Study of Two-Dimensional Polarization Maps of the Skin for Differentiation of Lifetime and Post-mortal Nature and Temporal Dynamics of Abrasions

  • Chapter
  • First Online:
Laser Polarimetry of Biological Tissues

Abstract

The results of an experimental study of the coordinate distributions of azimuths and ellipticity of polarization and temporal dynamics of the change in the structure of power spectra of the indicated two-dimensional distributions of the parameters of the polarization of laser radiation transformed by histological sections of the skin of biomanekens allow us to draw the following conclusions. The justified processes of the formation of coordinate distributions of polarization parameters and changes in the spatial-frequency structure of the power spectra of the distributions of the azimuth and the ellipticity of polarization of laser images of lifetime and post-mortal skin lesions of biomanekens were analyzed, and the ways of their diagnostic use were established. Coordinate distributions of azimuths and ellipticities of polarization of laser radiation scattered by abrasions of the skin tend over time after appearance the structure of their polarization domains to growth. The possibilities of diagnosing damage time by temporarily monitoring changes in the average (1–90 h) and dispersion (1–30 h) of the coordinate distributions of azimuths and ellipticity of polarization of laser images of histological sections of skin abrasion samples of biomanekens are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 37.44
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 48.14
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Jacques, Polarized light imaging of biological tissues, in Handbook of Biomedical Optics, ed. by D. Boas, C. Pitris, N. Ramanujam (CRC Press, Boca Raton, London, New York, 2011), pp. 649–669

    Google Scholar 

  2. N. Ghosh, Tissue polarimetry: concepts, challenges, applications, and outlook. J. Biomed. Opt. 16(11), 110801 (2011)

    Article  ADS  Google Scholar 

  3. M. Swami, H. Patel, P. Gupta, Conversion of 3×3 Mueller matrix to 4×4 Mueller matrix for non-depolarizing samples. Opt. Commun. 286, 18–22 (2013)

    Article  ADS  Google Scholar 

  4. D. Layden, N. Ghosh, A. Vitkin, Quantitative polarimetry for tissue characterization and diagnosis, in Advanced Biophotonics: Tissue Optical Sectioning, ed. by R. Wang, V. Tuchin, (CRC Press, Taylor & Francis Group, Boca Raton, London, New York, 2013), pp. 73–108

    Google Scholar 

  5. T. Vo-Dinh, in Biomedical Photonics Handbook, 3 vol. set (2nd ed., CRC Press, Boca Raton, 2014

    Google Scholar 

  6. A. Vitkin, N. Ghosh, A. Martino, Tissue polarimetry, in Photonics: Scientific Foundations, Technology and Applications, 4th edn., ed. by D. Andrews (John Wiley & Sons Inc., Hoboken, New Jersey, 2015), pp.239–321

    Chapter  Google Scholar 

  7. V. Tuchin, Tissue optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd edn. (SPIE Press, Bellingham, Washington, USA, 2007)

    Book  Google Scholar 

  8. W. Bickel, W. Bailey, Stokes vectors, Mueller matrices, and polarized scattered light. Am. J. Phys. 53(5), 468–478 (1985)

    Article  ADS  Google Scholar 

  9. V. Ushenko, O. Vanchuliak, M. Sakhnovskiy, O. Dubolazov, P. Grygoryshyn, I. Soltys, O. Olar, System of Mueller matrix polarization correlometry of biological polycrystalline layers. Proc. SPIE 10352, 103520U (2017)

    Google Scholar 

  10. V. Ushenko, O. Vanchuliak, M. Sakhnovskiy, O. Dubolazov, P. Grygoryshyn, I. Soltys, O. Olar, A. Antoniv, Polarization-interference map** of biological fluids polycrystalline films in differentiation of weak changes of optical anisotropy. Proc. SPIE 10396, 103962O (2017)

    Google Scholar 

  11. O. Dubolazov, L. Trifonyuk, Y. Marchuk, Y. Ushenko, V. Zhytaryuk, O. Prydiy, L. Kushnerik, I. Meglinskiy, Two-point Stokes vector parameters of object field for diagnosis and differentiation of optically anisotropic biological tissues. Proc. SPIE 10352, 103520V (2017)

    Google Scholar 

  12. O. Dubolazov, V. Ushenko, L. Trifoniuk, Y. Ushenko, V. Zhytaryuk, O. Prydiy, M. Grytsyuk, L. Kushnerik, I. Meglinskiy, Methods and means of 3D diffuse Mueller-matrix tomography of depolarizing optically anisotropic biological layers. Proc. SPIE 10396, 103962P (2017)

    Google Scholar 

  13. A. Ushenko, A. Dubolazov, V. Ushenko, O. Novakovskaya, Statistical analysis of polarization-inhomogeneous Fourier spectra of laser radiation scattered by human skin in the tasks of differentiation of benign and malignant formations. J. Biomed. Opt. 21(7), 071110 (2016)

    Article  ADS  Google Scholar 

  14. Y. Ushenko, G. Koval, A. Ushenko, O. Dubolazov, V. Ushenko, O. Novakovskaia, Mueller-matrix of laser-induced autofluorescence of polycrystalline films of dried peritoneal fluid in diagnostics of endometriosis. J. Biomed. Opt. 21(7), 071116 (2016)

    Article  ADS  Google Scholar 

  15. A. Dubolazov, N. Pashkovskaya, Y. Ushenko, Y. Marchuk, V. Ushenko, O. Novakovskaya, Birefringence images of polycrystalline films of human urine in early diagnostics of kidney pathology. Appl. Opt. 55(12), B85–B90 (2016)

    Article  Google Scholar 

  16. M. Garazdyuk, V. Bachinskyi, O. Vanchulyak, A. Ushenko, O. Dubolazov, M. Gorsky, Polarization-phase images of liquor polycrystalline films in determining time of death. Appl. Opt. 55(12), B67–B71 (2016)

    Article  Google Scholar 

  17. O. Dubolazov, A. Ushenko, Y. Ushenko, M. Sakhnovskiy, P. Grygoryshyn, N. Pavlyukovich, O. Pavlyukovich, V. Bachynskiy, S. Pavlov, V. Mishalov, Z. Omiotek, O. Mamyrbaev, Laser Müller matrix diagnostics of changes in the optical anisotropy of biological tissues, in Information Technology in Medical Diagnostics II—Proceedings of the International Scientific Internet Conference on Computer Graphics and Image Processing and 48th International Scientific and Practical Conference on Application of Lasers in Medicine and Biology, vol. 2018 (2019), pp. 195–203

    Google Scholar 

  18. V. Prysyazhnyuk, Y. Ushenko, A. Dubolazov, A. Ushenko, V. Ushenko, Polarization-dependent laser autofluorescence of the polycrystalline networks of blood plasma films in the task of liver pathology differentiation. Appl. Opt. 55(12), B126–B132 (2016)

    Article  Google Scholar 

  19. A. Ushenko, O. Dubolazov, V. Ushenko, O. Novakovskaya, O. Olar, Fourier polarimetry of human skin in the tasks of differentiation of benign and malignant formations. Appl. Opt. 55(12), B56–B60 (2016)

    Article  Google Scholar 

  20. H. Zhengbing, M. Ivashchenko, L. Lyushenko, D. Klyushnyk, Artificial neural network training criterion formulation using error continuous domain. Int. J. Mod. Educ. Comp. Sci. (IJMECS) 13(3), 13–22 (2021). https://doi.org/10.5815/ijmecs.2021.03.02

  21. H. Zhengbing, I. Tereikovskyi, D. Chernyshev, L.Tereikovska, O. Tereikovskyi, D. Wang, Procedure for processing biometric parameters based on wavelet transformations. Int. J. Mod. Educ. Comp. Sci. (IJMECS) 13(2), 11–22 (2021). https://doi.org/10.5815/ijmecs.2021.02.02

  22. H. Zhengbing, R. Odarchenko, S. Gnatyuk, M. Zaliskyi, A. Chaplits, S. Bondar, V. Borovik,Statistical techniques for detecting cyberattacks on computer networks based on an analysis of abnormal traffic behaviour. Int. J. Comp. Netw. Inf. Secur. (IJCNIS) 12(6), 1–13 (2020). https://doi.org/10.5815/ijcnis.2020.06.01

  23. H. Zhengbing, S. Gnatyuk, T. Okhrimenko, S. Tynymbayev, M. Iavich, High-speed and secure PRNG for cryptographic applications. Int. J. Comp. Netw. Inf. Secur. (IJCNIS) 12(3), 1–10 (2020). https://doi.org/10.5815/ijcnis.2020.03.01

  24. H. Zhengbing, I. Dychka, M. Onai, Y. Zhykin, Blind payment protocol for payment channel networks. Int. J. Comp. Netw. Inf. Secur. (IJCNIS) 11(6), 22–28 (2019). https://doi.org/10.5815/ijcnis.2019.06.03

  25. H. Zhengbing, Y. Khokhlachova, V. Sydorenko, I. Opirskyy, Method for optimization of information security systems behavior under conditions of influences. Int. J. Intell. Syst. Appl. (IJISA) 9(12), 46–58 (2017). https://doi.org/10.5815/ijisa.2017.12.05

  26. H. Zhengbing, S.V. Mashtalir, O.K. Tyshchenko, M.I. Stolbovyi, Video shots’ matching via various length of multidimensional time sequences. Int. J. Intell. Syst. Appl. (IJISA) 9(11), 10–16 (2017). https://doi.org/10.5815/ijisa.2017.11.02

  27. H. Zhengbing, I.A. Tereykovskiy, L.O. Tereykovska, V.V. Pogorelov, Determination of structural parameters of multilayer perceptron designed to estimate parameters of technical systems. Int. J. Intell. Syst. Appl. (IJISA) 9(10), 57–62 (2017). https://doi.org/10.5815/ijisa.2017.10.07

  28. H. Zhengbing, Y.V. Bodyanskiy, N.Y. Kulishova, O.K. Tyshchenko, A multidimensional extended neo-fuzzy neuron for facial expression recognition. Int. J. Intell. Syst. Appl. (IJISA) 9(9), 29–36 (2017). https://doi.org/10.5815/ijisa.2017.09.04

  29. H. Zhengbing, I. Dychka, Y. Sulema, Y. Radchenko, Graphical data steganographic protection method based on bits correspondence scheme. Int. J. Intell. Syst. Appl. (IJISA) 9(8), 34–40 (2017). https://doi.org/10.5815/ijisa.2017.08.04

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ushenko, Y.A. et al. (2023). Study of Two-Dimensional Polarization Maps of the Skin for Differentiation of Lifetime and Post-mortal Nature and Temporal Dynamics of Abrasions. In: Laser Polarimetry of Biological Tissues. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-1734-1_4

Download citation

Publish with us

Policies and ethics

Navigation