Deploying Machine Learning Algorithms for Predictive Maintenance of High-Value Assets of Indian Railways

  • Chapter
  • First Online:
Transportation Energy and Dynamics

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

  • 312 Accesses

Abstract

The process of maintenance is always considered to be a huge driver of costs in all industries. Depending on the industry, maintenance activities can account for 15–70% of the total production costs. Despite that, most of the industries still rely upon maintenance policies that are outdated and severely inefficient from a time and money point of view. In this context, the railway industry is no exception. Maintenance of high-value assets of Indian Railways is still done primarily through conventional maintenance practices. This causes the production time to go down and the overall quality of the components to deteriorate. On the other hand, there is ample research work being done to explore the details of several other maintenance policies. One of the most efficient and highly preferred maintenance policies is predictive maintenance. This study reviews existing literature on predictive maintenance and its implementation in the railway industry and identifies gaps and prospects for further research. The objective of this study is to begin with understanding the current maintenance policies used by Indian Railways, and then go about outlining the potential advantages of implementing predictive maintenance. To signify the importance of predictive maintenance, an analysis is performed over real-world data of rolling stock by training a machine learning model over the data and predicting the Remaining Useful Life of the components. The model is trained using a type of Recurrent Neural Network, known as Long Short-Term Memory networks. This training is carried out by a regression algorithm. Finally, the predictions from the model are plotted and compared with the actual data, to indicate the efficacy of the model. After interpreting the findings of the plot, it is concluded that such predictive maintenance systems could be installed in the rolling stock operated by the Indian Railways, as it would impact the overall availability and efficiency of the assets and boost the operations of the organization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sharma, S.K., Lee, J., Jang, H.-L.: Mathematical modeling and simulation of suspended equipment impact on car body modes. Machines 10, 192 (2022). https://doi.org/10.3390/machines10030192

    Article  Google Scholar 

  2. Vishwakarma, P.N., Mishra, P., Sharma, S.K.: Formulation of semi-active suspension system and controls in rail vehicle. SSRN Electron. J. (2022). https://doi.org/10.2139/ssrn.4159616

    Article  Google Scholar 

  3. Vishwakarma, P.N., Mishra, P., Sharma, S.K.: Characterization of a magnetorheological fluid damper a review. Mater. Today Proc. 56, 2988–2994 (2022). https://doi.org/10.1016/j.matpr.2021.11.143

    Article  Google Scholar 

  4. Sharma, S.K., Sharma, R.C., Lee, J., Jang, H.-L.: Numerical and experimental analysis of DVA on the flexible-rigid rail vehicle carbody resonant vibration. Sensors 22, 1922 (2022). https://doi.org/10.3390/s22051922

    Article  Google Scholar 

  5. Sharma, S.K., Mohapatra, S., Sharma, R.C., Alturjman, S., Altrjman, C., Mostarda, L., Stephan, T.: Retrofitting existing buildings to improve energy performance. Sustainability 14, 666 (2022). https://doi.org/10.3390/su14020666

    Article  Google Scholar 

  6. Sharma, S.K., Sharma, R.C., Lee, J.: In situ and experimental analysis of longitudinal load on carbody fatigue life using nonlinear damage accumulation. Int. J. Damage Mech. 31, 605–622 (2022). https://doi.org/10.1177/10567895211046043

    Article  Google Scholar 

  7. Sharma, R.C., Sharma, S.K.: Ride analysis of road surface-three-wheeled vehicle-human subject interactions subjected to random excitation. SAE Int. J. Commer. Veh. 15, 02-15-03-0017 (2022). https://doi.org/10.4271/02-15-03-0017

  8. Sharma, S.K., Lee, J.: Crashworthiness analysis for structural stability and dynamics. Int. J. Struct. Stab. Dyn. 21, 2150039 (2021). https://doi.org/10.1142/S0219455421500395

    Article  Google Scholar 

  9. Wu, Q., Cole, C., Spiryagin, M., Chang, C., Wei, W., Ursulyak, L., Shvets, A., Murtaza, M.A., Mirza, I.M., Zhelieznov, К., Mohammadi, S., Serajian, H., Schick, B., Berg, M., Sharma, R.C., Aboubakr, A., Sharma, S.K., Melzi, S., Di Gialleonardo, E., Bosso, N., Zampieri, N., Magelli, M., Ion, C.C., Routcliffe, I., Pudovikov, O., Menaker, G., Mo, J., Luo, S., Ghafourian, A., Serajian, R., Santos, A.A., Teodoro, Í.P., Eckert, J.J., Pugi, L., Shabana, A., Cantone, L.: Freight train air brake models. Int. J. Rail Transp. 1–49 (2021). https://doi.org/10.1080/23248378.2021.2006808

  10. Sharma, S.K., Sharma, R.C., Lee, J.: Effect of rail vehicle-track coupled dynamics on fatigue failure of coil spring in a suspension system. Appl. Sci. 11, 2650 (2021). https://doi.org/10.3390/app11062650

    Article  Google Scholar 

  11. Mohapatra, S., Mohanty, D., Mohapatra, S., Sharma, S., Dikshit, S., Kohli, I., Samantaray, D.P., Kumar, R., Kathpalia, M.: Biomedical application of polymeric biomaterial: polyhydroxybutyrate. In: Bioresource Utilization and Management: Applications in Therapeutics, Biofuels, Agriculture, and Environmental Science, pp. 1–14. CRC Press (2021). https://doi.org/10.21203/rs.3.rs-1491519/v1

  12. Bhardawaj, S., Sharma, R.C., Sharma, S.K., Sharma, N.: On the planning and construction of railway curved track. Int. J. Veh. Struct. Syst. 13, 151–159 (2021). https://doi.org/10.4273/ijvss.13.2.04

    Article  Google Scholar 

  13. Sharma, R.C., Sharma, S., Sharma, N., Sharma, S.K.: Linear and nonlinear analysis of ride and stability of a three-wheeled vehicle subjected to random and bump inputs using bond graph and simulink methodology. SAE Int. J. Commer. Veh. 14, 02-15-01-0001 (2021). https://doi.org/10.4271/02-15-01-0001

  14. Sharma, R.C., Sharma, S., Sharma, S.K., Sharma, N., Singh, G.: Analysis of bio-dynamic model of seated human subject and optimization of the passenger ride comfort for three-wheel vehicle using random search technique. Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. 235, 106–121 (2021). https://doi.org/10.1177/1464419320983711

  15. Choi, S., Lee, J., Sharma, S.K.: A study on the performance evaluation of hydraulic tank injectors. In: Advances in Engineering Design: Select Proceedings of FLAME 2020, pp. 183–190. Springer, Singapore (2021). https://doi.org/10.1007/978-981-33-4684-0_19

  16. Lee, J., Han, J., Sharma, S.K.: Structural analysis on the separated and integrated differential gear case for the weight reduction. In: Joshi, P., Gupta, S.S., Shukla, A.K., Gautam, S.S. (eds.) Advances in Engineering Design. Lecture Notes in Mechanical Engineering, pp. 175–181 (2021). https://doi.org/10.1007/978-981-33-4684-0_18

  17. Sharma, S.K., Sharma, R.C.: Multi-objective Design optimization of locomotive nose. In: SAE Technical Paper, pp. 1–10 (2021). https://doi.org/10.4271/2021-01-5053

  18. Sharma, R.C., Palli, S., Sharma, N., Sharma, S.K.: Ride behaviour of a four-wheel vehicle using H infinity semi-active suspension control under deterministic and random inputs. Int. J. Veh. Struct. Syst. 13, 234–237 (2021). https://doi.org/10.4273/ijvss.13.2.18

    Article  Google Scholar 

  19. Sharma, S.K., Sharma, R.C., Sharma, N.: Combined multi-body-system and finite element analysis of a rail locomotive crashworthiness. Int. J. Veh. Struct. Syst. 12, 428–435 (2020). https://doi.org/10.4273/ijvss.12.4.15

    Article  Google Scholar 

  20. Sharma, R.C., Sharma, S.K., Palli, S.: Linear and non-linear stability analysis of a constrained railway wheelaxle. Int. J. Veh. Struct. Syst. 12, 128–133 (2020). https://doi.org/10.4273/ijvss.12.2.04

    Article  Google Scholar 

  21. Palli, S., Sharma, R.C., Sharma, S.K., Chintada, V.B.: On methods used for setting the curve for railway tracks. J. Crit. Rev. 7, 241–246 (2020)

    Google Scholar 

  22. Mohapatra, S., Pattnaik, S., Maity, S., Mohapatra, S., Sharma, S., Akhtar, J., Pati, S., Samantaray, D.P., Varma, A.: Comparative analysis of PHAs production by Bacillus megaterium OUAT 016 under submerged and solid-state fermentation. Saudi J. Biol. Sci. 27, 1242–1250 (2020). https://doi.org/10.1016/j.sjbs.2020.02.001

    Article  Google Scholar 

  23. Sharma, R.C., Sharma, S.K., Sharma, N., Sharma, S.: Analysis of ride and stability of an ICF railway coach. Int. J. Veh. Noise Vib. 16, 127 (2020). https://doi.org/10.1504/IJVNV.2020.117820

    Article  Google Scholar 

  24. Sharma, S.K., Phan, H., Lee, J.: An Application study on road surface monitoring using DTW based image processing and ultrasonic sensors. Appl. Sci. 10, 4490 (2020). https://doi.org/10.3390/app10134490

    Article  Google Scholar 

  25. Sharma, R.C., Sharma, S., Sharma, S.K., Sharma, N.: Analysis of generalized force and its influence on ride and stability of railway vehicle. Noise Vib. Worldw. 51, 95–109 (2020). https://doi.org/10.1177/0957456520923125

    Article  MATH  Google Scholar 

  26. Lee, J., Sharma, S.K.: Numerical investigation of critical speed analysis of high-speed rail vehicle. 한국정밀공학회 학술발표대회 논문집 (Korean Soc. Precis. Eng. 696) (2020).

    Google Scholar 

  27. Sharma, S.K., Lee, J.: Finite element analysis of a fishplate rail joint in extreme environment condition. Int. J. Veh. Struct. Syst. 12, 503–506 (2020). https://doi.org/10.4273/ijvss.12.5.03

    Article  Google Scholar 

  28. Bhardawaj, S., Sharma, R., Sharma, S.: Ride analysis of track-vehicle-human body interaction subjected to random excitation. J. Chinese Soc. Mech. Eng. 41, 237–236 (2020). https://doi.org/10.29979/JCSME

  29. Bhardawaj, S., Sharma, R.C., Sharma, S.K.: Development in the modeling of rail vehicle system for the analysis of lateral stability. Mater. Today Proc. 25, 610–619 (2020). https://doi.org/10.1016/j.matpr.2019.07.376

    Article  Google Scholar 

  30. Bhardawaj, S., Sharma, R.C., Sharma, S.K.: Analysis of frontal car crash characteristics using ANSYS. Mater. Today Proc. 25, 898–902 (2020). https://doi.org/10.1016/j.matpr.2019.12.358

    Article  Google Scholar 

  31. Sharma, S., Sharma, R.C., Sharma, S.K., Sharma, N., Palli, S., Bhardawaj, S.: Vibration isolation of the quarter car model of road vehicle system using dynamic vibration absorber. Int. J. Veh. Struct. Syst. 12, 513–516 (2020). https://doi.org/10.4273/ijvss.12.5.05

    Article  Google Scholar 

  32. Acharya, A., Gahlaut, U., Sharma, K., Sharma, S.K., Vishwakarma, P.N., Phanden, R.K.: Crashworthiness analysis of a thin-walled structure in the frontal part of automotive chassis. Int. J. Veh. Struct. Syst. 12, 517–520 (2020). https://doi.org/10.4273/ijvss.12.5.06

    Article  Google Scholar 

  33. Bhardawaj, S., Sharma, R.C., Sharma, S.K.: Development of multibody dynamical using MR damper based semi-active bio-inspired chaotic fruit fly and fuzzy logic hybrid suspension control for rail vehicle system. Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. 234, 723–744 (2020). https://doi.org/10.1177/1464419320953685

  34. Sharma, S.K., Lee, J.: Design and development of smart semi active suspension for nonlinear rail vehicle vibration reduction. Int. J. Struct. Stab. Dyn. 20, 2050120 (2020). https://doi.org/10.1142/S0219455420501205

    Article  MathSciNet  Google Scholar 

  35. Sharma, S.K.: Multibody analysis of longitudinal train dynamics on the passenger ride performance due to brake application. Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. 233, 266–279 (2019). https://doi.org/10.1177/1464419318788775

  36. Goyal, S., Anand, C.S., Sharma, S.K., Sharma, R.C.: Crashworthiness analysis of foam filled star shape polygon of thin-walled structure. Thin-Walled Struct. 144, 106312 (2019). https://doi.org/10.1016/j.tws.2019.106312

    Article  Google Scholar 

  37. Sharma, S.K., Sharma, R.C.: Pothole detection and warning system for Indian roads. In: Advances in Interdisciplinary Engineering, pp. 511–519 (2019). https://doi.org/10.1007/978-981-13-6577-5_48

  38. Goswami, B., Rathi, A., Sayeed, S., Das, P., Sharma, R.C., Sharma, S.K.: Optimization design for aerodynamic elements of Indian locomotive of passenger train. In: Advances in Engineering Design, pp. 663–673. Lecture Notes in Mechanical Engineering. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-6469-3_61

  39. Bhardawaj, S., Chandmal Sharma, R., Kumar Sharma, S.: Development and advancement in the wheel-rail rolling contact mechanics. IOP Conf. Ser. Mater. Sci. Eng. 691, 012034 (2019). https://doi.org/10.1088/1757-899X/691/1/012034

    Article  Google Scholar 

  40. Choppara, R.K., Sharma, R.C., Sharma, S.K., Gupta, T.: Aero dynamic cross wind analysis of locomotive. In: IOP Conference Series: Materials Science and Engineering, p. 12035. IOP Publishing (2019)

    Google Scholar 

  41. Sinha, A.K., Sengupta, A., Gandhi, H., Bansal, P., Agarwal, K.M., Sharma, S.K., Sharma, R.C., Sharma, S.K.: Performance enhancement of an all-terrain vehicle by optimizing steering, powertrain and brakes. In: Advances in Engineering Design, pp. 207–215 (2019). https://doi.org/10.1007/978-981-13-6469-3_19

  42. Sharma, S.K., Saini, U., Kumar, A.: Semi-active control to reduce lateral vibration of passenger rail vehicle using disturbance rejection and continuous state damper controllers. J. Vib. Eng. Technol. 7, 117–129 (2019). https://doi.org/10.1007/s42417-019-00088-2

    Article  Google Scholar 

  43. Bhardawaj, S., Chandmal Sharma, R., Kumar Sharma, S.: A survey of railway track modelling. Int. J. Veh. Struct. Syst. 11, 508–518 (2019). https://doi.org/10.4273/ijvss.11.5.08

    Article  Google Scholar 

  44. Sharma, R.C., Palli, S., Sharma, S.K., Roy, M.: Modernization of railway track with composite sleepers. Int. J. Veh. Struct. Syst. 9, 321–329 (2018)

    Google Scholar 

  45. Sharma, R.C., Sharma, S.K., Palli, S.: Rail vehicle modelling and simulation using Lagrangian method. Int. J. Veh. Struct. Syst. 10, 188–194 (2018). https://doi.org/10.4273/ijvss.10.3.07

    Article  Google Scholar 

  46. Palli, S., Koona, R., Sharma, S.K., Sharma, R.C.: A review on dynamic analysis of rail vehicle coach. Int. J. Veh. Struct. Syst. 10, 204–211 (2018). https://doi.org/10.4273/ijvss.10.3.10

    Article  Google Scholar 

  47. Sharma, S.K., Sharma, R.C.: An investigation of a locomotive structural crashworthiness using finite element simulation. SAE Int. J. Commer. Veh. 11, 235–244 (2018). https://doi.org/10.4271/02-11-04-0019

    Article  Google Scholar 

  48. Sharma, S.K., Sharma, R.C.: Simulation of quarter-car model with magnetorheological dampers for ride quality improvement. Int. J. Veh. Struct. Syst. 10, 169–173 (2018). https://doi.org/10.4273/ijvss.10.3.03

    Article  Google Scholar 

  49. Sharma, S.K., Kumar, A.: Impact of longitudinal train dynamics on train operations: a simulation-based study. J. Vib. Eng. Technol. 6, 197–203 (2018). https://doi.org/10.1007/s42417-018-0033-4

    Article  Google Scholar 

  50. Sharma, R.C., Sharma, S.K.: Sensitivity analysis of three-wheel vehicle’s suspension parameters influencing ride behavior. Noise Vib. Worldw. 49, 272–280 (2018). https://doi.org/10.1177/0957456518796846

    Article  Google Scholar 

  51. Sharma, S.K., Kumar, A.: Ride comfort of a higher speed rail vehicle using a magnetorheological suspension system. Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. 232, 32–48 (2018). https://doi.org/10.1177/1464419317706873

  52. Sharma, S.K., Kumar, A.: Disturbance rejection and force-tracking controller of nonlinear lateral vibrations in passenger rail vehicle using magnetorheological fluid damper. J. Intell. Mater. Syst. Struct. 29, 279–297 (2018). https://doi.org/10.1177/1045389X17721051

    Article  Google Scholar 

  53. Sharma, S.K., Kumar, A.: Impact of electric locomotive traction of the passenger vehicle Ride quality in longitudinal train dynamics in the context of Indian railways. Mech. Ind. 18, 222 (2017). https://doi.org/10.1051/meca/2016047

    Article  Google Scholar 

  54. Sharma, S.K., Kumar, A.: Ride performance of a high speed rail vehicle using controlled semi active suspension system. Smart Mater. Struct. 26, 055026 (2017). https://doi.org/10.1088/1361-665X/aa68f7

    Article  Google Scholar 

  55. Sharma, S.K., Kumar, A.: Dynamics analysis of wheel rail contact using FEA. Procedia Eng. 144, 1119–1128 (2016). https://doi.org/10.1016/j.proeng.2016.05.076

    Article  Google Scholar 

  56. Sharma, S.K., Kumar, A.: The impact of a rigid-flexible system on the ride quality of passenger bogies using a flexible carbody. In: Pombo, J. (ed.) Proceedings of the Third International Conference on Railway Technology: Research, Development and Maintenance, Stirlingshire, UK, p. 87. Civil-Comp Press, Stirlingshire, UK (2016). https://doi.org/10.4203/ccp.110.87

  57. Sharma, S.K., Chaturvedi, S.: Jerk analysis in rail vehicle dynamics. Perspect. Sci. 8, 648–650 (2016). https://doi.org/10.1016/j.pisc.2016.06.047

    Article  Google Scholar 

  58. Kulkarni, D., Sharma, S.K., Kumar, A.: Finite element analysis of a fishplate rail joint due to wheel impact. In: International Conference on Advances in Dynamics, Vibration and Control (ICADVC-2016) NIT Durgapur, India February 25–27, 2016. National Institute of Technology Durgapur, Durgapur, India (2016)

    Google Scholar 

  59. Sharma, S.K., Sharma, R.C., Kumar, A., Palli, S.: Challenges in rail vehicle-track modeling and simulation. Int. J. Veh. Struct. Syst. 7, 1–9 (2015). https://doi.org/10.4273/ijvss.7.1.01

    Article  Google Scholar 

  60. Sharma, S.K., Kumar, A., Sharma, R.C.: Challenges in railway vehicle modeling and simulations. In: International Conference on Newest Drift in Mechanical Engineering (ICNDME-14), December 20–21, M. M. University, Mullana, India, pp. 453–459. Maharishi Markandeshwar University, Mullana—Ambala (2014)

    Google Scholar 

  61. Sharma, S.K., Kumar, A.: A comparative study of Indian and Worldwide railways. Int. J. Mech. Eng. Robot. Res. 1, 114–120 (2014)

    Google Scholar 

  62. Sharma, S.K.: Zero energy building envelope components: a review. Int. J. Eng. Res. Appl. 3, 662–675 (2013)

    Google Scholar 

  63. Sharma, S.K., Lavania, S.: An autonomous metro: design and execution. In: Futuristic trends in Mechanical and Industrial Engineering, pp. 1–8. JECRC UDML College of Engineering, Jaipur (2013)

    Google Scholar 

  64. Sharma, S.K., Lavania, S.: Green manufacturing and green supply chain management in India a review. In: Futuristic Trends in Mechanical and Industrial Engineering, pp. 1–8. JECRC UDML College of Engineering (2013)

    Google Scholar 

  65. Sharma, S.K., Lavania, S.: Skin effect in high speed VLSI on-chip interconnects. In: International Conference on VLSI, Communication & Networks, V-CAN, pp. 1–8. Institute of Engineering & Technology, Alwar (2011)

    Google Scholar 

  66. Lavania, S., Sharma, S.K.: An explicit approach to compare crosstalk noise and delay in VLSI RLC interconnect modeled with skin effect with step and ramp input. J. VLSI Des. Tools Technol. 1, 1–8 (2011)

    Google Scholar 

  67. Dao, D.K., Ngo, V., Phan, H., Pham, C.V., Lee, J., Bui, T.Q.: Rayleigh wave motions in an orthotropic half-space under time-harmonic loadings: a theoretical study. Appl. Math. Model. 87, 171–179 (2020). https://doi.org/10.1016/j.apm.2020.06.006

    Article  MathSciNet  MATH  Google Scholar 

  68. Park, J., Lee, J., Le, Z., Cho, Y.: High-precision noncontact guided wave tomographic imaging of plate structures using a DHB algorithm. Appl. Sci. 10, 4360 (2020). https://doi.org/10.3390/app10124360

    Article  Google Scholar 

  69. Park, J., Lee, J., Min, J., Cho, Y.: Defects inspection in wires by nonlinear ultrasonic-guided wave generated by electromagnetic sensors. Appl. Sci. 10, 4479 (2020). https://doi.org/10.3390/app10134479

    Article  Google Scholar 

  70. Lee, J., Ngo, V., Phan, H., Nguyen, T., Dao, D.K., Cho, Y.: Scattering of surface waves by a three-dimensional cavity of arbitrary shape: analytical and experimental studies. Appl. Sci. 9, 5459 (2019). https://doi.org/10.3390/app9245459

    Article  Google Scholar 

  71. Park, J., Lee, J., Jeong, S.-G., Cho, Y.: A study on guided wave propagation in a long distance curved pipe. J. Mech. Sci. Technol. 33, 4111–4117 (2019). https://doi.org/10.1007/s12206-019-0806-z

    Article  Google Scholar 

  72. Rubió-Massegú, J., Palacios-Quiñonero, F., Rossell, J.M., Karimi, H.R.: A novel iterative linear matrix inequality design procedure for passive inter-substructure vibration control. Appl. Sci. 10, 5859 (2020). https://doi.org/10.3390/app10175859

    Article  Google Scholar 

  73. Sharma, S.K., Sharma, R.C., Choi, Y., Lee, J.: Experimental and mathematical study of flexible–rigid rail vehicle riding comfort and safety. Appl. Sci. 13, 5252 (2023). https://doi.org/10.3390/app13095252

  74. Palacios-Quiñonero, F., Rubió-Massegú, J., Rossell, J.M., Karimi, H.R.: Design of inerter-based multi-actuator systems for vibration control of adjacent structures. J. Franklin Inst. 356, 7785–7809 (2019). https://doi.org/10.1016/j.jfranklin.2019.03.010

    Article  MATH  Google Scholar 

  75. Shravanth Vasisht, M., Vashista, G.A., Srinivasan, J., Ramasesha, S.K.: Rail coaches with rooftop solar photovoltaic systems: a feasibility study. Energy 118, 684–691 (2017). https://doi.org/10.1016/j.energy.2016.10.103

    Article  Google Scholar 

Download references

Acknowledgements

The research funding from the Ministry of Science and Higher Education of the Russian Federation (Ural Federal University Programme of Development within the Priority-2030 Programme) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Avesh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saurav, K., Avesh, M., Sharma, R.C., Hossain, I. (2023). Deploying Machine Learning Algorithms for Predictive Maintenance of High-Value Assets of Indian Railways. In: Sharma, S.K., Upadhyay, R.K., Kumar, V., Valera, H. (eds) Transportation Energy and Dynamics. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-99-2150-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-2150-8_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-2149-2

  • Online ISBN: 978-981-99-2150-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation