Regular Rotating Black Holes

  • Chapter
  • First Online:
Regular Black Holes

Part of the book series: Springer Series in Astrophysics and Cosmology ((SSAC))

Abstract

The collapse of astrophysically significant bodies generates, under suitable conditions, black holes. Since one expects the generator of the black hole to be a rotating body, the black hole will also rotate. The existence of inner singularities in classical solutions for rotating black holes and the fact that General Relativity is incompatible with Quantum Mechanics lead us to seek for alternative regular models for rotating black holes. The interest in singularity-free rotating black holes has grown significantly in recent years, as shown by the increase in the number of published papers devoted to it. Undoubtedly, the latest observational developments (LIGO-Virgo-KAGRA collaboration, the Event Horizon Telescope or, in the near future, the LISA project) and the possibility to probe our theoretical predictions have greatly contributed to awaken the interest. This text discusses the general characteristics of regular rotating black holes. These include the conditions needed to guarantee the absence of singularities and the consequences that such conditions entail for the violation of the energy conditions in black hole models. It is argued that regular rotating black holes do not require an extension through their inner disk, contrary to classical rotating black holes. In this way, the problems with negative-mass interpretations and causality violations appearing in classical solutions could be avoided. It has been included a discussion on the maximal extension and the usual global causal structure expected for these spacetimes. The different methods for obtaining regular rotating black holes are treated, including the use of the generalized Newman-Janis algorithm as an alibi to derive regular rotating black holes from regular spherically symmetric static ones. The text also provides an introduction to the thermodynamics and phenomenology of rotating black holes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 192.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In case the RBH is also charged, then it is described by using the Kerr-Newman solution in which m should be replaced by \(m-e^2/(2r)\), where e is the total charge of the RBH.

  2. 2.

    Here the invariants are written in tensorial form. See [85] for their spinorial form.

  3. 3.

    Of course, regularity can also be obtained by violating other assumptions in the singularity theorems.

  4. 4.

    Note also that this approach has been criticized in [41].

  5. 5.

    Usually the metric is required to be at least \(C^2\) [49]. However, many authors consider this degree of differentiability too restrictive.

  6. 6.

    Let us comment that, even if not mathematically needed, the possibility of extending through \(r=0\) with negative values of r exists, in principle, for all regular RBH.

  7. 7.

    By means of these kind of coordinate changes -advanced and retarded- the maximal extension is obtained by following the procedure in [22].

  8. 8.

    The reader should be aware that the offspring has different geometrical properties and also different physical properties. For example, the seed metric can be a perfect fluid, but the offspring will never be another perfect fluid [32].

  9. 9.

    Note that in the literature on the NJ algorithm there is some confusion between the advanced and the retarded (\(dw=dt-dr/f(r)\)) null coordinates. The first is suitable for describing black holes, the second for white holes.

References

  1. A. Abdujabbarov , M. Amir, B. Ahmedov, S.G. Ghosh, Phys. Rev. D 93, 104004 (2016). (ar**v:1604.03809 [gr-qc])

  2. F. Ahmed, D.V. Singh, S.G. Ghosh, Gen. Rel. Grav. 54, 21 (2022). (ar**v:2002.12031 [gr-qc])

  3. K. Akiyama et al., [Event Horizon Telescope] Astrophys. J. Lett. 875 L1, L2, L3, L4, L5, L6 (2019)

    Google Scholar 

  4. K. Akiyama et al., [Event Horizon Telescope] Astrophys. J. Lett. 930 L12, L13, L14, L15, L16, L17 (2022)

    Google Scholar 

  5. M.S. Ali, S.G. Ghosh, Phys. Rev. D 98, 084025 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  6. M.S. Ali, S.G. Ghosh, Phys. Rev. D 99, 024015 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  7. M. Amir, S.G. Ghosh, Phys. Rev. D 94, 024054 (2016). (ar**v:1603.06382 [gr-qc])

  8. M. Amir, M.S. Ali, S.D. Maharaj, Class. Quantum Grav. 37, 145014 (2020)

    Article  ADS  Google Scholar 

  9. A. Ashtekar, M. Bojowald, Class. Quantum Grav. 22, 3349 (2005)

    Article  ADS  Google Scholar 

  10. E. Ayon-Beato, A. Garcia, Phys. Lett. B 493, 149 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  11. E. Ayon-Beato, A. Garcia, Gen. Rel. Grav. 37, 635 (2005)

    Article  ADS  Google Scholar 

  12. M. Azreg-Aïnou, Phys. Rev. D 90, 064041 (2014). (ar**v:1405.2569 [gr-qc])

  13. L. Balart, E.C. Vagenas, Phys. Rev. D 90, 124045 (2014)

    Article  ADS  Google Scholar 

  14. C. Bambi, L. Modesto, Phys. Lett. B 721, 329 (2013). (ar**v:1302.6075 [gr-qc])

  15. C. Bambi, L. Modesto, L. Rachwal, JCAP 05, 003 (2017). (ar**v:1611.00865 [gr-qc])

  16. E. Barausse et al., Gen. Rel. Grav. 52, 81 (2020)

    Article  ADS  Google Scholar 

  17. J.M. Bardeen, in Conference Proceedings of GR5, p. 174 (1968)

    Google Scholar 

  18. J.M. Bardeen, B. Carter, S.W. Hawking, Commun. Math. Phys. 31, 161 (1973)

    Article  ADS  Google Scholar 

  19. J.D. Bekenstein, Lett. Nuovo Cimento 4, 737 (1972)

    Article  ADS  Google Scholar 

  20. F.W. Bernard, J. Math. Phys. 30, 1301 (1989)

    Article  MathSciNet  Google Scholar 

  21. A. Bonanno, M. Reuter, Phys. Rev. D 62, 043008 (2000). (ar**v:0002196 [hep-th])

  22. R.H. Boyer, R.W. Lindquist, J. Math. Phys. 8, 265 (1967)

    Article  ADS  Google Scholar 

  23. S. Brahma, C.-Y. Chen, D.-H. Yeom, Phys. Rev. Lett. 126, 181301 (2021). (ar**v:2012.08785 [gr-qc])

  24. A. Burinskii, Czech. J. Phys. 52, C471 (2002)

    Article  Google Scholar 

  25. F. Caravelli, L. Modesto, Class. Quant. Grav. 27, 245022 (2010). (ar**v:1006.0232 [gr-qc])

  26. R. Carballo-Rubio, F. Di Filippo, S. Liberati, C. Pacilio, M. Visser, JHEP 07, 023 (2018). (ar**v:1805.02675 [gr-qc])

  27. R. Carballo-Rubio, F. Di Filippo, S. Liberati, C. Pacilio, M. Visser (2021). ar**v: 2101.05006 [gr-qc]

  28. R. Carballo-Rubio, F. Di Filippo, S. Liberati, C. Pacilio, M. Visser (2022). ar**v: 2205.13556 [gr-qc]

  29. B. Carter, Phys. Rev. 174, 1559 (1968)

    Article  ADS  Google Scholar 

  30. T. De Lorenzo, A. Giusti, S. Speziale, Gen. Rel. Grav. 48, 31 (2016). Corrigendum at Gen. Rel. and Grav. 48 111

    Google Scholar 

  31. J.F. Donoghue, Phys. Rev. Lett. 72, 2996 (1994). Phys. Rev. D 50, 3874 (1994)

    Google Scholar 

  32. S.P. Drake, P. Szekeres, Gen. Rel. Grav. 32, 445 (2000)

    Article  ADS  Google Scholar 

  33. G. Dvali, C. Gomez (2011). ar**v:1112.3359 [hep-th]

  34. I. Dymnikova, Class. Quantum Grav. 21, 4417 (2004). (ar**v:0407072 [gr-qc])

  35. I. Dymnikova, E. Galaktionov, Class. Quant. Grav. 32, 165015 (2015). (ar**v:1510.01353 [gr-qc])

  36. A. Eichhorn, A. Held, JCAP 05, 073 (2021). (ar**v:2103.13163 [gr-qc])

  37. A. Eichhorn, A. Held, Eur. Phys. J. C 81, 933 (2021). (ar**v:2103.07473 [gr-qc])

  38. E. Franzin, S. Liberati, J. Mazza, V. Vellucci (2022). ar**v:2207.08864 [gr-qc]

  39. V.P. Frolov, JHEP 5, 049 (2014). (ar**v:1402.5446 [hep-th])

  40. R. Gambini, J. Pullin, Proc. Sci. 14, 038 (2015). (ar**v:1408.3050 [gr-qc])

  41. H. García-Compeán, V.S. Manko, Prog. Theor. Exp. Phys. 2015, 043E02 (2015). (ar**v:1205.5848 [gr-qc])

  42. S.G. Ghosh, Eur. Phys. J. C 75, 532 (2015). (ar**v:1408.5668 [gr-qc])

  43. G.W. Gibbons, M.S. Volkov, Phys. Rev. D 96, 024053 (2017). (arxiv:1705.07787 [hep-th])

  44. H. Gomes, G. Herczeg, Class. Quant. Grav. 31, 175014 (2014). (ar**v:1310.6095 [gr-qc])

  45. J.B. Griffths, J. Podolský Exact Space-Times in Einstein’s General Relativity (Cambridge University Press, Cambridge, 2009)

    Google Scholar 

  46. M. Gürses, F. Gürsey, Phys. Rev. D 11, 967 (1975)

    Article  ADS  Google Scholar 

  47. H.M. Haggard, C. Rovelli, Phys. Rev. D 92, 104020 (2015). (ar**v:1407.0989 [gr-qc])

  48. V. Hamity, Phys. Lett. A 56, 77 (1976)

    Article  ADS  Google Scholar 

  49. S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space-Time (Cambridge University Press, Cambridge, 1973)

    Book  MATH  Google Scholar 

  50. S.A. Hayward, Phys. Rev. Lett. 96, 031103 (2006)

    Article  ADS  Google Scholar 

  51. A. Held, R. Gold, A. Eichhorn, JCAP 1906, 029 (2019). (ar**v:1904.07133 [gr-qc])

  52. S.H. Hendi, S.N. Sajadi, M. Khademi, Phys. Rev. D 103, 064016 (2021). (ar**v:2006.11575 [gr-qc])

  53. W. Israel, Nuovo Cimento B 44, 1 (1967). Nuovo Cimento B 48, 463

    Google Scholar 

  54. W. Israel, Phys. Rev. D 2, 641 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  55. V. Kalogera et al. ar**v:2111.06990 [gr-qc]

  56. R. Kumar, A. Kumar, S.G. Ghosh, Astrophys. J 896, 89 (2020)

    Article  ADS  Google Scholar 

  57. F. Lamy, E. Gourgoulhon, T. Paumard, F.H. Sand Vincent, Class. Quantum Grav. 35, 115009 (2018). (ar**v:1802.01635 [gr-qc])

  58. Z. Li, C. Bambi, Phys. Rev. D 87, 124022 (2013). (ar**v:1304.6592 [gr-qc])

  59. Z. Li, C. Bambi, JCAP 1401, 041 (2014). (ar**v:1309.1606 [gr-qc])

  60. H. Maeda (2021). (ar**v:2107.04791 [gr-qc])

  61. S.D. Mathur, Fortsch. Phys. 53, 793 (2005). (ar**v:0502050 [hep-th])

  62. J. Mazza, E. Franzin, S. Liberati, JCAP 04, 082 (2021)

    Article  ADS  Google Scholar 

  63. C.W. Misner, D.H. Sharp, Phys. Rev. 136, B571 (1964)

    Article  ADS  Google Scholar 

  64. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (Freeman and Company, New York, WH, 1970)

    Google Scholar 

  65. E.T. Newman, A.I. Janis, J. Math. Phys. 6, 915 (1965)

    Article  ADS  Google Scholar 

  66. P. Pani, V. Cardoso, Phys. Rev. D 79, 084031 (2009). (ar**v:0902.1569 [gr-qc])

  67. E. Poisson, W. Israel, Phys. Rev. Lett. 63, 1663 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  68. E. Poisson, W. Israel, Phys. Rev. D 41, 1796 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  69. M. Reuter, E. Tuiran, Phys. Rev. D 83, 044041 (2011)

    Article  ADS  Google Scholar 

  70. See, for example, https://en.wikipedia.org/wiki/List_of_gravitational_wave_observations for a list of gravitational wave observations

  71. A. Simpson, M. Visser, JCAP 03, 011 (2022). (ar**v:2111.12329 [gr-qc])

  72. A. Smailagic, E. Spallucci, Phys. Lett. B 688, 82 (2010). (arxiv:1003.3918 [hep-th])

  73. Z. Stuchlík, J. Schee, Eur. Phys, J. 79, 44 (2019)

    Google Scholar 

  74. S. Takeuchi, Class. Quant. Grav. 33, 225016 (2016). (ar**v:1603.04159 [gr-qc])

  75. R. Torres, Class. Quantum Grav. 30, 065014 (2013)

    Article  ADS  Google Scholar 

  76. R. Torres, Phys. Lett. B 724, 338 (2013). (ar**v:1309.1083 [gr-qc])

  77. R. Torres, Phys. Lett. B 733, 21 (2014)

    Article  ADS  Google Scholar 

  78. R. Torres, Gen. Rel. Grav. 49, 74 (2017). (ar**v:1702.03567 [gr-qc])

  79. R. Torres, F. Fayos, Gen. Rel. Grav. 49, 2 (2017). (ar**v:1611.03654 [gr-qc])

  80. B. Toshmatov, B. Ahmedov, A. Abdujabbarov , Z. Stuchlik, Phys. Rev. D 89, 104017 (2014). (ar**v:1404.6443 [gr-qc])

  81. N. Tsukamoto, Phys. Rev. D 97, 064021 (2018). (ar**v:1708.07427 [gr-qc])

  82. R.M. Wald, General Relativity (University of Chicago Press, Chicago, 1984)

    Google Scholar 

  83. S. Weinberg, Gravitation and Cosmology: Principles and applications of the general theory of relativity (Wiley, New York, 1972)

    Google Scholar 

  84. K. Yagi, N. Yunes, T. Tanaka, Phys. Rev. D 86, 044037 (2012). (ar**v:1206.6130 [gr-qc]

  85. E. Zakhary, C.B.G. McIntosh, Gen. Rel. Grav. 29, 539 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón Torres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Torres, R. (2023). Regular Rotating Black Holes. In: Bambi, C. (eds) Regular Black Holes. Springer Series in Astrophysics and Cosmology. Springer, Singapore. https://doi.org/10.1007/978-981-99-1596-5_11

Download citation

Publish with us

Policies and ethics

Navigation