Chemoselective Synthesis of Propionic Acid from Biomass and Lactic Acid Over a Cobalt Catalyst in Aqueous Media

  • Chapter
  • First Online:
Diverse Hydrogen Sources for Biomass-derivatives Conversion
  • 140 Accesses

Abstract

A new non-fermentative process for the transformation of biomass carbohydrates and lactic acid (LA) into propionic acid (PA) was first reported over Cobalt catalyst in water. Co catalyst exhibited high catalytic activity for the formation of PA with Zn as a reductant. Various parameters, such as catalyst loading, Zn weight, water volume, temperature and reaction time, were investigated to improve the yield of PA, and the maximum value of 58.8% was achieved in the presence of 4 mmol Co and 10 mmol Zn in 7.5 mL H2O at 250 °C for 2 h. Recyclability of Co catalyst showed that Co could be effectively repeated four times without the loss of activity. Moreover, the result found that in situ-formed ZnO by oxidation of Zn in water could efficiently enhance catalytic activity of Co catalyst in the conversion of LA. Water acted not only as an excellent environmentally benign reaction medium but also as a hydrogen source. Besides, direct conversion of carbohydrate biomass, such as glucose, cellulose and starch, or similar compound such as glycolic acid also afforded the desired products. The present study provides great significance for practical application on the production of PA from LA and biomass carbohydrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 171.19
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 171.19
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bond, J. Q., Upadhye, A. A., Olcay, H., Tompsett, G. A., Jae, J., **ng, R., Alonso, D. M., Wang, D., Zhang, T., & Kumar, R. (2014). Production of renewable jet fuel range alkanes and commodity chemicals from integrated catalytic processing of biomass. Energy & Environmental Science, 7, 1500–1523.

    Article  CAS  Google Scholar 

  • Boyaval, P., & Corre, C. (1995). Production of propionic acid. Le Lait, 75, 453–461.

    Article  CAS  Google Scholar 

  • Chen, X., Chew, S. L., Kerton, F. M., & Yan, N. (2014). Direct conversion of chitin into a N-containing furan derivative. Green Chemistry, 16, 2204–2212.

    Article  CAS  Google Scholar 

  • Corma, A., Iborra, S., & Velty, A. (2007). Chemical routes for the transformation of biomass into chemicals. Chemical Reviews, 107, 2411–2502.

    Article  CAS  PubMed  Google Scholar 

  • Dauenhauer, P. J., & Huber, G. W. (2014). Biomass at the shale gas crossroads. Green Chemistry, 16, 382–383.

    Article  CAS  Google Scholar 

  • Dietz, D., Sabra, W., & Zeng, A.-P. (2013). Co-cultivation of Lactobacillus zeae and Veillonella criceti for the production of propionic acid. AMB Express, 3, 1–9.

    Article  Google Scholar 

  • Ding, D., Wang, J., **, J., Liu, X., Lu, G., & Wang, Y. (2014). High-yield production of levulinic acid from cellulose and its upgrading to γ-valerolactone. Green Chemistry, 16, 3846–3853.

    Article  CAS  Google Scholar 

  • Dishisha, T., Ibrahim, M. H., Cavero, V. H., Alvarez, M. T., & Hatti-Kaul, R. (2015). Improved propionic acid production from glycerol: Combining cyclic batch-and sequential batch fermentations with optimal nutrient composition. Bioresource Technology, 176, 80–87.

    Article  CAS  PubMed  Google Scholar 

  • Feng, X., Chen, F., Xu, H., Wu, B., Li, H., Li, S., & Ouyang, P. (2011). Green and economical production of propionic acid by Propionibacterium freudenreichii CCTCC M207015 in plant fibrous-bed bioreactor. Bioresource Technology, 102, 6141–6146.

    Article  CAS  PubMed  Google Scholar 

  • Gallezot, P. (2012). Conversion of biomass to selected chemical products. Chemical Society Reviews, 41, 1538–1558.

    Google Scholar 

  • Gao, P., Li, G., Yang, F., Lv, X.-N., Fan, H., Meng, L., & Yu, X.-Q. (2013). Preparation of lactic acid, formic acid and acetic acid from cotton cellulose by the alkaline pre-treatment and hydrothermal degradation. Industrial Crops and Products, 48, 61–67.

    Article  CAS  Google Scholar 

  • Gao, X., Chen, X., Zhang, J., Guo, W., **, F., & Yan, N. (2016). Transformation of chitin and waste shrimp shells into acetic acid and pyrrole. ACS Sustainable Chemistry & Engineering, 4, 3912–3920.

    Article  CAS  Google Scholar 

  • Hsu, S. T., & Yang, S. T. (1991). Propionic acid fermentation of lactose by Propionibacterium acidipropionici: Effects of pH. Biotechnology and Bioengineering, 38, 571–578.

    Article  CAS  PubMed  Google Scholar 

  • Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chemical Reviews, 106, 4044–4098.

    Article  CAS  PubMed  Google Scholar 

  • Huo, Z., Fang, Y., Ren, D., Zhang, S., Yao, G., Zeng, X., & **, F. (2014). Selective conversion of glucose into lactic acid with transition metal ions in diluted aqueous NaOH solution. ACS Sustainable Chemistry & Engineering, 2, 2765–2771.

    Article  CAS  Google Scholar 

  • Jiang, L., Cui, H., Zhu, L., Hu, Y., Xu, X., Li, S., & Huang, H. (2015). Enhanced propionic acid production from whey lactose with immobilized Propionibacterium acidipropionici and the role of trehalose synthesis in acid tolerance. Green Chemistry, 17, 250–259.

    Article  CAS  Google Scholar 

  • **, F., & Enomoto, H. (2009). Hydrothermal conversion of biomass into value-added products: Technology that mimics nature. BioResources, 4, 704–713.

    CAS  Google Scholar 

  • **, F., & Enomoto, H. (2011). Rapid and highly selective conversion of biomass into value-added products in hydrothermal conditions: Chemistry of acid/base-catalysed and oxidation reactions. Energy & Environmental Science, 4, 382–397.

    Article  CAS  Google Scholar 

  • Lewis, V. P., & Yang, S.-T. (1992). Propionic acid fermentation by Propionibacterium acidipropionici: Effect of growth substrate. Applied Microbiology and Biotechnology, 37, 437–442.

    Article  CAS  Google Scholar 

  • Liu, Y., Zhang, Y.-G., Zhang, R.-B., Zhang, F., & Zhu, J. (2011). Glycerol/glucose co-fermentation: One more proficient process to produce propionic acid by Propionibacterium acidipropionici. Current Microbiology, 62, 152–158.

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Campos, R., & de la Torre, M. (2002). Production of propionate by fed-batch fermentation of Propionibacterium acidipropionici using mixed feed of lactate and glucose. Biotechnology Letters, 24, 427–431.

    Google Scholar 

  • Miao, G., Zhu, C., Wang, J., Tan, Z., Wang, L., Liu, J., Kong, L., & Sun, Y. (2015). Efficient one-pot production of 1, 2-propanediol and ethylene glycol from microalgae (Chlorococcum sp.) in water. Green Chemistry, 17, 2538–2544.

    Article  CAS  Google Scholar 

  • Ren, D., Fu, J., Li, L., Liu, Y., **, F., & Huo, Z. (2016a). Efficient conversion of biomass-derived furfuryl alcohol to levulinate esters over commercial α-Fe2O3. RSC Advances, 6, 22174–22178.

    Article  CAS  Google Scholar 

  • Ren, D., Song, Z., Li, L., Liu, Y., **, F., & Huo, Z. (2016b). Production of 2, 5-hexanedione and 3-methyl-2-cyclopenten-1-one from 5-hydroxymethylfurfural. Green Chemistry, 18, 3075–3081.

    Article  CAS  Google Scholar 

  • Ren, D., Huo, Z., **ao, J., **, F., Wang, T., & Yao, G. (2017). Chemoselective synthesis of propionic acid from biomass and lactic acid over a cobalt catalyst in aqueous media. Green Chemistry, 19, 1308–1314.

    Article  Google Scholar 

  • Schmidt, L. D., & Dauenhauer, P. J. (2007). Hybrid routes to biofuels. Nature, 447, 914–915.

    Article  CAS  PubMed  Google Scholar 

  • Testova, L., Nieminen, K., Penttilä, P. A., Serimaa, R., Potthast, A. & Sixta, H. (2014). Cellulose degradation in alkaline media upon acidic pretreatment and stabilisation. Carbohydrate Polymers, 100, 185–194.

    Google Scholar 

  • Wang, F.-F., Liu, C.-L., & Dong, W.-S. (2013). Highly efficient production of lactic acid from cellulose using lanthanide triflate catalysts. Green Chemistry, 15, 2091–2095.

    Article  CAS  Google Scholar 

  • Wang, J., Yao, G., Wang, Y., Zhang, H., Huo, Z., & **, F. (2015). A novel Pd/C-catalyzed conversion of glucose to 1, 2-propanediol by water splitting with Zn. RSC Advances, 5, 51435–51439.

    Article  CAS  Google Scholar 

  • **ao, J., Huo, Z., Ren, D., Zhang, S., Luo, J., Yao, G., & **, F. (2015). A novel approach for 1, 2-propylene glycol production from biomass-derived lactic acid. Process Biochemistry, 50, 793–798.

    Article  CAS  Google Scholar 

  • Xu, L., Huo, Z., Fu, J., & **, F. (2014). Highly efficient conversion of biomass-derived glycolide to ethylene glycol over CuO in water. Chemical Communications, 50, 6009–6012.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhibao Huo .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huo, Z. (2023). Chemoselective Synthesis of Propionic Acid from Biomass and Lactic Acid Over a Cobalt Catalyst in Aqueous Media. In: Diverse Hydrogen Sources for Biomass-derivatives Conversion. Springer, Singapore. https://doi.org/10.1007/978-981-99-1673-3_5

Download citation

Publish with us

Policies and ethics

Navigation