandl P, Rosendahl C, Kittler H (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci Data 5:180161

    Article  PubMed  PubMed Central  Google Scholar 

  • Valvano G, Santini G, Martini N, Ripoli A, Iacconi C, Chiappino D, Della LD (2019) Convolutional neural networks for the segmentation of microcalcification in mammography imaging. J Healthcare Eng 9:2019

    Google Scholar 

  • Vestergaard ME, Macaskill P, Holt PE, Menzies SW (2008) Dermoscopy compared with naked eye examination for the diagnosis of primary melanoma: a meta-analysis of studies performed in a clinical setting. Br J Dermatol 159(3):669–676

    CAS  PubMed  Google Scholar 

  • Yan K, Li C, Wang X, Yuan Y, Li A, Kim J, Li B, Feng D (2016) Comprehensive autoencoder for prostate recognition on MR images. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), Apr 13. IEEE, pp 1190–1194

    Chapter  Google Scholar 

  • Yang G, Li G, Pan T, Kong Y, Wu J, Shu H, Luo L, Dillenseger JL, Coatrieux JL, Tang L, Zhu X (2018) Automatic segmentation of kidney and renal tumor in CT images based on 3d fully convolutional neural network with pyramid pooling module. In: 2018 24th international conference on pattern recognition (ICPR), Aug 20. IEEE, pp 3790–3795

    Chapter  Google Scholar 

  • Yuan Y, Li D, Meng MQ (2017) Automatic polyp detection via a novel unified bottom-up and top-down saliency approach. IEEE J Biomed Health Inform 22(4):1250–1260

    Article  PubMed  Google Scholar 

  • Zhang X, Zhao SG (2019) Cervical image classification based on image segmentation preprocessing and a CapsNet network model. Int J Imaging Syst Technol 29(1):19–28

    Article  Google Scholar 

  • Zhu Z, **a Y, **e L, Fishman EK, Yuille AL (2019) Multi-scale coarse-to-fine segmentation for screening pancreatic ductal adenocarcinoma. In: International conference on medical image computing and computer-assisted intervention, Oct 13. Springer, Cham, pp 3–12

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamta Juneja .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Aggarwal, N., Saini, S.K., Baghel, S., Juneja, M. (2023). Deep Learning Techniques for Computer Aided Diagnosis of Various Cancers. In: Sobti, R.C., Ganguly, N.K., Kumar, R. (eds) Handbook of Oncobiology: From Basic to Clinical Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-99-2196-6_35-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-2196-6_35-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-2196-6

  • Online ISBN: 978-981-99-2196-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Navigation