How Artificial Intelligence is Transforming Medicine: The Future of Pharmaceutical Research

  • Chapter
  • First Online:
Industry 4.0 and Healthcare

Part of the book series: Advanced Technologies and Societal Change ((ATSC))

  • 121 Accesses

Abstract

For pharmaceutical businesses and biochemical experts, drug design and development is a critical field of study. Low effectiveness, off-target delivery, consumption of time, and increased price, on the other hand, provide a barrier and hurdles for medication design and development. Furthermore, the drug development process is hampered by complicated and large data from genomes, proteomics, microarray information, and clinical trials. In drug research and development, artificial intelligence and machine learning algorithms are critical. In other terms, deep learning algorithms and artificial neural networks have revolutionized the field. To analyse medications and their different uses, machine learning (ML) approaches are being used to anticipate substances with pharmacological properties, particular pharmacodynamic, absorption, distribution, metabolism, excretion, and toxicity (ADMET) features. Peptide formulation, edifice virtual testing, ligand-based silico, toxicity prognostication, drug tracking and release, pharmacophore modelling, quantifiable structure–activity connection, drug realigning, polypharmacology, and physical and chemical action have all used machine learning and data mining algorithms. The use of artificial intelligence and deep learning in this discipline is bolstered by historical evidence. Furthermore, fresh data mining, curation, and administration strategies aided newly built modelling algorithms significantly. Advanced artificial intelligence (AI) seems to have the potential to greatly improve the statistical methodology's involvement in drug development. AI's use in drug research, medicinal chemistry, pharmaceutical efficiency, and clinical trials will undoubtedly minimize human burden while also allowing for the achievement of goals in a short amount of time. The intersection of machine learning approaches, computational tools, and the prospects of AI in the pharma industry is explored in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ramesh, A., et al.: Artificial intelligence in medicine. Ann. R. Coll. Surg. Engl. 86, 334–338 (2004)

    Article  Google Scholar 

  2. Miles, J., Walker, A.: The potential application of artificial intelligence in transport. IEE Proc. Intell. Transport Syst. 153, 183–198 (2006).

    Google Scholar 

  3. Yang, Y., Siau Keng, L.: A qualitative research on marketing and sales in the artificial intelligence age. In: MWAIS 2018 Proceedings, vol. 41 (2018)

    Google Scholar 

  4. Wirtz, B.W., et al.: Artificial intelligence and the public sector—applications and challenges. Int. J. Public Adm. 42, 596–615 (2019)

    Article  Google Scholar 

  5. Hamet, P., Tremblay, J.: Artificial intelligence in medicine. Metabolism 69, S36–S40 (2017)

    Article  Google Scholar 

  6. Hassanzadeh, P., Atyabi, F., Dinarvand, R.: The significance of artificial intelligence in drug delivery system design. Adv. Drug Deliv. Rev. 151, 169–190 (2019)

    Article  Google Scholar 

  7. Duch, W., Swaminathan, K., Meller, J.: Artificial intelligence approaches for rational drug design and discovery. Curr. Pharm. Des. 13(14), 1497–1508 (2007)

    Article  Google Scholar 

  8. Zhang, L., Tan, J., Han, D., Zhu, H.: From machine learning to deep learning: progress in machine intelligence for rational drug discovery. Drug Discovery Today 22(11), 1680–1685 (2017)

    Article  Google Scholar 

  9. Jordan, A.M.: Artificial intelligence in drug design—the storm before the calm? ACS Med. Chem. Lett. 9(12), 1150–1152 (2018)

    Article  Google Scholar 

  10. Mitchell, T. M., Mitchell, T. M.: Machine Learning, Vol. 1, No. 9. McGraw-hill, New York (1997).

    Google Scholar 

  11. Reardon, S.: Rise of robot radiologists. Nature 576, S54–S58 (1997)

    Article  Google Scholar 

  12. Lasko, T.A., Denny, J.C., Levy, M.A.: Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data. PLoS ONE 8, e66341 (2013)

    Article  Google Scholar 

  13. Baker, R.E., Pena, J.M., Jayamohan, J., Jérusalem, A.: Mechanistic models versus machine learning, a fight worth fighting for the biological community? Biol. Let. 14(5), 20170660 (2018)

    Article  Google Scholar 

  14. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)

    Article  Google Scholar 

  15. Sharma, P.: Applications of statistical tools for optimization and development of smart drug delivery system. In: Ahmad, U., Haider, M.F., Akhtar, J. (eds.) Smart Drug Delivery. IntechOpen, London. https://doi.org/10.5772/intechopen.99632(2021)

  16. Wiens, J., Saria, S., Sendak, M., et al.: Do no harm: a roadmap for responsible machine learning for health care. Nat Med 25, 1337–1340 (2019)

    Article  Google Scholar 

  17. Dodaro, G.L.: Fiscal year 2020 budget request: US Government Accountability Office. United States Government Accountability Office (2019)

    Google Scholar 

  18. Sendak, M.P., D’Arcy, J., Kashyap, S., et al.: A path for translation of machine learning products into healthcare delivery. EMJ Innov 10, 19–00172 (2020)

    Google Scholar 

  19. Andrews, M., McConnell, J., Wescott, A.: Development as Leadership-Led Change: A report for the Global Leadership Initiative. World Bank Publications (2010)

    Google Scholar 

  20. Andrews, M.: Who really leads development? In: WIDER working paper 2013/092. UNU-WIDER (2013)

    Google Scholar 

  21. Davahli, M.R., Karwowski, W., Fiok, K., Wan, T., Parsaei, H.R.: Controlling safety of artificial intelligence-based systems in healthcare. Symmetry 13, 102 (2021)

    Article  Google Scholar 

  22. Mesko, B.: The role of artificial intelligence in precision medicine. Expert Rev. Precis. Med. Drug Develop. 2(5), 239–241 (2017)

    Article  Google Scholar 

  23. Muehlematter, U.J., Daniore, P., Vokinger, K.N.: Approval of artificial intelligence and machine learning-based medical devices in the USA and Europe (2015–20): a comparative analysis. Lancet Digital Health 3, e195-203 (2021)

    Article  Google Scholar 

  24. Wang, X., Peng, Y., Lu, L., et al.: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. IEEE CVPR 2097–106 (2017)

    Google Scholar 

  25. Esteva, A., Robicquet, A., Ramsundar, B., et al.: A guide to deep learning in healthcare. Nat Med 225, 24–29 (2019)

    Article  Google Scholar 

  26. Bejnordi, B.E., Veta, M., Van Diest, P.J., et al.: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318, 2199–2210 (2017)

    Article  Google Scholar 

  27. Strodthoff, N., Strodthoff, C.: Detecting and interpreting myocardial infarction using fully convolutional neural networks. Physiol. Meas. 40, 015001 (2019)

    Article  Google Scholar 

  28. Álvarez-Machancoses, Ó., & Fernández-Martínez, J. L.: Using artificial intelligence methods to speed up drug discovery. Expert Opin. Drug Discovery. 14,769–777 (2019)

    Google Scholar 

  29. Fleming, N.: How artificial intelligence is changing drug discovery. Nature 557, S55–S55 (2018)

    Article  Google Scholar 

  30. Dana, D., et al.: Deep learning in drug discovery and medicine; scratching the surface. Molecules 23, 2384 (2018)

    Article  Google Scholar 

  31. Bellemo, V., Lim, Z.W., Lim, G., et al.: Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study. Lancet Digit Health 1, e35-44 (2019)

    Article  Google Scholar 

  32. Gulshan, V., Peng, L., Coram, M., et al.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316, 2402–2410 (2016)

    Article  Google Scholar 

  33. Schnall, M.D., Imai, Y., Tomaszewski, J., Pollack, H.M., Lenkinski, R.E., Kressel, H.Y.: Prostate cancer: local staging with endorectal surface coil MR imaging. Radiology 178, 797–802 (1991)

    Article  Google Scholar 

  34. Ward, A.D., Crukley, C., McKenzie, C.A., Montreuil, J., Gibson, E., Romagnoli, C., Gomez, J.A., Moussa, M., Chin, J., Bauman, G.: Prostate: registration of digital histopathologic images to in vivo MR images acquired by using endorectal receive coil. Radiology 263, 856–864 (2012)

    Article  Google Scholar 

  35. Litjens, G., Toth, R., van de Ven, W., et al.: Evaluation of prostate segmentation algorithms for MRI: The PROMISE12 challenge. Med Image Anal. 18, 359–373 (2014)

    Article  Google Scholar 

  36. Sharma, P., Jain, V., Tailang, M.: Selection and role of polymers for designing of a drug carrier. In: Villarreal-Gómez, L.J. (ed.) Drug Carriers [Working Title]. IntechOpen, London. https://doi.org/10.5772/intechopen.103125(2022)

  37. Bajwa, J., Munir, U., Nori, A., Williams, B.: Artificial intelligence in healthcare: transforming the practice of medicine. Future Healthcare J. 8(2), e188 (2021)

    Article  Google Scholar 

  38. Mak, K.K., Pichika, M.R.: Artificial intelligence in drug development: present status and future prospects. Drug Discov. Today 24(3), 773–780 (2019)

    Article  Google Scholar 

  39. Hu, L., Zhang, C., Zeng, G., Chen, G., Wan, J., Guo, Z., Liu, J.: Metal-based quantum dots: synthesis, surface modification, transport and fate in aquatic environments and toxicity to microorgan-isms. RSC Adv. 6(82), 78595–78610 (2016)

    Article  Google Scholar 

  40. Stefania, C., et al.: Antiproliferative effect of Aurora kinase targeting in mesothelioma. Lung cancer (Amsterdam, Netherlands) 70(3), 271–279 (2010)

    Article  Google Scholar 

  41. Bai, Q., Tan, S., Xu, T., Liu, H., Huang, J., Yao, X.: MolAICal: a soft tool for 3D drug design of protein targets by artificial intelligence and classi-cal algorithm. Brief. Bioinf. 22(3), bbaa161 (2021)

    Google Scholar 

  42. Toker, D., et al.: A decision model for pharmaceutical marketing and a case study in Turkey. Ekonomska Istraivanja. 26, 101–114 (2013)

    Article  Google Scholar 

  43. Singh, J., et al.: Sales profession and professionals in the age of digitization and artificial intelligence technologies: concepts, priorities, and questions. J. Pers. Selling Sales Manage. 39, 2–22 (2019)

    Article  Google Scholar 

  44. Duran, O., et al.: Neural networks for cost estimation of shell and tube heat exchangers. Expert Syst. Appl. 36, 7435–7440 (2009)

    Article  Google Scholar 

  45. Park, Y., et al.: A literature review of factors affecting price and competition in the global pharmaceutical market. Value Health 19, A265 (2016)

    Article  Google Scholar 

  46. Wilson, B., KM, G.: Artificial intelligence and related technologies enabled nanomedicine for advanced cancer treatment. Future Med. 15, 433–435 (2020).

    Google Scholar 

  47. Ho, D., et al.: Artificial intelligence in nanomedicine. Nanoscale Horiz. 4, 365–377 (2019)

    Article  Google Scholar 

  48. Sacha, G.M., Varona, P.: Artificial intelligence in nanotechnology. Nanotechnology 24, 452002 (2013)

    Article  Google Scholar 

  49. Gupta, R., Srivastava, D., Sahu, M., Tiwari, S., Ambasta, R.K., Kumar, P.: Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol. Diversity 25(3), 1315–1360 (2021)

    Google Scholar 

  50. Sharma, P.: Modification of human behavior due to coronavirus outbreak: a brief study on current scenario. Asian J. Pharm. (AJP) 15(3), 1 (2021)

    Google Scholar 

  51. Sharma, P., Tailang, M.: Design, optimization, and evaluation of hydrogel of primaquine loaded nanoemulsion for malaria therapy. Futur J Pharm Sci. 6, 26 (2020)

    Google Scholar 

  52. Department of Health and Social Care.: NHS Constitution or England. DHSC. www.gov.uk/government/publications/the-nhs-constitution-for-england (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, P., Jain, V., Tailang, M. (2023). How Artificial Intelligence is Transforming Medicine: The Future of Pharmaceutical Research. In: Mishra, A., Lin, J.CW. (eds) Industry 4.0 and Healthcare . Advanced Technologies and Societal Change. Springer, Singapore. https://doi.org/10.1007/978-981-99-1949-9_7

Download citation

Publish with us

Policies and ethics

Navigation