Nanotechnology for Bioenergy and Biofuel Production

  • Chapter
  • First Online:
Nanomaterials for Sustainable Development

Abstract

Biofuel is one of the best alternatives for petroleum-derived fuels globally, especially in the current scenario, where fossil fuels are day-by-day depleting. Biofuels are viable source of renewable energy in contrast to the finite nature, geopolitical instability, and deleterious global effects of fossil fuel energy. The use of nanotechnology in the field of biofuel and bioenergy is emerging as a novel and efficient way to produce and enhance the eco-friendly production of renewable biofuels. Several methods have recently been proposed and adopted to prepare metallic, magnetic, and metal oxide nanoparticles (NPs) for enhancing biofuel production yield. The unique properties of NPs, such as easy design, high chemical stability, greater surface area-to-volume ratio, catalytic activity, and reusability, have made them as effective biofuel additives. In this context, current chapter explores the use of nanomaterials for biofuel production application. In addition to this, various types of nanocatalysts and their comprehensive applications in the production of biofuels followed significance have also been briefed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 123.04
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 171.19
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rai M, Da Silva SS (eds) (2017) Nanotechnology for bioenergy and biofuel production. Springer International Publishing, Berlin/Heidelberg, Germany

    Google Scholar 

  2. Kamla M, Sushil A, Karmal M (2021) Nanotechnology: a sustainable solution for bioenergy and biofuel production. J Nanosci Nanotechnol 21(6):3481–3494

    Article  Google Scholar 

  3. Ramsurn H, Gupta RB (2013) Nanotechnology in solar and biofuels. ACS Sustain Chem Eng 1(7):779–797

    Article  Google Scholar 

  4. Verma ML (ed) (2020) Nanobiotechnology for sustainable bioenergy and biofuel production. CRC Press, Taylor & Francis Group

    Google Scholar 

  5. Gardy JL. Biodiesel production from used cooking oil using novel solid acid catalysts. Doctoral dissertation, University of Leeds

    Google Scholar 

  6. Liu X, He H, Wang Y, Zhu S, Piao X (2008) Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. Fuel 87(2):216–221

    Article  Google Scholar 

  7. Verziu M, Cojocaru B, Hu J, Richards R, Ciuculescu C, Filip P, Parvulescu VI (2008) Sunflower and rapeseed oil transesterification to biodiesel over different nanocrystalline MgO catalysts. Green Chem 10(4):373–381

    Article  Google Scholar 

  8. Liu X, He H, Wang Y, Zhu S (2007) Transesterification of soybean oil to biodiesel using SrO as a solid base catalyst. Catal Commun 8(7):1107–1111

    Article  Google Scholar 

  9. Hussein AK (2015) Applications of nanotechnology in renewable energies—a comprehensive overview and understanding. Renew Sustain Energy Rev 42:460–476

    Article  Google Scholar 

  10. Moniz EJ (2010) Nanotechnology for the energy challenge. John Wiley & Sons

    Google Scholar 

  11. Zhang XL, Yan S, Tyagi RD, Surampalli RY, Zhang TC (2010) Application of nanotechnology and nanomaterials for bioenergy and biofuel production. In: Bioenergy and biofuel from biowastes and biomass, pp 478–496

    Google Scholar 

  12. Chen H (2014) Chemical composition and structure of natural lignocellulose. In: Biotechnology of lignocellulose. Springer, Dordrecht, pp 25–71

    Google Scholar 

  13. Richards E (2013) Careers in biofuels. US Bureau of Labor Statistics

    Google Scholar 

  14. Singh V, Yadav VK, Mishra V (2020) Nanotechnology: an application in biofuel production. In: Nanomaterials in biofuels research. Springer, Singapore, pp 143–160

    Google Scholar 

  15. Demirbaş A (1998) Yields of oil products from thermochemical biomass conversion processes. Energy Convers Manage 39(7):685–690

    Article  Google Scholar 

  16. Gomez LD, Steele-King CG, McQueen-Mason SJ (2008) Sustainable liquid biofuels from biomass: the writing’s on the walls. New Phytol 178(3):473–485

    Article  Google Scholar 

  17. Lü J, Sheahan C, Fu P (2011) Metabolic engineering of algae for fourth generation biofuels production. Energy Environ Sci 4(7):2451–2466

    Article  Google Scholar 

  18. Trindade SC (2011) Nanotech biofuels and fuel additives. In: Biofuel’s engineering process technology. InTech, Rijeka, Croatia, pp 103–114

    Google Scholar 

  19. Zhang X, Shen L, Zhang L (2013) Life cycle assessment of the air emissions during building construction process: a case study in Hong Kong. Renew Sustain Energy Rev 17:160–169

    Article  Google Scholar 

  20. Sadhik Basha J, Anand RB (2011) Role of nanoadditive blended biodiesel emulsion fuel on the working characteristics of a diesel engine. J Renew Sustain Energy 3(2):023106

    Article  Google Scholar 

  21. Ganzoury MA, Allam NK (2015) Impact of nanotechnology on biogas production: a mini-review. Renew Sustain Energy Rev 50:1392–1404

    Article  Google Scholar 

  22. Guan Q, Li Y, Chen Y, Shi Y, Gu J, Li B, Miao R, Chen Q, Ning P (2017) Sulfonated multi-walled carbon nanotubes for biodiesel production through triglycerides transesterification. RSC Adv 7(12):7250–7258

    Article  Google Scholar 

  23. Stellwagen DR, van der Klis F, van Es DS, de Jong KP, Bitter JH (2013) Functionalized carbon nanofibers as solid-acid catalysts for transesterification. Chemsuschem 6(9):1668–1672

    Article  Google Scholar 

  24. Mahto TK, Jain R, Chandra S, Roy D, Mahto V, Sahu SK (2016) Single step synthesis of sulfonic group bearing graphene oxide: a promising carbo-nano material for biodiesel production. J Environ Chem Eng 4(3):2933–2940

    Article  Google Scholar 

  25. Dehkhoda AM, West AH, Ellis N (2010) Biochar based solid acid catalyst for biodiesel production. Appl Catal A 382(2):197–204

    Article  Google Scholar 

  26. Talebian-Kiakalaieh A, Amin NA, Mazaheri H (2013) A review on novel processes of biodiesel production from waste cooking oil. Appl Energy 104:683–710

    Article  Google Scholar 

  27. Shalaby EA (2013) Biofuel: sources, extraction and determination. In: Liquid, gaseous and solid biofuels-conversion techniques. InTech, Croatia, pp 451–478

    Google Scholar 

  28. Reddy CR, Fetterly BM, Verkade JG (2007) Polymer-supported azidoproazaphosphatrane: a recyclable catalyst for the room-temperature transformation of triglycerides to biodiesel. Energy Fuels 21(4):2466–2472

    Article  Google Scholar 

  29. Liu Z, Lv F, Zheng H, Zhang C, Wei F, **ng XH (2012) Enhanced hydrogen production in a UASB reactor by retaining microbial consortium onto carbon nanotubes (CNTs). Int J Hyd Energy 37(14):10619–10626

    Google Scholar 

  30. Saifuddin N, Raziah AZ, Junizah AR (2013) Carbon nanotubes: a review on structure and their interaction with proteins. J Chem

    Google Scholar 

  31. Ando Y, Zhao X, Shimoyama H, Sakai G, Kaneto K (1999) Physical properties of multiwalled carbon nanotubes. Int J Inorg Mater 1(1):77–82

    Article  Google Scholar 

  32. Andreoni W (ed) (2000) The physics of fullerene-based and fullerene-related materials. Springer Science & Business Media

    Google Scholar 

  33. Suzuki S, Mori S (2017) Carbon nanotube-like materials in the exhaust from a diesel engine using gas oil/ethanol mixing fuel with catalysts and sulfur. J Air Waste Manag Assoc 67(8):873–880

    Article  Google Scholar 

  34. Suzuki S, Mori S (2017) Flame synthesis of carbon nanotube through a diesel engine using normal dodecane/ethanol mixing fuel as a feedstock. J Chem Eng Jpn 50(3):178–185

    Article  Google Scholar 

  35. Maruyama S, Kojima R, Miyauchi Y, Chiashi S, Kohno M (2002) Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol. Chem Phys Lett 360(3–4):229–234

    Article  Google Scholar 

  36. Hou B, **ang R, Inoue T, Einarsson E, Chiashi S, Shiomi J, Miyoshi A, Maruyama S (2011) Decomposition of ethanol and dimethyl ether during chemical vapor deposition synthesis of single-walled carbon nanotubes. Jpn J Appl Phys 50(6R):065101

    Article  Google Scholar 

  37. Hall B, Zhuo C, Levendis YA, Richter H (2011) Influence of the fuel structure on the flame synthesis of carbon nanomaterials. Carbon 49(11):3412–3423

    Article  Google Scholar 

  38. Boshagh F, Rostami K, Moazami N (2019) Biohydrogen production by immobilized Enterobacteraerogenes on functionalized multi-walled carbon nanotube. Int J Hydrogen Energy 44(28):14395–14405

    Article  Google Scholar 

  39. Rai M, dos Santos JC, Soler MF, Marcelino PR, Brumano LP, Ingle AP, Gaikwad S, Gade A, da Silva SS (2016) Strategic role of nanotechnology for production of bioethanol and biodiesel. Nanotechnol Rev 5(2):231–250

    Article  Google Scholar 

  40. Jeon Y, Chi WS, Hwang J, Kim JH, Shul YG (2019) Core-shell nanostructured heteropoly acid-functionalized metal-organic frameworks: bifunctional heterogeneous catalyst for efficient biodiesel production. Appl Catal B 242:51–59

    Article  Google Scholar 

  41. Changmai B, Wheatley AE, Rano R, Halder G, Selvaraj M, Rashid U, Rokhum SL (2013) A magnetically separable acid-functionalized nanocatalyst for biodiesel production. Fuel 305:121576

    Google Scholar 

  42. Baig RN, Varma RS (2013) Magnetically retrievable catalysts for organic synthesis. Chem Commun 49(8):752–770

    Google Scholar 

  43. Nicolás P, Lassalle V, Ferreira ML (2014) Development of a magnetic biocatalyst useful for the synthesis of ethyloleate. Bioprocess Biosyst Eng 37(3):585–591

    Article  Google Scholar 

  44. Tran DT, Chen CL, Chang JS (2012) Immobilization of Burkholderia sp. lipase on a ferric silica nanocomposite for biodiesel production. J Biotechnol 158(3):112–119

    Google Scholar 

  45. Verma ML, Chaudhary R, Tsuzuki T, Barrow CJ, Puri M (2013) Immobilization of β-glucosidase on a magnetic nanoparticle improves thermostability: application in cellobiose hydrolysis. Biores Technol 135:2–6

    Article  Google Scholar 

  46. Puri M, Barrow CJ, Verma ML (2013) Enzyme immobilization on nanomaterials for biofuel production. Trends Biotechnol 31(4):215–216

    Article  Google Scholar 

  47. Alftrén J, Hobley TJ (2013) Covalent immobilization of β-glucosidase on magnetic particles for lignocellulose hydrolysis. Appl Biochem Biotechnol 169(7):2076–2087

    Article  Google Scholar 

  48. Huang PJ, Chang KL, Hsieh JF, Chen ST (2015) Catalysis of rice straw hydrolysis by the combination of immobilized cellulase from Aspergillus niger on β-cyclodextrin-Fe3O4 nanoparticles and ionic liquid. BioMed Res Int 2015

    Google Scholar 

  49. Martínez SA, Melchor-Martínez EM, Hernández JA, Parra-Saldívar R, Iqbal HM (2022) Magnetic nanomaterials assisted nanobiocatalysis systems and their applications in biofuels production. Fuel 312:122927

    Article  Google Scholar 

  50. Kim YK, Lee H (2016) Use of magnetic nanoparticles to enhance bioethanol production in syngas fermentation. Biores Technol 204:139–144

    Article  Google Scholar 

  51. Teo SH, Islam A, Chan ES, Choong ST, Alharthi NH, Taufiq-Yap YH, Awual MR (2019) Efficient biodiesel production from Jatropha curcus using CaSO4/Fe2O3–SiO2 core-shell magnetic nanoparticles. J Clean Prod 208:816–826

    Article  Google Scholar 

  52. Dantas J, Leal E, Mapossa AB, Cornejo DR, Costa AC (2017) Magnetic nanocatalysts of Ni0.5Zn0.5Fe2O4 doped with Cu and performance evaluation in transesterification reaction for biodiesel production. Fuel 191:463–471

    Google Scholar 

  53. Duraiarasan S, Razack SA, Manickam A, Munusamy A, Syed MB, Ali MY, Ahmed GM, Mohiuddin MS (2016) Direct conversion of lipids from marine microalga C. salina to biodiesel with immobilised enzymes using magnetic nanoparticle. J Environ Chem Eng 4(1):1393–1398

    Google Scholar 

  54. Lu AH, Salabas EE, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46(8):1222–1244

    Article  Google Scholar 

  55. Govan J, Gun’ko YK (2014) Recent advances in the application of magnetic nanoparticles as a support for homogeneous catalysts. Nanomaterials 4(2):222–241

    Google Scholar 

  56. Engliman NS, Abdul PM, Wu SY, Jahim JM. Influence of iron (II) oxide nanoparticle on biohydrogen production in thermophilic mixed fermentation. Int J Hydr Energy 42(45):27482–27493

    Google Scholar 

  57. Malik SN, Pugalenthi V, Vaidya AN, Ghosh PC, Mudliar SN (2014) Kinetics of nano-catalysed dark fermentative hydrogen production from distillery wastewater. Energy Procedia. 54:417–430

    Article  Google Scholar 

  58. Reddy K, Nasr M, Kumari S, Kumar S, Gupta SK, Enitan AM, Bux F (2017) Biohydrogen production from sugarcane bagasse hydrolysate: effects of pH, S/X, Fe2+, and magnetite nanoparticles. Environ Sci Pollut Res 24(9):8790–8804

    Article  Google Scholar 

  59. Wang T, Zhang D, Dai L, Chen Y, Dai X (2016) Effects of metal nanoparticles on methane production from waste-activated sludge and microorganism community shift in anaerobic granular sludge. Sci Rep 6(1):1

    Google Scholar 

  60. Vincent KA, Li X, Blanford CF, Belsey NA, Weiner JH, Armstrong FA (2007) Enzymatic catalysis on conducting graphite particles. Nat Chem Biol 3(12):761–762

    Article  Google Scholar 

  61. Kwon CH, Ko Y, Shin D, Kwon M, Park J, Bae WK, Lee SW, Cho J (2018) High-power hybrid biofuel cells using layer-by-layer assembled glucose oxidase-coated metallic cotton fibers. Nat Commun 9(1):1–1

    Article  Google Scholar 

  62. Neto SA, Almeida TS, Palma LM, Minteer SD, De Andrade AR (2014) Hybrid nanocatalysts containing enzymes and metallic nanoparticles for ethanol/O2 biofuel cell. J Power Sources 259:25–32

    Article  Google Scholar 

  63. Zhang Y, Shen J (2007) Enhancement effect of gold nanoparticles on biohydrogen production from artificial wastewater. Int J Hydrogen Energy 32(1):17–23

    Article  Google Scholar 

  64. Yigezu ZD, Muthukumar K (2014) Catalytic cracking of vegetable oil with metal oxides for biofuel production. Energy Convers Manage 84:326–333

    Article  Google Scholar 

  65. Hashmi S, Gohar S, Mahmood T, Nawaz U, Farooqi H (2016) Biodiesel production by using CaO–Al2O3 Nano catalyst. Int J Eng Res Sci 2(3):43–49

    Google Scholar 

  66. Guldhe A, Singh P, Ansari FA, Singh B, Bux F (2017) Biodiesel synthesis from microalgal lipids using tungstated zirconia as a heterogeneous acid catalyst and its comparison with homogeneous acid and enzyme catalysts. Fuel 187:180–188

    Article  Google Scholar 

  67. Nizah MR, Taufiq-Yap YH, Rashid U, Teo SH, Nur ZS, Islam A (2014) Production of biodiesel from non-edible Jatropha curcas oil via transesterification using Bi2O3–La2O3 catalyst. Energy Convers Manage 88:1257–1262

    Article  Google Scholar 

  68. Firdaus MY, Brask J, Nielsen PM, Guo Z, Fedosov S (2016) Kinetic model of biodiesel production catalyzed by free liquid lipase from Thermomyces lanuginosus. J Mol Catal B Enzym 133:55–64

    Article  Google Scholar 

  69. Zhang J, Song B, Peng W, Feng Y, Xu B (2010) CTAB-assisted hydrothermal synthesis of nano-sized tetragonal zirconium dioxide. Mater Chem Phys 123(2–3):606–609

    Article  Google Scholar 

  70. Rahman NJ, Ramli A, Jumbri K, Uemura Y (2019) Tailoring the surface area and the acid–base properties of ZrO2 for biodiesel production from Nannochloropsis sp. Sci Rep 9(1):1–2

    Article  Google Scholar 

  71. Pan H, Liu Y, **a Q, Zhang H, Guo L, Li H, Jiang L, Yang S (2020) Synergetic combination of a mesoporous polymeric acid and a base enables highly efficient heterogeneous catalytic one-pot conversion of crude Jatropha oil into biodiesel. Green Chem 22(5):1698–1709

    Article  Google Scholar 

  72. Pan H, Li H, Zhang H, Wang A, Yang S (2019) Acidic ionic liquid-functionalized mesoporous melamine-formaldehyde polymer as heterogeneous catalyst for biodiesel production. Fuel 239:886–895

    Article  Google Scholar 

  73. Dai YM, Lin JH, Huang ST, Lee WL, Hsieh CH, Chen FH, Chen CC (2020) Natural soil and lithium carbonate as economical solid-base catalysts for biodiesel production. Energy Rep 6:2743–2750

    Article  Google Scholar 

  74. Mishra VK, Goswami R (2018) A review of production, properties and advantages of biodiesel. Biofuels 9(2):273–289

    Article  Google Scholar 

  75. Sarno M, Iuliano M (2019) Biodiesel production from waste cooking oil. Green Process Synth 8(1):828–836

    Article  Google Scholar 

  76. Zuliani A, Ivars F, Luque R (2018) Advances in nanocatalyst design for biofuel production. ChemCatChem 10(9):1968–1981

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amruta P. Kanakdande .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kanakdande, A.P., Mane, R.S. (2023). Nanotechnology for Bioenergy and Biofuel Production. In: Mane, R.S., Sharma, R.P., Kanakdande, A.P. (eds) Nanomaterials for Sustainable Development. Springer, Singapore. https://doi.org/10.1007/978-981-99-1635-1_10

Download citation

Publish with us

Policies and ethics

Navigation