Microbial Biomaterials and Their Industrial Applications

  • Chapter
  • First Online:
Microbial products for future industrialization

Part of the book series: Interdisciplinary Biotechnological Advances ((IBA))

  • 254 Accesses

Abstract

The present era is in quest of sustainable utility and management of natural resources. Biomaterial in origin is referred as naturally synthesized from living sources like plant and animal and even from microbes and agrowaste utilization too, which is primarily designed to augment, replace, or repair body tissues or organ. Modern concept of biomaterial encompasses a wider approach of application from food to fashion, architecture to agriculture, environment to industry, biofuel to “biofaber, automotive, nanostructures, and so on and so forth. Besides plant and animal sources, a myriad types of microbial biomaterial synthesis are dependent on a unique microbial metabolic and enzyme activity, genetic diversity, and biodegradability nature of the material itself. Besides this, genetically engineered microbes are not far behind for the efficient application in sectors like liquid fuel, functional biomaterials, nanoscale structure, biocomposites, etc. A diverse group of microbial sources like bacteria, fungi, algae, actinomycetes, yeast, etc. as biomaterial agents are widely exploited nowadays to meet the targets of sustainable development goal in abovementioned practices and so on to be mentioned. The present chapter focuses on a detailed overview of basic understanding of biomaterials, categorization of it including source, mode of operation, and involvement of microbial metabolism in usage of substrates and its heterogenous dimension in areas of cement, plastic, drug-delivery carrier, carriers of few important biomolecules in medicine or edible coating in food product packaging practices, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrew JJ, Dhakal HN (2022) Sustainable biobased composites for advanced applications: recent trends and future opportunities—a critical review. Composites Part C:Open Access 7:100220. https://doi.org/10.1016/j.jcomc.2021.100220

    Article  Google Scholar 

  • Anjum A, Zuber M, Zia KM, Noreen A, Anjum MN, Tabasum S (2016) Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: a review of recent advancements. Int J Biol Macromol 89:161–174. https://doi.org/10.1016/j.ijbiomac.2016.04.069

    Article  CAS  PubMed  Google Scholar 

  • Aslankoohi E, Rezaei MN, Vervoort Y, Courtin CM, Verstrepen KJ (2015) Glycerol production by fermenting yeast cells is essential for optimal bread dough fermentation. PLoS One 10:e0119364

    Article  PubMed  PubMed Central  Google Scholar 

  • Banupriya R, Nagarajan R, Nijanthan G, Pandi Maharajan M (2018) Mycel bricks—an eco-friendly building material using macroscopic fungi. Int J Comput Eng Sci 8(4):16807–16810

    Google Scholar 

  • Barikani M, Oliaei E, Seddiqi H, Honarkar H (2014) Preparation and application of chitin and its derivatives: a review. Iran Polym J 23(4):307–326

    Article  CAS  Google Scholar 

  • Brouns J, Dankers PYW (2020) Introduction of enzyme-responsivity in biomaterials to achieve dynamic reciprocity in cell-material interactions. Biomacromolecules 22(1):4–23. https://doi.org/10.1021/acs.biomac.0c00930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Y, Wang B (2009) Biodegradation of silk biomaterials. Int J Mol Sci 10(4):1514–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caridi A (2006) Enological functions of parietal yeast mannoproteins. Antonie Van Leeuwenhoek 89:417–422

    Article  PubMed  Google Scholar 

  • Cerimi K, Akkaya KC, Pohl C, Schmidt B, Neubauer P (2019) Fungi as source for new bio-based materials: a patent review. Fungal Biol Biotechnol 6:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Chao Q, **ao**g L, Na J et al (2015) Rheological properties and microstructure characterization of normal and waxy corn starch dry heated with soy protein isolate. Food Hydrocoll 48:1–7

    Article  CAS  Google Scholar 

  • Chen J, Zhu Y, Fu G, Song Y, ** Z, Sun Y, Zhang D (2016) High-level intra- and extra-cellular production of d-psicose 3-epimerase via a modified xylose-inducible expression system in Bacillus subtilis. J Ind Microbiol Biotechnol 43:1577–1591

    Article  CAS  PubMed  Google Scholar 

  • Cheng F, Gong Q, Yu H, Stephanopoulos G (2016) High-titer biosynthesis of hyaluronic acid by recombinant Corynebacterium glutamicum. Biotechnol J: Early version available online 11:574–584

    Article  CAS  PubMed  Google Scholar 

  • Cloete TE, Kwaadsteniet MD, Botes M, Lpez-Romero JM (2010) Nanotechnology in water treatment applications. Caister Academic press, Norfolk, UK

    Google Scholar 

  • Coma ME, Peltzer MA, Delgado JF, Salvay AG (2019) Water kefir grains as an innovative source of materials: study of plasticiser content on film properties. Eur Polym J 120:109234

    Article  CAS  Google Scholar 

  • Delgado JF, Peltzer MA, Salvay AG, de la Osa O, Wagner JR (2018) Characterization of thermal, mechanical and hydration properties of novel films based on Saccharomyces cerevisiae biomass. Innov Food Sci Emerg Technol 48:240–247

    Article  CAS  Google Scholar 

  • Dwiyantari W and Bayu M (2020). The application of microbial extracellular polymeric substances in food industry. IOP Conference Series: Earth and Environmental Science 426. 012181. https://doi.org/10.1088/1755-1315/426/1/012181

  • Earl AM, Losick R, Kolter R (2008) Ecology and genomics of Bacillus subtilis. Trends Microbiol 16:269–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edmilson C, de Siqueira J, de Souza R, Pinheiro IO, Formiga FR (2020) Levan-based nanostructured systems: an overview. Int J Pharm 580:119242., ISSN 0378-5173. https://doi.org/10.1016/j.ijpharm.2020.119242

    Article  CAS  Google Scholar 

  • Elmowafy EM, Tiboni M, Soliman ME (2019) Biocompatibility, biodegradation and biomedical applications of poly (lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles. J Pharm Investig 49:347–380

    Article  CAS  Google Scholar 

  • Galliker P, Hommes G, Schlosser D, Corvini PF, Shahgaldian P (2010) Laccase-modified silica nanoparticles efficiently catalyze the transformation of phenolic compounds. J Colloid Interface Sci 349:98–105

    Article  CAS  PubMed  Google Scholar 

  • Girometta C, Picco AM, Baiguera RM, Dondi D, Babbini S, Cartabia M, Savino E (2019) Physico-mechanical and thermodynamic properties of mycelium-based biocomposites: a review. Sustain For 11:281

    Article  CAS  Google Scholar 

  • Goksungur Y, Uzuno Gulları P, Dagbagh S (2011) Optimization of pullulan production from hydrolysed potato starch waste by response surface methodology. Carbohydr Polym 83:1330–1337

    Article  CAS  Google Scholar 

  • Haneef M, Ceseracciu L, Canale C, Bayer IS, Heredia-Guerrero JA, Athanassiou A (2017) Advanced materials from fungal mycelium: fabrication and tuning of physical properties. Sci Rep 7:41292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill M (2016.) Toadstool footstools: are organisms manufacturing's future? [online] Phys.org. https://phys.org/news/2016-11-toadstoolfootstools-future.html

  • Huang J, Zhu S, Li C, Zhang C, Ji Y (2020) Cost-effective optimization of gellan gum production by Sphingomonas paucimobilis using corn steep liquor. Prep Biochem Biotechnol 50:1–7

    Article  CAS  Google Scholar 

  • Ige OO, Umoru EL, Aribo S (2012) Natural products: a minefield of biomaterials: a review article. ISRN Mater Sci 2012:1–30. https://doi.org/10.5402/2012/983062

    Article  CAS  Google Scholar 

  • Imran M, Revol-Junelles AM, Rene N et al (2012) Microstructure and physico-chemical evaluation of nanoemulsion-based antimicrobial peptides embedded in bioactive packaging films. Food Hydrocoll 29:407–419

    Article  CAS  Google Scholar 

  • Islam MA, Hadadi N, Ataman M, Hatzimanikatis V, Stephanopoulos G (2017) Exploring biochemical pathways for mono-ethylene glycol (MEG) synthesis from synthesis gas. Metab Eng 41:173–181

    Article  CAS  PubMed  Google Scholar 

  • Jensen A, Lim LT, Barbut S et al (2015) Development and characterization of soy protein films incorporated with cellulose fibers using a hot surface casting technique. LWT-Food Sci Technol 60:162–170

    Article  CAS  Google Scholar 

  • Jones M, Mautner A, Luenco S, Bismarck A, John S (2020) Engineered mycelium composite construction materials from fungal biorefineries: a critical review. Mater Des 187:108397. https://doi.org/10.1016/j.matdes.2019.108397

    Article  CAS  Google Scholar 

  • Kofuji K, Huang Y, Tsubaki K, Kokido F, Nishikawa K, Isobe T, Murata Y (2010) Preparation and evaluation of a novel wound dressing sheet comprised of -glucan–chitosan complex. React Funct Polym 70:784–789

    Article  CAS  Google Scholar 

  • Li Y, Li G, Zhao X, Shao Y, Wu M, Ma T (2019) Regulation of hyaluronic acid molecular weight and titer by temperature in engineered Bacillus subtilis. 3 Biotech 9:225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ling Lin F, Zi Rong X, Wei Fen L, Jiang Bing S, ** L, Chun **a H (2007) Protein secretion pathways in Bacillus subtilis: implication for optimization of heterologous protein secretion. Biotechnol Adv 25:1–12

    Article  Google Scholar 

  • Lopez O, Garcia MA, Villar MA, Gentili A, Rodriguez MS, Albertengo L (2014) Thermo-compression of biodegradable thermoplastic corn starch films containing chitin and chitosan. LWT-Food Sci Technol 57(1):106–115

    Article  CAS  Google Scholar 

  • Luengo MJ, Garcia B, Sandoval A, Nharro G, Olivera RE (2003) Bioplastics from microorganisms. Curr Opin Microbiol 6:251–260

    Article  CAS  PubMed  Google Scholar 

  • Martinez E, Salvay AG, Ludemann V, Peltzer MA (2017) In Proceedings of the XVI congress CYTAL 2017. Argentinean congress in food science and technology, Mar del Plata, Argentina, 18–20. ISBN 978-987-22165-8-0

    Google Scholar 

  • Marzena Z, Kulawik P, Tkaczewska J, Migdał W, Filipczak-Fiutak M, Fiutak G (2016) The effect of hyaluronic acid addition on the properties of smoked homogenized sausages. J Sci Food Agric 97:2316–2326

    Google Scholar 

  • Necas J, Bartosikova L, Brauner P, Kolar J (2008) Hyaluronic acid (hyaluronan): a review. Vet Med 53:397–411

    Article  CAS  Google Scholar 

  • Pellicer E, Nikolic D, Sort J, Baro MD, Zivic F, Grujovic N, Grujic R, Pelemis S (2017) Advances in applications of industrial biomaterials. https://doi.org/10.1007/978-3-319-62767-0

    Book  Google Scholar 

  • Sanjaykumar MS, Kumar BAV, Yogesh B, Pradeep S (2020) Applications of biomaterials in automobile, medicine and food industries: a review. Int J Recent Sci Res 11(12):40321–40328. https://doi.org/10.24327/ijrsr.2020.1112.5674

    Article  Google Scholar 

  • Santamaría ME, Diaz-Mendoza M, Diaz I, Martinez M (2014) Plant protein peptidase inhibitors: an evolutionary overview based on comparative genomics. BMC Genomics 15:812

    Article  PubMed  PubMed Central  Google Scholar 

  • Santhosh BS, Bhavana DR, Rakesh MG (2018) Mycelium composites: an emerging green building material. Int Res J Eng Technol (IRJET) 05(06):3066–3068

    Google Scholar 

  • Sharma N (2019) Polyhydroxybutyrate (PHB) production by bacteria and its application as biodegradable plastic in various industries. Acad J Polym Sci 2:1–3. https://doi.org/10.19080/AJOP.2019.02.555587

    Article  CAS  Google Scholar 

  • Sheng J, Ling P, Wang F (2014) Constructing a recombinant hyaluronic acid biosynthesis operon and producing food-grade hyaluronic acid in Lactococcus lactis. J Ind Microbiol Biotechnol 42:197–206

    Article  PubMed  Google Scholar 

  • Shoda M, Sugano Y (2005) Recent advances in bacterial cellulose production. Biotechnol Bioproc E 10:1–10

    Article  CAS  Google Scholar 

  • Song Y, Nikolof JM, Zhang D (2015) Improving protein production on the level of regulation of both expression and secretion pathways in Bacillus subtilis. J Microbiol Biotechnol 25:963–977

    Article  CAS  PubMed  Google Scholar 

  • Steinbüchel A (2003) Production of rubber-like polymers by microorganisms. Curr Opin Microbiol 6(3):261–270:261–270. https://doi.org/10.1016/s1369-5274(03)00061-4

    Article  Google Scholar 

  • Sun W, Tajvidi M, Hunt CG et al (2019) Fully bio-based hybrid composites made of wood, fungal mycelium and cellulose Nanofibrils. Sci Rep 9:3766. https://doi.org/10.1038/s41598-019-40442-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szałapata K, Osińska-Jaroszuk M, Kapral-Piotrowska J, Pawlikowska-Pawlęga B, Łopucki R, Mroczka R, Jarosz-Wilkołazka A (2020) Serine protease inhibitors—new molecules for modification of polymeric biomaterials. Biomol Ther 10(1):82. https://doi.org/10.3390/biom10010082

    Article  CAS  Google Scholar 

  • Tawakkal ISMA, Cran MJ, Miltz J, Bigger SW (2014) A review of poly (lactic acid)-based materials for antimicrobial packaging. J Food Sci 279:R1477–R1490

    Google Scholar 

  • Thomas PE (2021) Designing enzyme-responsive biomaterials. In: Peptide-based biomaterials. The Royal Society of Chemistry, pp 76–125. https://doi.org/10.1039/9781839161148-00076

    Chapter  Google Scholar 

  • Trakunjae C, Boondaeng A, Apiwatanapiwat W et al (2021) Enhanced polyhydroxybutyrate (PHB) production by newly isolated rare actinomycetes Rhodococcus sp. strain BSRT1-1 using response surface methodology. Sci Rep 11:1896. https://doi.org/10.1038/s41598-021-81386-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Padua GW (2005) Properties of zein films coated with drying oils. J Agric Food Chem 53(9):3444–3448

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wang Y, Wang X, Zhang D, Wu S, Zhang G (2016) Enhanced thermal stability of lichenase from Bacillus subtilis 168 by SpyTag/SpyCatcher mediated spontaneous cyclization. Biotechnol Biofuels 9(79):1–7

    Google Scholar 

  • Yuan S, Liu C, Fang H, Zhang D (2020) Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials and medicine. Microb Cell Factories 19(173):1–12

    Google Scholar 

  • Zeller P, Zocher D (2012) Ecovative’s breakthrough biomaterials. Fungi Mag 5:51–56

    Google Scholar 

  • Zhang K, Su L, Wu J (2020) Recent advances in recombinant protein production by Bacillus subtilis. Annu Rev Food Sci Technol 11:295–318

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mousumi Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhattacharya, C., Das, M. (2023). Microbial Biomaterials and Their Industrial Applications. In: Sarkar, A., Ahmed, I.A. (eds) Microbial products for future industrialization. Interdisciplinary Biotechnological Advances. Springer, Singapore. https://doi.org/10.1007/978-981-99-1737-2_15

Download citation

Publish with us

Policies and ethics

Navigation