Particulate Matter Measurement Techniques

  • Reference work entry
  • First Online:
Handbook of Metrology and Applications
  • 1022 Accesses

Abstract

For the better understanding of potential environmental and human health impacts of airborne particulate matter (PM), the accurate and precise measurement of ambient PM is prerequisite. Various methods and instruments are available, ranging from filter-based sample collection for off-line laboratory analysis to on-line instruments that detect the airborne particles and give information of size distribution, particle mass concentration, and chemical data in real time. Different measurement strategies, sampling devices, and instruments based on different principles are used depending on the scientific objectives of the study. The improvements in time resolution achieved by the continuous methods have proven to be useful in monitoring of PM concentration, characterizing ambient PM, and are becoming essential in allowing decision-makers to make policies and scientists to investigate sources of particulate pollution and to probe into the dynamics and mechanisms of aerosol formation in the atmosphere. It is important for the researchers working in air quality field to have a detailed understanding of the principle and limitations associated with different PM measurement techniques. In this view, here this chapter provides overview of the measurement principle of techniques available and used worldwide for PM measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Aggarwal SG (2010) Recent developments in aerosol measurement techniques and the metrological issues. Mapan 25(3):165–189

    Article  Google Scholar 

  • Aggarwal SG, Kumar S, Mandal P, Sarangi B, Singh K, Pokhariyal J, Mishra SK, Agarwal S, Sinha D, Singh S, Sharma C (2013) Traceability issue in PM2.5 and PM10 measurements. Mapan 28(3):153–166

    Article  Google Scholar 

  • Allan JD, Jimenez JL, Williams PI, Alfarra MR, Bower KN, Jayne JT, Coe H, Worsnop DR (2003) Quantitative sampling using an aerodyne aerosol mass spectrometer 1. Techniques of data interpretation and error analysis. J Geophys Res Atmos 108(D3):4090 AAC 1–10

    Google Scholar 

  • Arends BG, Nell J, Rutten SM (2000) Field comparison of four PM10 samplers in a polluted area in The Netherlands. J Aerosol Sci 31:512–513

    Article  ADS  Google Scholar 

  • Bagtasa G, Takeuchi N, Fukagawa S, Kuze H, Naito S (2007) Correction in aerosol mass concentration measurements with humidity difference between ambient and instrumental conditions. Atmos Environ 41(8):1616–1626

    Article  ADS  Google Scholar 

  • Bergman W, Shinn J, Lochner R, Sawyer S, Milanovich F, Mariella R Jr (2005) High air flow, low pressure drop, bio-aerosol collector using a multi-slit virtual impactor. J Aerosol Sci 36(5–6):619–638

    Article  ADS  Google Scholar 

  • Brown RJ, Milton MJ (2005) Analytical techniques for trace element analysis: an overview. TrAC Trends Anal Chem 24(3):266–274

    Article  Google Scholar 

  • Canagaratna MR, Jayne JT, Jimenez JL, Allan JD, Alfarra MR, Zhang Q, Onasch TB, Drewnick F, Coe H, Middlebrook A, Delia A, Williams LR, Trimborn AM, Northway MJ, DeCarlo PF, Kolb CE, Davidovits P, Worsnop DR (2007) Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass Spectrom Rev 26(2):185–222

    Article  ADS  Google Scholar 

  • Chang CT, Tsai CJ, Lee CT, Chang SY, Cheng MT, Chein HM (2001) Differences in PM10 concentrations measured by β-gauge monitor and hi-vol sampler. Atmos Environ 35(33):5741–5748

    Article  ADS  Google Scholar 

  • Chen M, Romay FJ, Li L, Naqwi A, Marple VA (2016) A novel quartz crystal cascade impactor for real-time aerosol mass distribution measurement. Aerosol Sci Technol 50(9):971–983

    Article  ADS  Google Scholar 

  • Chow JC (1995) Measurement methods to determine compliance with ambient air quality standards for suspended particles. J Air Waste Manag Assoc 45(5):320–382

    Article  Google Scholar 

  • Chowdhury Z, Campanella L, Gray C, Al Masud A, Marter-Kenyon J, Pennise D, Charron D, Zuzhang X (2013) Measurement and modeling of indoor air pollution in rural households with multiple stove interventions in Yunnan, China. Atmos Environ 67:161–169

    Article  ADS  Google Scholar 

  • Chung A, Chang DP, Kleeman MJ, Perry KD, Cahill TA, Dutcher D, McDougall EM, Stroud K (2001) Comparison of real-time instruments used to monitor airborne particulate matter. J Air Waste Manag Assoc 51(1):109–120

    Article  Google Scholar 

  • Cienfuegos F, Vaitsman D (2000) Análise Instrumental, 1st edn. Editora Interciênci, Rio de Janeiro

    Google Scholar 

  • EN 12341 (2014) Ambient air. Standard gravimetric measurement method for the determination of the PM10 or PM2.5. European Committee for Standardization (CEN), Brussels, Belgium

    Google Scholar 

  • Conner WD (1966) An inertial-type particle separator for collecting large samples. J Air Pollut Control Assoc 16(1):35–38

    Article  Google Scholar 

  • Costa MAM, Carvalho JA Jr, Neto TS, Anselmo E, Lima BDA, Kura LTU, Santos JC (2012) Real-time sampling of particulate matter smaller than 2.5 μm from Amazon forest biomass combustion. Atmos Environ 54:480–489

    Article  ADS  Google Scholar 

  • Eatough DJ, Eatough NL, Obeidi F, Pang Y, Modey W, Long R (2001) Continuous determination of PM2. 5 mass, including semi-volatile species. Aerosol Sci Technol 34(1):1–8

    Article  ADS  Google Scholar 

  • Ehara K, Hagwood C, Coakley KJ (1996) Novel method to classify aerosol particles according to their mass-to-charge ratio—aerosol particle mass analyser. J Aerosol Sci 27(2):217–234

    Article  ADS  Google Scholar 

  • Gebhart JJCW, Heyder J, Roth C, Stahlhofen W (1976) Optical aerosol size spectrometry below and above the wavelength of light-a comparison. In: Fine Particles. Academic Press, pp 793–815

    Chapter  Google Scholar 

  • Gehrig R, Hueglin C, Schwarzenbach B, Seitz T, Buchmann B (2005) A new method to link PM10 concentrations from automatic monitors to the manual gravimetric reference method according to EN12341. Atmos Environ 39(12):2213–2223

    Article  ADS  Google Scholar 

  • Gilham RJ, Spencer SJ, Butterfield D, Seah MP, Quincey PG (2008) On the applicability of XPS for quantitative total organic and elemental carbon analysis of airborne particulate matter. Atmos Environ 42(16):3888–3891

    Article  ADS  Google Scholar 

  • Hahn DW, Lunden MM (2000) Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy. Aerosol Sci Technol 33(1–2):30–48

    Article  ADS  Google Scholar 

  • Hinds WC (1999) Aerosol technology: properties, behavior, and measurement of airborne particles. Wiley, USA

    Google Scholar 

  • Hinz KP, Kaufmann R, Spengler B (1994) Laser-induced mass analysis of single particles in the airborne state. Anal Chem 66(13):2071–2076

    Article  Google Scholar 

  • Jaklevic JM, Gatti RC, Goulding FS, Loo BW (1981) A. beta-gauge method applied to aerosol samples. Environ Sci Technol 15(6):680–686

    Article  ADS  Google Scholar 

  • Janssens KH (ed) (2013) Modern methods for analysing archaeological and historical glass, vol 1. Wiley

    Google Scholar 

  • Jaques PA, Ambs JL, Grant WL, Sioutas C (2004) Field evaluation of the differential TEOM monitor for continuous PM2. 5 mass concentrations special issue of aerosol science and technology on findings from the fine particulate matter supersites program. Aerosol Sci Technol 38(S1):49–59

    Article  ADS  Google Scholar 

  • Kamphus M, Ettner-Mahl M, Brands M, Curtius J, Drewnick F, Borrmann S (2008) Comparison of two aerodynamic lenses as an inlet for a single particle laser ablation mass spectrometer. Aerosol Sci Technol 42(11):970–980

    Article  ADS  Google Scholar 

  • Kenny LC, Merrifield T, Mark D, Gussman R, Thorpe A (2004) The development and designation testing of a new USEPA-approved fine particle inlet: a study of the USEPA designation process. Aerosol Sci Technol 38(S2):15–22

    Article  ADS  Google Scholar 

  • Keskinen J, Janka K, Lehtimäki M (1987) Virtual impactor as an accessory to optical particle counters. Aerosol Sci Technol 6(1):79–83

    Article  ADS  Google Scholar 

  • Keskinen J, Pietarinen K, Lehtimäki M (1992) Electrical low pressure impactor. J Aerosol Sci 23(4):353–360

    Article  ADS  Google Scholar 

  • Khlystov A, Stanier CO, Takahama S, Pandis SN (2005) Water content of ambient aerosol during the Pittsburgh air quality study. J Geophys Res Atmos 110(D07S10):1–10

    Google Scholar 

  • Le TC, Wang YC, Pui DY, Tsai CJ (2020a) Characterization of atmospheric PM2.5 inorganic aerosols using the semi-continuous PPWD-PILS-IC system and the ISORROPIA-II. Atmos 11(8):820

    Article  ADS  Google Scholar 

  • Le TC, Shukla KK, Chen YT, Chang SC, Lin TY, Li Z, Pui DY, Tsai CJ (2020b) On the concentration differences between PM2.5 FEM monitors and FRM samplers. Atmos Environ 222:117138

    Article  Google Scholar 

  • Lee JH, Hopke PK, Holsen TM, Polissar AV, Lee DW, Edgerton ES, Ondov JM, Allen G (2005) Measurements of fine particle mass concentrations using continuous and integrated monitors in eastern US cities. Aerosol Sci Technol 39(3):261–275

    Article  ADS  Google Scholar 

  • Lehmann U, Niemelä V, Mohr M (2004) New method for time-resolved diesel engine exhaust particle mass measurement. Environ Sci Technol 38(21):5704–5711

    Article  ADS  Google Scholar 

  • Li L, Huang Z, Dong J, Li M, Gao W, Nian H, Fu Z, Zhang G, Bi Z, Cheng P, Zhou Z (2011) Real time bipolar time-of-flight mass spectrometer for analyzing single aerosol particles. Int J Mass Spectrom 303(2–3):118–124

    Article  Google Scholar 

  • Liebhaber FB, Lehtimäki M, Willeke K (1991) Low-cost virtual impactor for large-particle amplification in optical particle counters. Aerosol Sci Technol 15(3):208–213

    Article  ADS  Google Scholar 

  • Liu CN, Lin SF, Awasthi A, Tsai CJ, Wu YC, Chen CF (2014) Sampling and conditioning artifacts of PM2. 5 in filter-based samplers. Atmos Environ 85:48–53

    Article  ADS  Google Scholar 

  • Maenhaut W, Ducastel G, Hillamo RE, Pakkanen TA (1993) Evaluation of the applicability of the MOUDI impactor for aerosol collections with subsequent multielement analysis by PIXE. Nucl Instrum Methods Phys Res, Sect B 75(1–4):249–256

    Article  ADS  Google Scholar 

  • Mamakos A, Ntziachristos L, Samaras Z (2006) Evaluation of the Dekati mass monitor for the measurement of exhaust particle mass emissions. Environ Sci Technol 40(15):4739–4745

    Article  ADS  Google Scholar 

  • McKeown PJ, Johnston MV, Murphy DM (1991) On-line single-particle analysis by laser desorption mass spectrometry. Anal Chem 63(18):2069–2073

    Article  Google Scholar 

  • Mecea V (2006) Fundamentals of mass measurements. J Therm Anal Calorim 86(1):9–16

    Article  Google Scholar 

  • Murphy DM, Thomson DS (1995) Laser ionization mass spectroscopy of single aerosol particles. Aerosol Sci Technol 22(3):237–249

    Article  ADS  Google Scholar 

  • Olin JG, Sem GJ (1971) Piezoelectric microbalance for monitoring the mass concentration of suspended particles. Atmos Environ (1967) 5(8):653–668

    Article  Google Scholar 

  • Peters TM, Norris GA, Vanderpool RW, Gemmill DB, Wiener RW, Murdoch RW, Mcelroy FF, Pitchford M (2001) Field performance of PM2. 5 federal reference method samplers. Aerosol Sci Technol 34(5):433–443

    Article  ADS  Google Scholar 

  • Prado GF, Zanetta DMT, Arbex MA, Braga AL, Pereira LAA, de Marchi MRR, de Melo Loureiro AP, Marcourakis T, Sugauara LE, Gattás GJF, Gonçalves FT (2012) Burnt sugarcane harvesting: particulate matter exposure and the effects on lung function, oxidative stress, and urinary 1-hydroxypyrene. Sci Total Environ 437:200–208

    Article  ADS  Google Scholar 

  • Prather KA, Nordmeyer T, Salt K (1994) Real-time characterization of individual aerosol particles using time-of-flight mass spectrometry. Anal Chem 66(9):1403–1407

    Article  Google Scholar 

  • Rizzo M, Scheff PA, Kaldy W (2003) Adjusting tapered element oscillating microbalance data for comparison with Federal Reference Method PM2. 5 measurements in region 5. J Air Waste Manag Assoc 53(5):596–607

    Article  Google Scholar 

  • Romay FJ, Roberts DL, Marple VA, Liu BYH, Olson BA (2002) A high-performance aerosol concentrator for biological agent detection. Aerosol Sci Technol 36(2):217–226

    Article  ADS  Google Scholar 

  • Salminen K, Karlsson V (2003) Comparability of low-volume PM10 sampler with beta-attenuation monitor in background air. Atmos Environ 37(26):3707–3712

    Article  ADS  Google Scholar 

  • Sarangi B, Aggarwal SG, Sinha D, Gupta PK (2016) Aerosol effective density measurement using scanning mobility particle sizer and quartz crystal microbalance with the estimation of involved uncertainty. Atmos Meas Tech 9(3):859–875

    Article  Google Scholar 

  • Sauerbrey G (1959) Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z Phys 155(2):206–222

    Article  ADS  Google Scholar 

  • Shin SE, Jung CH, Kim YP (2011) Analysis of the measurement difference for the PM10 concentrations between Beta-ray absorption and gravimetric methods at Gosan. Aerosol Air Qual Res 11(7):846–853

    Article  Google Scholar 

  • Shukla K, Aggarwal SG (2021) Performance check of beta gauge method under high PM2.5 mass loading and varying meteorological conditions in an urban atmosphere. Atmos Pollut Res 12(11):101215

    Article  Google Scholar 

  • Sobanska S, Coeur C, Maenhaut W, Adams F (2003) SEM-EDX characterisation of tropospheric aerosols in the Negev desert (Israel). J Atmos Chem 44(3):299–322

    Article  Google Scholar 

  • Sullivan RC, Prather KA (2005) Recent advances in our understanding of atmospheric chemistry and climate made possible by on-line aerosol analysis instrumentation. Anal Chem 77(12):3861–3886

    Article  Google Scholar 

  • Tortajada-Genaro LA, Borrás E (2011) Temperature effect of tapered element oscillating microbalance (TEOM) system measuring semi-volatile organic particulate matter. J Environ Monit 13(4):1017–1026

    Article  Google Scholar 

  • Tsai CJ, Chang CT, Huang CH (2006) Direct field observation of the relative humidity effect on the β-gauge readings. J Air Waste Manag Assoc 56(6):834–840

    Article  Google Scholar 

  • Tzou TZ (1999) Aerodynamic particle size of metered-dose inhalers determined by the quartz crystal microbalance and the Andersen cascade impactor. Int J Pharm 186(1):71–79

    Article  Google Scholar 

  • US EPA (2017) Ambient air monitoring reference and equivalent methods. 40 CFR, part 53, Federal Code of Regulations. US Government Printing Office, Washington, D.C.

    Google Scholar 

  • Wang S, Zordan CA, Johnston MV (2006) Chemical characterization of individual, airborne sub-10-nm particles and molecules. Anal Chem 78(6):1750–1754

    Article  Google Scholar 

  • Ward MD, Buttry DA (1990) In situ interfacial mass detection with piezoelectric transducers. Science 249(4972):1000–1007

    Article  ADS  Google Scholar 

  • Wedding JB, Weigand MA (1993) An automatic particle sampler with beta gauging. Air Waste 43(4):475–479

    Article  Google Scholar 

  • Whitby KT, Clark WE (1966) Electric aerosol particle counting and size distribution measuring system for the 0.015 to 1 μ size range 1. Tellus 18(2–3):573–586

    ADS  Google Scholar 

  • Wilson JC, Liu BY (1980) Aerodynamic particle size measurement by Laser-Doppler velocimetry. J Aerosol Sci 11(2):139–150

    Article  ADS  Google Scholar 

  • Wilson WE, Chow JC, Claiborn C, Fusheng W, Engelbrecht J, Watson JG (2002) Monitoring of particulate matter outdoors. Chemosphere 49(9):1009–1043

    Article  ADS  Google Scholar 

  • Wu J, Cooper D, Miller R (1989) Virtual impactor aerosol concentrator for cleanroom monitoring. J Environ Sci 32(4):52–56

    Google Scholar 

  • Zhu K, Zhang J, Lioy PJ (2007) Evaluation and comparison of continuous fine particulate matter monitors for measurement of ambient aerosols. J Air Waste Manag Assoc 57(12):1499–1506

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shankar G. Aggarwal .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Shukla, K., Aggarwal, S.G. (2023). Particulate Matter Measurement Techniques. In: Aswal, D.K., Yadav, S., Takatsuji, T., Rachakonda, P., Kumar, H. (eds) Handbook of Metrology and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-99-2074-7_133

Download citation

Publish with us

Policies and ethics

Navigation