Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 293))

  • 128 Accesses

Abstract

Wear and fatigue are the serious concerns for engineering structures and components like turbine blades, crank shaft, thermal power plant, gears etc. An investigation on wear behavior of nitrided 13/4 martensitic stainless steel resulting from low temperature salt bath nitriding is presented in this work. 13/4 martensitic stainless steel was nitrided in salt bath at 500 °C. The nitrided layer thickness, hardness and erosion wear behavior of the treated material is studied. Results show that low temperature treatment produced a hard layer without forming chromium nitride precipitates, which is the greatest challenge during nitriding of stainless steels, thus kee** stainless properties of the steels intact. The slurry erosion behavior of nitrided steels shows that 4 hour nitriding resulted in minimum erosion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mann, B.S.: Erosion visualisation and characteristics of a two dimensional diffusion treated martensitic stainless steel hydrofoil. Wear 217(1), 56–61 (1998)

    Article  Google Scholar 

  2. Mohan, N., Chaudhari, G.: Microstructural evolution and mechanical behaviour of boronized martensitic stainless steels. Surf. Eng. 38(5), 552–561 (2022)

    Article  Google Scholar 

  3. Tong, D.: Cavitation and wear on hydraulic machines. Int. WP DC Int. 3, 37–44 (1981)

    Google Scholar 

  4. Mittemeijer, E.J.: Fundamentals of nitriding and nitrocarburizing, ASM Handbook. In: Steel Heat Treating Fundamentals and Processes, vol. 4A, pp. 619–646 (2013)

    Google Scholar 

  5. Li, C.X., Bell, T.:Corrosion properties of plasma nitrided AISI 410 martensitic stainless steel in 3.5% NaCl and 1% HCl aqueous solutions. Corros. Sci. 48, 2036–2049 (2006)

    Google Scholar 

  6. Sun, Y., Bell, T., Wood, G.: Wear behaviour of plasma-nitrided martensitic stainless steel. Wear 178, 131–138 (1994)

    Article  Google Scholar 

  7. Alphonsa, I., Chainani, A., Raole, P.M., Ganguli, B., John, P.I.: A study of martensitic stainless steel AISI 420 modified using plasma nitriding. Surf. Coat. Technol. 150, 263–268 (2002)

    Article  Google Scholar 

  8. Li, C.X., Bell, T.: Corrosion properties of active screen plasma nitrided 316 austenitic stainless steel. Corros. Sci. 46(6), 1527–1547 (2004)

    Article  Google Scholar 

  9. Kumar, N., Chaudhari, G.P., Meka, S.R.: Investigation of low-temperature liquid nitriding conditions for 316 stainless steel for improved mechanical and corrosion response. Trans. Indian Inst. Met. (2019)

    Google Scholar 

  10. Prakash, G., Nath, S.K.: Studies on enhancement of silt erosion resistance of 13/4 martensitic stainless steel by low-temperature salt bath nitriding. J. Mater. Eng. Perform (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akeshwar Singh Yadav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yadav, A.S., Kumar, N., Mahendru, G., Prakash, G., Nath, S.K. (2023). Erosive Wear of Low Temperature Nitrided 13/4 MSS for Hydro-turbine Application. In: Tewari, A., Dhawan, N., Agarwal, G., Das, S., Mishra, S., Karmakar, A. (eds) Proceedings of the 3rd International Conference on Advances in Materials Processing: Challenges and Opportunities. AMPCO 2022. Springer Proceedings in Physics, vol 293. Springer, Singapore. https://doi.org/10.1007/978-981-99-1971-0_19

Download citation

Publish with us

Policies and ethics

Navigation