Drought-Tolerant Plant Growth-Promoting Rhizobacteria Associated with Millets

  • Chapter
  • First Online:
Millet Rhizosphere

Abstract

Millets are drought-resistant, low-maintenance crops, and are a perfect fit for multiple crop** systems under irrigated and dryland farming. Drought resilience in millets is partially attributed to the plant’s ability to selectively encourage the growth of drought-adaptive, multifarious plant growth-promoting rhizobacteria (PGPR). Beneficial PGPR plays a key role in aiding millet’s growth under water-limited stress conditions as well as protects the plants from various drought-associated biotic and other abiotic stresses. As a component of the plant-soil feedback mechanism, millets actively restructure the rhizosphere microbial assemblages, and their functions through modulations in the composition, and concentration of the root exudates. Therefore, microbiome engineering poses an interesting avenue for formulating a productive abiotic stress management system for crops cultivated under drought-related stress environments. Our current understanding of the complex crosstalk between root-associated microbes and crops are grown under drought is largely drawn from non-millet plants. Limited resources and studies have revealed that effective PGPR employs fundamental mechanisms of drought stress alleviation that include the regulation of phytohormones (auxin and cytokinin), solubilization of phosphate, production of ACC deaminase to lower ethylene level, accumulation of compatible solutes, etc. In this chapter, we discussed how millets exposed to water-limited conditions influence the rhizosphere microbial colonization as a component of the cry-for-help strategy. Additionally, we highlighted the role of beneficial PGPR and their core strategies of drought amelioration in various millet crops. We propose that future research efforts should attempt to elucidate the interactions of PGPR strains with the host plant in field conditions and to gain insights into PGPR-induced molecular and metabolic switches in millet crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akhtar SS, Mekureyaw MF, Pandey C, Roitsch T (2020) Role of cytokinins for interactions of plants with microbial pathogens and pest insects. Front Plant Sci 10:1777

    PubMed  PubMed Central  Google Scholar 

  • Aliasgharzad N, Shirmohamadi E, Oustan S (2009) Siderophore production by mycorrhizal sorghum roots under micronutrient deficient condition. Soil Environ 28:119–123

    CAS  Google Scholar 

  • Amadou I (2022) Millet based functional foods: bio-chemical and bio-functional properties. In: Functional foods, pp 303–329

    Google Scholar 

  • Arkhipova T, Veselov S, Melentiev A, Martynenko E, Kudoyarova G (2005) Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant Soil 272:201–209

    CAS  Google Scholar 

  • Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.). Pedosphere 18:611–620

    Google Scholar 

  • Badr MA, Shafei AM, El-Deen SHS (2006) The dissolution of K and P-bearing minerals by silicate dissolving bacteria and their effect on sorghum growth. Res J Agric Biol Sci 2:5–11

    Google Scholar 

  • Bal HB, Das S, Dangar TK, Adhya TK (2013) ACC deaminase and IAA producing growth promoting bacteria from the rhizosphere soil of tropical rice plants. J Basic Microbiol 53:972–984

    CAS  PubMed  Google Scholar 

  • Bhatt D, Negi M, Sharma P, Saxena SC, Dobriyal AK, Arora S (2011) Responses to drought induced oxidative stress in five finger millet varieties differing in their geographical distribution. Physiol Mol Biol Plants 17:347–353

    CAS  PubMed  PubMed Central  Google Scholar 

  • Binder BM (2020) Ethylene signaling in plants. J Biol Chem 295:7710–7725

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bora P, Ragaee S, Marcone M (2019) Characterisation of several types of millets as functional food ingredients. Int J Food Sci Nutr 70:714–724

    CAS  PubMed  Google Scholar 

  • Brunetti C, Di Ferdinando M, Fini A, Pollastri S, Tattini M (2013) Flavonoids as antioxidants and developmental regulators: relative significance in plants and humans. Int J Mol Sci 14:3540–3555

    CAS  PubMed  PubMed Central  Google Scholar 

  • Canarini A, Kaiser C, Merchant A, Richter A, Wanek W (2019) Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli. Front Plant Sci 10:157

    PubMed  PubMed Central  Google Scholar 

  • Challis GL, Hopwood DA (2003) Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc Natl Acad Sci U S A 100:14555–14561

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chandra D, Srivastava R, Glick BR, Sharma AK (2018) Drought-tolerant Pseudomonas spp. improve the growth performance of finger millet (Eleusine coracana (L.) Gaertn.) under non-stressed and drought-stressed conditions. Pedosphere 28:227–240

    CAS  Google Scholar 

  • Chang J et al (2019) Asymmetric distribution of cytokinins determines root hydrotropism in Arabidopsis thaliana. Cell Res 29:984–993

    PubMed  PubMed Central  Google Scholar 

  • Chaturvedi P, Govindaraj M, Govindan V, Weckwerth W (2022) Sorghum and pearl millet as climate resilient crops for food and nutrition security. Front Plant Sci 13:851970

    PubMed  PubMed Central  Google Scholar 

  • Cline GR, Reid CP, Powell PE, Szaniszlo PJ (1984) Effects of a hydroxamate siderophore on iron absorption by sunflower and sorghum. Plant Physiol 76:36–39

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coy RM, Held DW, Kloepper JW (2014) Rhizobacterial inoculants increase root and shoot growth in ‘Tifway’ hybrid bermudagrass. J Environ Hortic 32:149–154

    CAS  Google Scholar 

  • del Carmen Orozco-Mosqueda M, Glick BR, Santoyo G (2020) ACC deaminase in plant growth-promoting bacteria (PGPB): an efficient mechanism to counter salt stress in crops. Microbiol Res 235:126439

    Google Scholar 

  • Edwards J et al (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci U S A 112:E911–E920

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elhaissoufi W, Ghoulam C, Barakat A, Zeroual Y, Bargaz A (2021) Phosphate bacterial solubilization: a key rhizosphere driving force enabling higher P use efficiency and crop productivity. J Adv Res 38:13–28

    PubMed  PubMed Central  Google Scholar 

  • Fang Y, **ong L (2015) General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci 72:673–689

    CAS  PubMed  Google Scholar 

  • Ferrante A, Francini A (2006) Ethylene and leaf senescence. In: Ethylene action in plants. Springer, pp 51–67

    Google Scholar 

  • Franco-Correa M, Chavarro-Anzola V (2016) Actinobacteria as plant growth promoting rhizobacteria. In: Dhanasekaran D, Jiang Y (eds) Actinobacteria—basics and biotechnological applications [Internet]. IntechOpen, London; 2016 [cited 2022 Nov 28]. https://www.intechopen.com/chapters/49199. https://doi.org/10.5772/61291

  • Ghatak A, Schindler F, Bachmann G, Engelmeier D, Bajaj P, Brenner M, Fragner L, Varshney RK, Subbarao GV, Chaturvedi P, Weckwerth W (2022) Root exudation of contrasting drought-stressed pearl millet genotypes conveys varying biological nitrification inhibition (BNI) activity. Biol Fertil Soils 58:291–306

    CAS  PubMed  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:963401. https://doi.org/10.6064/2012/963401

    Article  PubMed  PubMed Central  Google Scholar 

  • Gutiérrez-Venegas G, Gómez-Mora JA, Meraz-Rodríguez MA, Flores-Sánchez MA, Ortiz-Miranda LF (2019) Effect of flavonoids on antimicrobial activity of microorganisms present in dental plaque. Heliyon 5:e03013

    PubMed  PubMed Central  Google Scholar 

  • Haney CH, Samuel BS, Bush J, Ausubel FM (2015) Associations with rhizosphere bacteria can confer an adaptive advantage to plants. Nat Plants 1:1–9

    Google Scholar 

  • Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27:637–657

    CAS  PubMed  Google Scholar 

  • Hou Q, Ufer G, Bartels D (2016) Lipid signalling in plant responses to abiotic stress. Plant Cell Environ 39:1029–1048

    CAS  PubMed  Google Scholar 

  • Ishibashi Y, Yamaguchi H, Yuasa T, Iwaya-Inoue M, Arima S, Zheng S-H (2011) Hydrogen peroxide spraying alleviates drought stress in soybean plants. J Plant Physiol 168:1562–1567

    CAS  PubMed  Google Scholar 

  • Jeyanthi V, Kanimozhi S (2018) Plant growth promoting rhizobacteria (PGPR)-prospective and mechanisms: a review. J Pure Appl Microbiol 12:733–749

    CAS  Google Scholar 

  • Kapoor C, Singh SP, Sankar SM, Singh N (2022) Enhancing drought tolerance in pearl millet (Pennisetum glaucum L.): integrating traditional and omics approaches. Euphytica 218:1–29

    Google Scholar 

  • Kour D, Rana KL, Kaur T, Sheikh I, Yadav AN, Kumar V, Dhaliwal HS, Saxena AK (2020) Microbe-mediated alleviation of drought stress and acquisition of phosphorus in great millet (Sorghum bicolour L.) by drought-adaptive and phosphorus-solubilizing microbes. Biocatal Agric Biotechnol 23:101501

    Google Scholar 

  • Kravchenko L, Azarova T, Makarova N, Tikhonovich I (2004) The effect of tryptophan present in plant root exudates on the phytostimulating activity of rhizobacteria. Microbiology 73:156–158

    CAS  Google Scholar 

  • Kumar M, Mishra S, Dixit V, Agarwal L, Chauhan PS, Nautiyal CS (2016) Synergistic effect of Pseudomonas putida and Bacillus amyloliquefaciens ameliorates drought stress in chickpea (Cicer arietinum L.). Plant Signal Behav 11:e1071004

    PubMed  Google Scholar 

  • Kumaravel S, Thankappan S, Raghupathi S, Uthandi S (2018) Draft genome sequence of plant growth-promoting and drought-tolerant Bacillus altitudinis FD48, isolated from rice phylloplane. Genome Announc 6:e00019–e00018

    PubMed  PubMed Central  Google Scholar 

  • Kumari S, Vaishnav A, Jain S, Varma A, Choudhary DK (2016) Induced drought tolerance through wild and mutant bacterial strain Pseudomonas simiae in mung bean (Vigna radiata L.). World J Microbiol Biotechnol 32:1–10

    CAS  Google Scholar 

  • Kuramae EE, Derksen S, Schlemper TR, Dimitrov MR, Costa OY, da Silveira AP (2020) Sorghum growth promotion by Paraburkholderia tropica and Herbaspirillum frisingense: putative mechanisms revealed by genomics and metagenomics. Microorganisms 8:725

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maheshwari DK, Dheeman S, Agarwal M (2015) Phytohormone-producing PGPR for sustainable agriculture. In: Bacterial metabolites in sustainable agroecosystem. Springer, pp 159–182

    Google Scholar 

  • Maitra S, Praharaj S, Hossain A, Patro TS, Pramanick B, Shankar T, Pudake RN, Gitari HI, Palai JB, Sairam M, Sagar L. (2022) Small millets: the next-generation smart crops in the modern era of climate change. In: Omics of climate resilient small millets. Springer, pp 1–25

    Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530

    CAS  Google Scholar 

  • Meena RP, Joshi D, Bisht J, Kant L (2021) Global scenario of millets cultivation. In: Millets and millet technology. Springer, pp 33–50

    Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    CAS  PubMed  Google Scholar 

  • Naylor D, DeGraaf S, Purdom E, Coleman-Derr D (2017) Drought and host selection influence bacterial community dynamics in the grass root microbiome. ISME J 11:2691–2704

    PubMed  PubMed Central  Google Scholar 

  • Niu X, Song L, **ao Y, Ge W (2018) Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress. Front Microbiol 8:2580

    PubMed  PubMed Central  Google Scholar 

  • Peix A, Rivas-Boyero A, Mateos P, Rodriguez-Barrueco C, Martınez-Molina E, Velazquez E (2001) Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biol Biochem 33:103–110

    CAS  Google Scholar 

  • Prabha R, Singh DP, Verma MK, Sahu P, Kumar P (2018) Bacterial diversity in rhizosphere of Paspalum scrobiculatum L.(kodo millet) is revealed with shotgun metagenome sequencing and data analysis. Data Brief 20:1653–1657

    PubMed  PubMed Central  Google Scholar 

  • Prabha R, Singh DP, Gupta S, Gupta VK, El-Enshasy HA, Verma MK (2019) Rhizosphere metagenomics of Paspalum scrobiculatum L. (kodo millet) reveals rhizobiome multifunctionalities. Microorganisms 7:608

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrı́guez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    PubMed  Google Scholar 

  • Rokhbakhsh-Zamin F et al (2011) Characterization of plant-growth-promoting traits of Acinetobacter species isolated from rhizosphere of Pennisetum glaucum. J Microbiol Biotechnol 21:556–566

    PubMed  Google Scholar 

  • Saikia J, Sarma RK, Dhandia R, Yadav A, Bharali R, Gupta VK, Saikia R (2018) Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India. Sci Rep 8:1–16

    Google Scholar 

  • Saini S, Saxena S, Samtiya M, Puniya M, Dhewa T (2021) Potential of underutilized millets as Nutri-cereal: an overview. J Food Sci Technol 58:4465–4477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saleh D, Sharma M, Seguin P, Jabaji S (2020) Organic acids and root exudates of Brachypodium distachyon: effects on chemotaxis and biofilm formation of endophytic bacteria. Can J Microbiol 66:562–575

    CAS  PubMed  Google Scholar 

  • Sanon M, Hoogenboom G, Traoré S, Sarr B, Garcia AGY, Somé L, Roncoli C (2014) Photoperiod sensitivity of local millet and sorghum varieties in West Africa. NJAS Wagen J Life Sci 68:29–39

    Google Scholar 

  • Shah P, Kumar A, Kumar V, Tripathi MK (2021) Millets, phytochemicals, and their health attributes. In: Millets and millet technology. Springer, pp 191–218

    Google Scholar 

  • Shanker AK, Maheswari M, Yadav S, Desai S, Bhanu D, Attal NB, Venkateswarlu B (2014) Drought stress responses in crops. Funct Integr Genomics 14:11–22

    CAS  PubMed  Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2:1–14

    Google Scholar 

  • Simmons T, Styer AB, Pierroz G, Gonçalves AP, Pasricha R, Hazra AB, Bubner P, Coleman-Derr D (2020) Drought drives spatial variation in the millet root microbiome. Front Plant Sci 11:599

    PubMed  PubMed Central  Google Scholar 

  • Sindhu SS, Parmar P, Phour M, Sehrawat A (2016) Potassium-solubilizing microorganisms (KSMs) and its effect on plant growth improvement. In: Potassium solubilizing microorganisms for sustainable agriculture. Springer India, New Delhi, pp 171–185

    Google Scholar 

  • Singh P, Chauhan PK, Upadhyay SK, Singh RK, Dwivedi P, Wang J, Jain D, Jiang M (2022) Mechanistic insights and potential use of siderophores producing microbes in rhizosphere for mitigation of stress in plants grown in degraded land. Front Microbiol 13:898979. https://doi.org/10.3389/fmicb.2022.898979

    Article  PubMed  PubMed Central  Google Scholar 

  • Tadele Z (2016) Drought adaptation in millets. In: Shanker AK, Shanker C (eds) Abiotic and biotic stress in plants—recent advances and future perspectives [Internet]. IntechOpen, London; 2016 [cited 2022 Nov 28]. https://www.intechopen.com/chapters/49669. https://doi.org/10.5772/61929

  • Thilakarathna MS, Raizada MN (2015) A review of nutrient management studies involving finger millet in the semi-arid tropics of Asia and Africa. Agronomy 5:262–290

    Google Scholar 

  • Tyagi J, Pudake RN (2017) Spectrophotometric assays to evaluate the rhizospheric microbes mediated drought tolerance in plants. In: Modern tools and techniques to understand microbes. Springer, pp 413–429

    Google Scholar 

  • Ulbrich TC, Rivas-Ubach A, Tiemann LK, Friesen ML, Evans SE (2022) Plant root exudates and rhizosphere bacterial communities shift with neighbor context. Soil Biol Biochem 172:108753

    CAS  Google Scholar 

  • Wang Y, Liu H, **n Q (2014) Genome-wide analysis and identification of cytokinin oxidase/dehydrogenase (CKX) gene family in foxtail millet (Setaria italica). Crop J 2:244–254

    Google Scholar 

  • Xu J, Li X-L, Luo L (2012) Effects of engineered Sinorhizobium meliloti on cytokinin synthesis and tolerance of alfalfa to extreme drought stress. Appl Environ Microbiol 78:8056–8061

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Naylor D, Dong Z, Simmons T, Pierroz G, Hixson KK, Kim YM, Zink EM, Engbrecht KM, Wang Y, Gao C (2018) Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proc Natl Acad Sci U S A 115:E4284–E4293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Han Y, Yi M, Yi H, Guo E, Zhang A (2019) Shift of millet rhizosphere bacterial community during the maturation of parent soil revealed by 16S rDNA high-throughput sequencing. Appl Soil Ecol 135:157–165

    Google Scholar 

  • Xu L, Dong Z, Chiniquy D, Pierroz G, Deng S, Gao C, Diamond S, Simmons T, Wipf HM, Caddell D, Varoquaux N (2021) Genome-resolved metagenomics reveals role of iron metabolism in drought-induced rhizosphere microbiome dynamics. Nat Commun 12:3209. https://doi.org/10.1038/s41467-021-23553-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan J, Zhang N, Huang Q, Raza W, Li R, Vivanco JM, Shen Q (2015) Organic acids from root exudates of banana help root colonization of PGPR strain Bacillus amyloliquefaciens NJN-6. Sci Rep 5:1–8

    Google Scholar 

  • Zhang J, Kirkham M (1994) Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant Cell Physiol 35:785–791

    CAS  Google Scholar 

  • Zia R, Nawaz MS, Siddique MJ, Hakim S, Imran A (2021) Plant survival under drought stress: implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Microbiol Res 242:126626

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhumita Barooah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bora, S.S., Anshu, Deka, P., Barooah, M. (2023). Drought-Tolerant Plant Growth-Promoting Rhizobacteria Associated with Millets. In: Pudake, R.N., Kumari, M., Sapkal, D.R., Sharma, A.K. (eds) Millet Rhizosphere . Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-99-2166-9_4

Download citation

Publish with us

Policies and ethics

Navigation