Structural Design and Synthesis of Elemental Doped MXenes and MXenes-Based Composites

  • Chapter
  • First Online:
Handbook of Functionalized Nanostructured MXenes

Abstract

A rapidly develo** two-dimensional materials belonging to the family of transition metal carbides and nitrides are referred to as “MXenes” or “maxenes.“ MXenes are primarily made from their MAX or Mn + 1AXn predecessors in which M is a member of the first transition metal family, A is a member of the A-group, and together they form a huge class of multilayer hexagonal compounds (typically from groups 13 and 14), X is C or N, and n is 1 to 3. This process involves selective etching and exfoliation over the course of two steps. Classifications of MXenes that are frequently investigated include elementally doped MXenes (EDMs) and MXene-based composites (MBCs). A number of applications, including batteries, supercapacitors, catalysts, cocatalysts, contaminant removal, and sensors, have stimulated interest in MXene and its doped components and composites. In this chapter, the varieties of MXenes and their structural and synthetic characteristics, as well as any prospective uses for them in electrochemistry and energy storage, will be briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agnoli S, Favaro MJJOMCA (2016) Do** graphene with boron: a review of synthesis methods, physicochemical characterization, and emerging applications. J Mater Chem A 4(14):5002–5025

    Google Scholar 

  • Amiri A, Chen Y, Teng CB, Naraghi MJESM (2020) Porous Nitrogen-Doped MXene-Based Electrodes for Capacitive Deionization. 25:731–739

    Google Scholar 

  • Bilal M, Rizwan K, Adeel M, Iqbal HMN (2021) Hydrogen-based catalyst-assisted advanced oxidation processes to mitigate emerging pharmaceutical contaminants. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2021.11.018

  • Bu F, Zagho MM, Ibrahim Y, Ma B, Elzatahry A Zhao D (2020) Porous MXenes: Synthesis, structures, and applications. Nano Today, 30:100803

    Google Scholar 

  • Coleman JN, Lotya M, O’Neill A, Bergin SD, King PJ, Khan U, Smith RJJS (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 31(6017):568–571

    Google Scholar 

  • Fatima M, Fatheema J, Monir NB, Siddique AH, Khan B, Islam A, Rizwan SJFIC (2020) Nb-doped MXene with enhanced energy storage capacity and stability. Front Chem 168

    Google Scholar 

  • Gogotsi Y, Anasori BJAN (2019) The rise of MXenes, vol 13. ACS Publications, pp 8491–8494

    Google Scholar 

  • Gul S, Serna MI, Zahra SA, Arif N, Iqbal M, Akinwande D (2021) Un-doped and Er-adsorbed layered Nb2C MXene for efficient hydrazine sensing application. Surf Interfaces 24, 101074.

    Google Scholar 

  • Huang J, Li Z, Mao Y, Li ZJNS (2021) Progress and Biomedical Applications of MXenes. 2(8):1480–1508

    Google Scholar 

  • Iqbal A, Shahzad F, Hantanasirisakul K, Kim M-K, Kwon J, Hong J, Koo CMJS (2020) Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNT x (MXene). Science 369(6502):446–450

    Google Scholar 

  • Kadirsoy S, Atar N, Yola MLJNJOC (2020) Molecularly imprinted QCM sensor based on delaminated MXene for chlorpyrifos detection and QCM sensor validation. 44(16): 6524–6532

    Google Scholar 

  • Khazaei M, Ranjbar A, Arai M, Sasaki T, Yunoki SJJOMCC (2017) Electronic properties and applications of MXenes: a theoretical review. 5(10):2488–2503

    Google Scholar 

  • Liao L, Jiang D, Zheng K, Zhang M, Liu JJAFM (2021) Industry‐scale and environmentally stable Ti3C2Tx MXene based film for flexible energy storage devices. 31(35): 2103960

    Google Scholar 

  • Liu Y, Yu J, Guo D, Li Z, Su YJJOA (2020) Ti3C2Tx MXene/graphene nanocomposites: Synthesis and application in electrochemical energy storage. J Alloy Compd 815:152403

    Google Scholar 

  • Lu C, Yang L, Yan B, Sun L, Zhang P, Zhang W, Sun ZJAFM (2020) Nitrogen‐doped Ti3C2 MXene: mechanism investigation and electrochemical analysis. 30(47):2000852

    Google Scholar 

  • Mallakpour S, Behranvand V, Hussain CMJCI (2021) MXenes-based materials: Structure, synthesis, and various applications. 47(19):26585–26597

    Google Scholar 

  • Mayerberger EA, Urbanek O, McDaniel RM, Street RM, Barsoum MW, Schauer CLJJOAPS (2017) Preparation and characterization of polymer‐Ti3C2Tx (MXene) composite nanofibers produced via electrospinning. 134(37): 45295

    Google Scholar 

  • Naguib M, Barsoum MW, Gogotsi YJAM (2021) Ten Years of Progress in the Synthesis and Development of MXenes. 33(39):2103393

    Google Scholar 

  • Ng VMH, Huang H, Zhou K, Lee PS, Que W, Xu JZ, Kong LBJJOMCA (2017) Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications. 5(7): 3039–3068

    Google Scholar 

  • Pazniak H, Benchakar M, Bilyk T, Liedl A, Busby Y, Noël C, Houssiau LJAN (2021) Ion Implantation as an Approach for Structural Modifications and Functionalization of Ti3C2T x MXenes. 15(3): 4245–4255

    Google Scholar 

  • Peng W, Luo M, Xu X, Jiang K, Peng M, Chen D, Tan YJAEM (2020) Spontaneous atomic ruthenium do** in Mo2CTX MXene defects enhances electrocatalytic activity for the nitrogen reduction reaction. 10(25):2001364

    Google Scholar 

  • Qamar SA, Hassan AA, Rizwan K, Rasheed T, Bilal M, Nguyen TA, Iqbal HMN (2022) 19 - Biodegradation of micropollutants. In: Iqbal HMN, Bilal M, Nguyen TA, Yasin G (eds) Biodegradation and Biodeterioration At the Nanoscale. Elsevier, pp 477–507

    Chapter  Google Scholar 

  • Qu G, Zhou Y, Wu T, Zhao G, Li F, Kang Y, Xu CJAAEM (2018) Phosphorized MXene-Phase Molybdenum Carbide as an Earth-Abundant Hydrogen Evolution Electrocatalyst. 1(12):7206–7212

    Google Scholar 

  • Rao CNR, Gopalakrishnan K, Govindaraj AJNT (2014) Synthesis, properties and applications of graphene doped with boron, nitrogen and other elements. 9(3):324–343

    Google Scholar 

  • Rasheed T, Kausar F, Rizwan K, Adeel M, Sher F, Haider S (2021) Two dimensional MXenes as emerging paradigm for adsorptive removal of toxic metallic pollutants from wastewater. Chemosphere: 132319. https://doi.org/10.1016/j.chemosphere.2021.132319

  • Rasheed T, Rizwan K, Shafi S, Bilal M (2022) 25 - Nanobiodegradation of pharmaceutical pollutants. In: Iqbal HMN, Bilal M, Nguyen TA, Yasin G (eds) Biodegradation and biodeterioration at the nanoscale. Elsevier, pp 635–653

    Chapter  Google Scholar 

  • Rizwan K, Babar ZB, Munir S, Arshad A, Rauf A (2022a) Recent advancements in engineered biopolymeric-nanohybrids: A greener approach for adsorptive-remediation of noxious metals from aqueous matrices. Environ Res 215:114398. https://doi.org/10.1016/j.envres.2022.114398

    Article  Google Scholar 

  • Rizwan K, Bilal M, Slimani Y, Show PL, Rtimi S, Roy A, Iqbal HM (2022b) Hydrogen-based sono-hybrid catalytic degradation and mitigation of industrially-originated dye-based pollutants. Int J Hydrog Energy

    Google Scholar 

  • Rizwan K, Rahdar A, Bilal M, Iqbal HMN (2022c) MXene-based electrochemical and biosensing platforms to detect toxic elements and pesticides pollutants from environmental matrices. Chemosphere 291:132820. https://doi.org/10.1016/j.chemosphere.2021.132820

    Article  ADS  Google Scholar 

  • Rizwan K, Rasheed T, Bilal M (2022d) 10 - Nano-biodegradation of polymers. In: Iqbal HMN, Bilal M, Nguyen TA, Yasin G (eds) Biodegradation and biodeterioration at the nanoscale. Elsevier, pp 213–238

    Chapter  Google Scholar 

  • Ronchi RM, Arantes JT, Santos SFJCI (2019) Synthesis, structure, properties and applications of MXenes: current status and perspectives. 45(15):18167–18188

    Google Scholar 

  • Schultz T, Frey NC, Hantanasirisakul K, Park S, May SJ, Shenoy VB, Koch NJCOM (2019) Surface termination dependent work function and electronic properties of Ti3C2T x MXene. 31(17): 6590–6597

    Google Scholar 

  • Shakeel A, Rizwan K, Farooq U, Iqbal S, Altaf AA (2022) Advanced polymeric/inorganic nanohybrids: An integrated platform for gas sensing applications. Chemosphere: 133772

    Google Scholar 

  • Sun H, Zhang Y, Xu X, Zhou J, Yang F, Li H, Qiu ZJJOEC (2021) Strongly coupled Te-SnS2/MXene superstructure with self-autoadjustable function for fast and stable potassium ion storage. 61:416–424

    Google Scholar 

  • Sun JJJ-ZY (2020) Q.-Q. Xu, J.-L. Qi, D. Zhou, H.-Y. Zhu. ACS Sustainable Chem Eng 8(39), 14630–14656.

    Google Scholar 

  • Tan C, Cao X, Wu X-J, He Q, Yang J, Zhang X, Nam G-HJCR (2017) Recent advances in ultrathin two-dimensional nanomaterials. 117(9):6225–6331

    Google Scholar 

  • Wang J, Sun XJE, Science E (2012) Understanding and recent development of carbon coating on LiFePO 4 cathode materials for lithium-ion batteries. Energy & Environ Sci 5(1): 5163–5185

    Google Scholar 

  • Wang J, Dong S, Li H, Chen Z, Jiang S, Wu L, Zhang XJJOEC (2018) Facile synthesis of layered Li4Ti5O12-Ti3C2Tx (MXene) composite for high-performance lithium ion battery. 810:27–33

    Google Scholar 

  • Wang R, Li M, Sun K, Zhang Y, Li J, Bao WJS (2022) Element‐doped Mxenes: Mechanism, synthesis, and applications, p 2201740

    Google Scholar 

  • Wei Y, Zhang P, Soomro RA, Zhu Q, Xu BJAM (2021) Advances in the synthesis of 2D MXenes. 33(39):2103148

    Google Scholar 

  • **a Z, Chen X, Ci H, Fan Z, Yi Y, Yin W, Sun JJJOEC (2021) Designing N-doped graphene/ReSe2/Ti3C2 MXene heterostructure frameworks as promising anodes for high-rate potassium-ion batteries. 53:155–162

    Google Scholar 

  • Yan J, Ren CE, Maleski K, Hatter CB, Anasori B, Urbankowski P, Gogotsi YJAFM (2017) Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv Funct Mater 27(30):1701264

    Google Scholar 

  • Yang C, Tang Y, Tian Y, Luo Y, Yin X, Que WJAAEM (2019) Methanol and diethanolamine assisted synthesis of flexible nitrogen-doped Ti3C2 (MXene) film for ultrahigh volumetric performance supercapacitor electrodes. ACS Appl Energy Mater 3(1):586–596

    Google Scholar 

  • Yu L, Fan Z, Shao Y, Tian Z, Sun J, Liu ZJAEM (2019) Versatile N-Doped MXene Ink for Printed Electrochemical Energy Storage Application. 9(34):1901839

    Google Scholar 

  • Zhan, X., Si, C., Zhou, J., & Sun, Z. J. N. H. (2020). MXene and MXene-based composites: synthesis, properties and environment-related applications. 5(2), 235–258.

    Google Scholar 

  • Zhang C, Kim S, Ghidiu M, Zhao MJAFM (2016a) Q. Barsoum MW, Nicolosi V, Gogotsi Y. 26:4143

    Google Scholar 

  • Zhang H, Wang L, Chen Q, Li P, Zhou A, Cao X, Design. (2016b). Preparation, mechanical and anti-friction performance of MXene/polymer composites. Mater & Des 92: 682–689

    Google Scholar 

  • Zhang L, Wei T, Jiang Z, Liu C, Jiang H, Chang J, Fan ZJNE (2018) Electrostatic interaction in electrospun nanofibers: double-layer carbon protection of CoFe2O4 nanosheets enabling ultralong-life and ultrahigh-rate lithium ion storage. Nano Energy 48:238–247

    Google Scholar 

  • Zhang C, Ma Y, Zhang X, Abdolhosseinzadeh S, Sheng H, Lan W, Materials E (2020a) Two‐dimensional transition metal carbides and nitrides (MXenes): synthesis, properties, and electrochemical energy storage applications. 3(1):29–55

    Google Scholar 

  • Zhang YZ, Wang Y, Jiang Q, El‐Demellawi JK, Kim H, Alshareef HNJAM (2020b) MXene printing and patterned coating for device applications. Adv Mate 32(21): 1908486

    Google Scholar 

  • Zhao M, Ren C, Ling Z, Lukatskaya M, Zhang C, Van KJAM (2015) Aken, MW Barsoum and Y. Gogotsi. Adv Mate 27:339

    Google Scholar 

  • Zhao M-Q, Torelli M, Ren CE, Ghidiu M, Ling Z, Anasori B, Gogotsi YJNE (2016) 2D titanium carbide and transition metal oxides hybrid electrodes for Li-ion storage. Nano Energy 30:603–613

    Google Scholar 

  • Zheng Z, Grünker R, Feng XJAM (2016). Synthetic two‐dimensional materials: a new paradigm of membranes for ultimate separation. Advanced materials 28(31):6529–6545

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ataf Ali Altaf .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shoukat, J., Anila, Iqbal, A., Ashiq, M.S., Altaf, A.A., Kausar, S. (2023). Structural Design and Synthesis of Elemental Doped MXenes and MXenes-Based Composites. In: Rizwan, K., Khan, A., Ahmed Asiri, A.M. (eds) Handbook of Functionalized Nanostructured MXenes. Smart Nanomaterials Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-2038-9_3

Download citation

Publish with us

Policies and ethics

Navigation