Aluminum as a CNS and Immune System Toxin Across the Life Span

  • Chapter
  • First Online:
Neurotoxicity of Aluminum
  • 173 Accesses

Abstract

In the following, I will consider the impact of aluminum on two major systems, the central nervous system (CNS) and the immune system, across the life span. The article will discuss the presence of aluminum in the biosphere, its history, and the sources of the element. These include food, water cosmetics, some vaccines, and a range of other sources. I will also consider aluminum’s unique chemistry. Finally, in humans and animals, I will consider how aluminum may impact the CNS at various levels of organization and how it may be involved in various neurological disease states across the life span. These disorders include those of infancy and childhood, such as autism spectrum disorder (ASD), as well as those in adulthood, such as in Alzheimer’s disease. The bidirectional nature of CNS–immune system interactions will be considered and put into the context of neurological disorders that have an autoimmune component. I will argue that the exposure to humans and animals to this element needs to be reduced if we are to diminish some CNS and immune system disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 192.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Louis GMB, Smarr MM, Patel CJ (2017) The exposome research paradigm: an opportunity to understand the environmental basis for human health and disease. Curr Environ Health Rep 4(1):89–98

    Article  Google Scholar 

  2. Cho I, Blaser MJ (2012) The human microbiome: at the interface of health and disease. Nat Rev Genet 13(4):260–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shaw CA, Tomljenovic L (2013) Aluminum in the central nervous system (CNS): toxicity in humans and animals, vaccine adjuvants, and autoimmunity. Immunol Res 56(2–3):304–316

    Article  CAS  PubMed  Google Scholar 

  4. Shaw CA (2017) Neural dynamics of neurological disease. John Wiley and Sons, Boston

    Book  Google Scholar 

  5. Shaw CA, Seneff S, Kette et al (2014) Aluminum-induced entropy in biological systems: implications for neurological disease. J Toxicol 2014(491316):1–27

    Article  Google Scholar 

  6. Tomljenovic L (2011) Aluminum and Alzheimer’s disease: after a century of controversy, is there a plausible link? J Alzheimers Dis 23(4):567–598

    Article  CAS  PubMed  Google Scholar 

  7. Gies WJ (1911) Some objections to the use of alum baking-powder. JAMA LVII(10):816–821

    Article  Google Scholar 

  8. Orfila MJB (1814) Traité des Poisons: tirés des regnes minéral, végétal et animal, ou Toxicologie générale, considerée sous les rapports de la physiologie, de la pathologie et de la médicine légale: chez Crochard, libraire, rue de l’École-de-Médecine, no. 3

    Google Scholar 

  9. Döllken V (1897) Über die Wirkung des Aluminiums mit besonderer Berucksichtigung der durch das Aluminium verursachten Lasionen im Centralnervensystem. Arch Exp Pathol Pharmacol 179:98–120

    Article  Google Scholar 

  10. Lidsky TI (2014) Is the aluminum hypothesis dead? J Occup Environ Med 56(5 Suppl):S73–S79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McLachlan DR, Kruck TP, Lukiw WJ, Krishnan SS (1991) Would decreased aluminum ingestion reduce the incidence of Alzheimer’s disease? CMAJ 145(7):793–804

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Exley C (2001) Aluminum and Alzheimer’s disease. J Alzheimers Dis. 3(6):551–552

    Article  PubMed  Google Scholar 

  13. Exley C (2003) A biogeochemical cycle for aluminium? J Inorg Biochem 97(1):1–7

    Article  CAS  PubMed  Google Scholar 

  14. Exley C (2009) Darwin, natural selection and the biological essentiality of aluminium and silicon. Trends Biochem Sci 34(12):589–593

    Article  CAS  PubMed  Google Scholar 

  15. Children’s Hospital of Philadelphia. (2013). Vaccine education center. http://vec.chop.edu/service/vaccine-education-center. Last Accessed 23 Sep 2016

    Google Scholar 

  16. Exley C (2009) Aluminium and medicine. Nova Biomedical Books, New York, pp 45–68

    Google Scholar 

  17. Poot-Poot W, Teresa Hernandez-Sotomayor SM (2011) Aluminum stress and its role in the phospholipid signaling pathway in plants and possible biotechnological applications. IUBMB Life 63(10):864–872

    Article  CAS  PubMed  Google Scholar 

  18. Seneff S, Davidson R, Liu J (2012) Empirical data confirm autism symptoms related to aluminum and acetaminophen exposure. Entropy 14(11):2227–2253

    Article  CAS  Google Scholar 

  19. Tomljenovic L, Shaw CA (2011) Do aluminum vaccine adjuvants contribute to the rising prevalence of autism? J Inorg Biochem 105(11):1489–1499

    Article  CAS  PubMed  Google Scholar 

  20. Tomljenovic L, Shaw CA (2012) Mechanisms of aluminum adjuvant toxicity and autoimmunity in pediatric populations. Lupus 21(2):223–230

    Article  CAS  PubMed  Google Scholar 

  21. Saiyed SM, Yokel RA (2005) Aluminium content of some foods and food products in the USA, with aluminium food additives. Food Addit Contam 22(3):234–244

    Article  CAS  PubMed  Google Scholar 

  22. Yokel RA, McNamara PJ (2001) Aluminium toxicokinetics: an updated mini review. Pharmacol Toxicol 88(4):159–167

    Article  CAS  PubMed  Google Scholar 

  23. Strunecká A, Strunecky O, Patocka J (2002) Fluoride plus aluminum: useful tools in laboratory investigations, but messengers of false information. Physiol Res 51(6):557–564

    PubMed  Google Scholar 

  24. Goodson A, Robin H, Summerfield W, Cooper I (2004) Migration of bisphenol a from can coatings—effects of damage, storage conditions and heating. Food Addit Contam 21(10):1015–1026

    Article  CAS  PubMed  Google Scholar 

  25. Keele University.(2015). Keele meetings. http://www.keele.ac.uk/aluminium/keelemeetings/2015. Accessed 19 May 2015

    Google Scholar 

  26. Varner JA, Jensen KF, Horvath W, Isaacson RL (1998) Chronic administration of aluminum-fluoride or sodium-fluoride to rats in drinking water: alterations in neuronal and cerebrovascular integrity. Brain Res 784(1–2):284–298

    Article  CAS  PubMed  Google Scholar 

  27. Nurchi V, Crisponi G, Bertolasi V, Faa G, Remelli M (2012) Aluminium-dependent human diseases and chelating properties of aluminium chelators for biomedical applications. In: Linert W, Kozlowski H (eds) Metal ions in neurological systems. Springer, Vienna, pp 103–123

    Chapter  Google Scholar 

  28. Elinder CG, Ahrengart L, Lidums V, Pettersson E, Sjögren B (1991) Evidence of aluminium accumulation in aluminium welders. Br J Ind Med 48(11):735–738

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gitelman HJ, Alderman FR, Kurs-Lasky M, Rockette HE (1995) Serum and urinary aluminum levels of workers in the aluminum industry. Ann Occup Hyg 39(2):181–191

    Article  CAS  PubMed  Google Scholar 

  30. Ljunggren KG, Lidums V, Sjögren B (1991) Blood and urine concentrations of aluminium among workers exposed to aluminium flake powders. Br J Ind Med 48(2):106–109

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Krewski D, Yokel RA, Nieboer E, Borchelt D, Cohen J, Harry J et al (2007) Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide. J Toxicol Environ Health B 10(sup1):1–269

    Article  CAS  Google Scholar 

  32. Riihimäki V, Aitio A (2012) Occupational exposure to aluminum and its biomonitoring in perspective. Crit Rev Toxicol 42(10):827–853

    Article  PubMed  Google Scholar 

  33. Martell J (2017) The McIntyre powder project: a retrospective study of the health effects of respirable aluminium dust in a cohort of Ontario miners. The 12th Keele meeting on aluminum. Abstract

    Google Scholar 

  34. Minshall C, Nadal J, Exley C (2014) Aluminium in human sweat. J Trace Elem Med Biol 28(1):87–88

    Article  CAS  PubMed  Google Scholar 

  35. Andrási E, Páli N, Molnár Z, Kösel S (2005) Brain aluminum, magnesium and phosphorus contents of control and Alzheimer-diseased patients. J Alzheimers Dis 7(4):273–284

    Article  PubMed  Google Scholar 

  36. Bush VJ, Moyer TP, Batts KP, Parisi JE (1995) Essential and toxic element concentrations in fresh and formalin-fixed human autopsy tissues. Clin Chem 41(2):284–294

    Article  CAS  PubMed  Google Scholar 

  37. Exley C, Esiri MM (2006) Severe cerebral congophilic angiopathy coincident with increased brain aluminium in a resident of Camelford, Cornwall, UK. J Neurol Neurosurg Psychiatry 77(7):877–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bolognin S, Messori L, Drago D, Gabbiani C, Cendron L, Zatta P (2011) Aluminum, copper, iron and zinc differentially alter amyloid-Aβ1–42 aggregation and toxicity. Int J Biochem Cell Biol 43(6):877–885

    Article  CAS  PubMed  Google Scholar 

  39. Khan Z, Combadiere C, Authier F-J, Itier V, Lux F, Exley C et al (2013) Slow CCL2-dependent translocation of biopersistent particles from muscle to brain. BMC Med 11(1):99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Aremu DA, Meshitsuka S (2005) Accumulation of aluminum by primary cultured astrocytes from aluminum amino acid complex and its apoptotic effect. Brain Res 1031(2):284–296

    Article  CAS  PubMed  Google Scholar 

  41. Lévesque L, Mizzen CA, McLachlan DR, Fraser PE (2000) Ligand specific effects on aluminum incorporation and toxicity in neurons and astrocytes. Brain Res 877(2):191–202

    Article  PubMed  Google Scholar 

  42. Reusche E, Koch V, Friedrich HJ, Nünninghoff D, Stein P, Rob PM (1996) Correlation of drug-related aluminum intake and dialysis treatment with deposition of argyrophilic aluminum-containing inclusions in CNS and in organ systems of patients with dialysis-associated encephalopathy. Clin Neuropathol 15(6):342–347

    CAS  PubMed  Google Scholar 

  43. Brunner R, Jensen-Jarolim E, Pali-Schöll I (2010) The ABC of clinical and experimental adjuvants — a brief overview. Immunol Lett 128(1):29–35

    Article  CAS  PubMed  Google Scholar 

  44. Hotopf M, David A, Hull L, Ismail K, Unwin C, Wessely S (2000) Role of vaccinations as risk factors for ill health in veterans of the Gulf war: cross sectional study. BMJ 320(7246):1363–1367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Luján L, Pérez M, Salazar E, Álvarez N, Gimeno M, Pinczowski P et al (2013) Autoimmune/autoinflammatory syndrome induced by adjuvants (ASIA syndrome) in commercial sheep. Immunol Res 56(2–3):317–324

    Article  PubMed  Google Scholar 

  46. Sakamoto T, Ogasawara Y, Ishii K, Takahashi H, Tanabe S (2004) Accumulation of aluminum in ferritin isolated from rat brain. Neurosci Lett 366(3):264–267

    Article  CAS  PubMed  Google Scholar 

  47. Yokel RA (2006) Blood-brain barrier flux of aluminum, manganese, iron and other metals suspected to contribute to metal-induced neurodegeneration. J Alzheimers Dis 10(2–3):223–253

    Article  PubMed  Google Scholar 

  48. Gherardi R, Coquet M, Cherin P, Belec L, Moretto P, Dreyfus P et al (2001) Macrophagic myofasciitis lesions assess long-term persistence of vaccine-derived aluminium hydroxide in muscle. Brain 124(9):1821–1831

    Article  CAS  PubMed  Google Scholar 

  49. Gherardi R, Authier F (2012) Macrophagic myofasciitis: characterization and pathophysiology. Lupus 21(2):184–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rigolet M, Aouizerate J, Couette M, Ragunathan-Thangarajah N, Aoun-Sebaiti M, Gherardi RK et al (2014) Clinical features in patients with long-lasting macrophagic myofasciitis. Front Neurol 5:230

    Article  PubMed  PubMed Central  Google Scholar 

  51. Israeli E, Agmon-Levin N, Blank M, Shoenfeld Y (2009) Adjuvants and autoimmunity. Lupus 18(13):1217–1225

    Article  CAS  PubMed  Google Scholar 

  52. Shoenfeld Y, Agmon-Levin N (2011) ‘ASIA’ – autoimmune/inflammatory syndrome induced by adjuvants. J Autoimmun 36(1):4–8

    Article  CAS  PubMed  Google Scholar 

  53. Petrik MS, Wong MC, Tabata RC, Garry RF, Shaw CA (2007) Aluminum adjuvant linked to Gulf war illness induces motor neuron death in mice. NeuroMolecular Med 9(1):83–100

    Article  CAS  PubMed  Google Scholar 

  54. Shaw CA, Petrik MS (2009) Aluminum hydroxide injections lead to motor deficits and motor neuron degeneration. J Inorg Biochem 103(11):1555–1562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Walton JR (2006) Aluminum in hippocampal neurons from humans with Alzheimer’s disease. Neurotoxicology 27(3):385–394

    Article  CAS  PubMed  Google Scholar 

  56. Walton JR (2007) A longitudinal study of rats chronically exposed to aluminum at human dietary levels. Neurosci Lett 412(1):29–33

    Article  CAS  PubMed  Google Scholar 

  57. Walton JR (2009) Brain lesions comprised of aluminum-rich cells that lack microtubules may be associated with the cognitive deficit of Alzheimer’s disease. Neurotoxicology 30(6):1059–1069

    Article  CAS  PubMed  Google Scholar 

  58. Walton JR (2009) Functional impairment in aged rats chronically exposed to human range dietary aluminum equivalents. Neurotoxicology 30(2):182–193

    Article  CAS  PubMed  Google Scholar 

  59. Walton JR, Wang MX (2009) APP expression, distribution and accumulation are altered by aluminum in a rodent model for Alzheimer’s disease. J Inorg Biochem 103(11):1548–1554

    Article  CAS  PubMed  Google Scholar 

  60. Shaw CA, Li Y, Tomljenovic L (2013) Administration of aluminum to neonatal mice in vaccine in vaccine-relevant amounts is associated with adverse long term neurological outcomes. J Inorg Chem 128:237–244

    CAS  Google Scholar 

  61. Crepeaux G, Eidi H, David M-O, Tzavara E, Giros B, Exley C, Curmi PA, Shaw CA, Gherardi RK, Cadusseau J (2015) Highly delayed systemic translocation of aluminium-based adjuvant in CD1 mice following intramuscular injections. J Inorg Biochem 152:199–205

    Article  CAS  PubMed  Google Scholar 

  62. Sheth S, Li Y, Shaw CA (2015) Effects of aluminum adjuvants on social behavior in mice. The 11th Keele meeting on aluminum. Dent Abstr

    Google Scholar 

  63. Sheth SKS, Li Y, Shaw CA (2018) Is exposure to aluminium adjuvants associated with social impairments in mice? A pilot study. J Inorg Biochem 181:96–103

    Google Scholar 

  64. Crépeaux G, Eidi H, David M-O, Baba-Amer Y, Tzavara E, Giros B et al (2016) Non-linear dose-response of aluminium hydroxide adjuvant particles: selective low dose neurotoxicity. Toxicology 375:48–57

    Article  PubMed  Google Scholar 

  65. He BP, Strong MJ (2000) Motor neuronal death in sporadic amyotrophic lateral sclerosis (ALS) is not apoptotic. A comparative study of ALS and chronic aluminium chloride neurotoxicity in New Zealand white rabbits. Neuropathol Appl Neurobiol 26(2):150–160

    Article  CAS  PubMed  Google Scholar 

  66. Perl DP, Brody A (1980) Alzheimer’s disease: x-ray spectrometric evidence of aluminum accumulation in neurofibrillary tangle-bearing neurons. Science 208(4441):297–299

    Article  CAS  PubMed  Google Scholar 

  67. Perl DP (1985) Relationship of aluminum to Alzheimer’s disease. Environ Health Perspect 63:149–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Perl DP, Good PF (1991) Aluminum, Alzheimer’s disease, and the olfactory system. Ann N Y Acad Sci 640:8–13

    Article  CAS  PubMed  Google Scholar 

  69. Strong MJ, Garruto RM (1991) Chronic aluminum-induced motor neuron degeneration: clinical, neuropathological and molecular biological aspects. Can J Neurol Sci 18(3 Suppl):428–431

    Article  CAS  PubMed  Google Scholar 

  70. Wakayama I, Nerurkar VR, Strong MJ, Garruto RM (1996) Comparative study of chronic aluminum-induced neurofilamentous aggregates with intracytoplasmic inclusions of amyotrophic lateral sclerosis. Acta Neuropathol 92(6):545–554

    Article  CAS  PubMed  Google Scholar 

  71. Scheperjans F, Aho V, Pereira PAB, Koskinen K, Paulin L, Pekkonen E et al (2014) Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord 30(3):350–358

    Article  PubMed  Google Scholar 

  72. Karlik SJ, Eichhorn GL, Lewis PN, Crapper DR (1980) Interaction of aluminum species with deoxyribonucleic acid. Biochemistry 19(26):5991–5998

    Article  CAS  PubMed  Google Scholar 

  73. Nunomura A, Tamaoki T, Motohashi N, Nakamura M, McKeel DW Jr, Tabaton M, Lee HG, Smith MA, Perry G, Zhu X (2012) The earliest stage of cognitive impairment in transition from normal aging to Alzheimer disease is marked by prominent RNA oxidation in vulnerable neurons. J Neuropathol Exp Neurol 71(3):233–241

    Article  CAS  PubMed  Google Scholar 

  74. Strong MJ (2010) The evidence for altered RNA metabolism in amyotrophic lateral sclerosis (ALS). J Neurol Sci 288(1–2):1–12

    Article  CAS  PubMed  Google Scholar 

  75. Lukiw WJ, Alexandrov PN, Zhao Y, Hill JM, Bhattacharjee S (2012) Spreading of Alzheimer’s disease inflammatory signaling through soluble micro-RNA. Neuroreport 23(10):621–626

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Janeway CA, Travers P, Walport M, Capra JD (1999) Immunobiology: the immune system in health and disease, vol 157. Current Biology Publications, New York

    Google Scholar 

  77. Walsh JG, Muruve DA, Power C (2014) Inflammasome in the CNS. Nat Rev Neurosci 15(2):84–97

    Article  CAS  PubMed  Google Scholar 

  78. Duncan JA, Gao X, Huang MT-H et al (2009) Neisseria gonorrhoeae activates the proteinase cathepsin B to mediate the signaling activities of the NLRP3 and ASC-containing inflammasome. J Immunol 182(10):6460–6469

    Article  CAS  PubMed  Google Scholar 

  79. Ichinohe T, Lee HK, Ogura Y et al (2009) Inflammasome recognition of influenza virus is essential for adaptive immune responses. J Exp Med 206(1):79–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T et al (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-[beta]. Nat Immunol 9(8):857–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mariathasan S, Weiss DS, Newton K, McBride J, O’Rourke K, Roose-Girma M et al (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440(7081):228–232

    Article  CAS  PubMed  Google Scholar 

  82. Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440(7081):237–241

    Article  CAS  PubMed  Google Scholar 

  83. Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL et al (2008) Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 9(8):847–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tschopp J, Martinon F, Burns K (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417–426

    Article  PubMed  Google Scholar 

  85. Petrilli V, Papin S, Dostert C, Mayor A, Martinon F, Tschopp J (2007) Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ 14(9):1583–1589

    Article  CAS  PubMed  Google Scholar 

  86. Chu J, Thomas LM, Watkins SC, Franchi L, Núñez G, Salter RD (2009) Cholesterol-dependent cytolysins induce rapid release of mature IL-1β from murine macrophages in a NLRP3 inflammasome and cathepsin B-dependent manner. J Leukoc Biol 86(5):1227–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hoegen T, Tremel N, Klein M, Angele B, Wagner H, Kirschning C et al (2011) The NLRP3 inflammasome contributes to brain injury in pneumococcal meningitis and is activated through ATP-dependent lysosomal cathepsin B release. J Immunol 187(10):5440–5451

    Article  CAS  PubMed  Google Scholar 

  88. Eisenbarth SC, Colegio OR, O’Connor W, Sutterwala FS, Flavell RA (2008) Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453(7198):1122–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Li H, Nookala S, Re F (2007) Aluminum hydroxide adjuvants activate caspase-1 and induce IL-1β and IL-18 release. J Immunol 178(8):5271–5276

    Article  CAS  PubMed  Google Scholar 

  90. Li H, Willingham SB, Ting JP-Y, Re F (2008) Cutting edge: inflammasome activation by alum and alum’s adjuvant effect are mediated by NLRP3. J Immunol 181(1):17–21

    Article  CAS  PubMed  Google Scholar 

  91. Buller KM, Day TA (2002) Systemic administration of interleukin-1β activates select populations of central amygdala afferents. J Comp Neurol 452(3):288–296

    Article  PubMed  Google Scholar 

  92. Xu Y, Day TA, Buller KM (1999) The central amygdala modulates hypothalamic–pituitary–adrenal axis responses to systemic interleukin-1β administration. Neuroscience 94(1):175–183

    Article  CAS  PubMed  Google Scholar 

  93. Herbert MR, Ziegler DA, Deutsch CK, O’Brien LM, Lange N, Bakardjiev A et al (2003) Dissociations of cerebral cortex, subcortical and cerebral white matter volumes in autistic boys. Brain 126(5):1182–1192

    Article  CAS  PubMed  Google Scholar 

  94. Munson J, Dawson G, Abbott R, Faja S, Webb SJ, Friedman SD et al (2006) Amygdalar volume and behavioral development in autism. Arch Gen Psychiatry 63(6):686–693

    Article  PubMed  Google Scholar 

  95. Hamza TH, Zabetian CP, Tenesa A, Laederach A, Montimurro J, Yearout D et al (2010) Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson’s disease. Nat Genet 42(9):781–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Porges SW (2005) The vagus: a mediator of behavioral and physiologic features associated with autism. In: Bauman ML, Kempe TL (eds) The neurobiology of autism, vol 65. Johns Hopkins University Press

    Google Scholar 

  97. Davis EP, Granger DA (2009) Developmental differences in infant salivary alpha-amylase and cortisol responses to stress. Psychoneuroendocrinology 34(6):795–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gunnar MR (1992) Reactivity of the hypothalamic-pituitary-adrenocortical system to stressors in normal infants and children. Pediatrics 90(3):491–497

    CAS  PubMed  Google Scholar 

  99. Gunnar MR, Talge NM, Herrera A (2009) Stressor paradigms in developmental studies: what does and does not work to produce mean increases in salivary cortisol. Psychoneuroendocrinology 34(7):953–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Jansen LM, Gispen-de Wied CC, Van der Gaag RJ, ten Hove F, Willemsen-Swinkels SW, Harteveld E, Van Engeland H (2000) Unresponsiveness to psychosocial stress in a subgroup of autistic-like children, multiple complex developmental disorder. Psychoneuroendocrinology 25(8):753–764

    Article  CAS  PubMed  Google Scholar 

  101. Elenkov IJ, Chrousos GP (1999) Stress hormones, Th1/Th2 patterns, pro/anti-inflammatory cytokines and susceptibility to disease. Trends Endocrinol Metab 10(9):359–368

    Article  CAS  PubMed  Google Scholar 

  102. Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES (2000) The sympathetic nerve - an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev 52(4):595–638

    CAS  PubMed  Google Scholar 

  103. Eskandari F, Webster JI, Sternberg EM (2003) Neural immune pathways and their connection to inflammatory diseases. Arthritis Res Ther 5(6):251–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Nadeau S, Rivest S (2003) Glucocorticoids play a fundamental role in protecting the brain during innate immune response. J Neurosci 23(13):5536–5544

    Article  PubMed  PubMed Central  Google Scholar 

  105. Wilder RL (1995) Neuroendocrine-immune system interactions and autoimmunity. Annu Rev Immunol 13(1):307–338

    Article  CAS  PubMed  Google Scholar 

  106. Agmon-Levin N, Paz Z, Israeli E, Shoenfeld Y (2009) Vaccines and autoimmunity. Nat Rev Rheumatol 5(11):648–652

    Article  PubMed  Google Scholar 

  107. Tsumiyama K, Miyazaki Y, Shiozawa S (2009) Self-organized criticality theory of autoimmunity. PLoS One 4(12):e8382

    Article  PubMed  PubMed Central  Google Scholar 

  108. Barrientos RM, Frank MG, Watkins LR, Maier SF (2012) Aging-related changes in neuroimmune-endocrine function: implications for hippocampal-dependent cognition. Horm Behav 62(3):219–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Frank MG, Miguel ZD, Watkins LR, Maier SF (2009) Prior exposure to glucocorticoids sensitizes the neuroinflammatory and peripheral inflammatory responses to E. coli lipopolysaccharide. Brain Behav Immun 24(1):19–30

    Article  PubMed  Google Scholar 

  110. Griesmaier E, Keller M (2012) Glutamate receptors — prenatal insults, long-term consequences. Pharmacol Biochem Behav 100(4):835–840

    Article  CAS  PubMed  Google Scholar 

  111. Johnson JO (1995) Neurotransmitters and vulnerability of the develo** brain. Brain Dev 17(5):301–306

    Article  Google Scholar 

  112. Blaylock RL, Strunecka A (2009) Immune-glutamatergic dysfunction as a central mechanism of the autism spectrum disorders. Curr Med Chem 16(2):157–170

    Article  CAS  PubMed  Google Scholar 

  113. Shimmura C, Suda S, Tsuchiya KJ, Hashimoto K, Ohno K, Matsuzaki H et al (2011) Alteration of plasma glutamate and glutamine levels in children with high-functioning autism. PLoS One 6(10):e25340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Shinohe A, Hashimoto K, Nakamura K, Tsujii M, Iwata Y, Tsuchiya KJ et al (2006) Increased serum levels of glutamate in adult patients with autism. Prog Neuro-Psychopharmacol Biol Psychiatry 30(8):1472–1477

    Article  CAS  Google Scholar 

  115. Purcell AE, Jeon OH, Zimmerman AW, Blue ME, Pevsner J (2001) Postmortem brain abnormalities of the glutamate neurotransmitter system in autism. Neurology 57(9):1618–1628

    Article  CAS  PubMed  Google Scholar 

  116. Pickard L, Noël J, Henley JM, Collingridge GL, Molnar E (2000) Developmental changes in synaptic AMPA and NMDA receptor distribution and AMPA receptor subunit composition in living hippocampal neurons. J Neurosci 20(21):7922–7931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Deployment Health Working Group Research Subcommittee (2001) Annual report to congress: federally sponsored research on Gulf War veterans’ illnesses for 1999

    Google Scholar 

  118. Pardo CA, Vargas DL, Zimmerman AW (2005) Immunity, neuroglia and neuroinflammation in autism. Int Rev Psychiatry 17(6):485–495

    Article  PubMed  Google Scholar 

  119. Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA (2005) Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 57(1):67–81

    Article  CAS  PubMed  Google Scholar 

  120. Dietert RR, Dietert JM (2008) Potential for early-life immune insult including developmental immunotoxicity in autism and autism spectrum disorders: focus on critical windows of immune vulnerability. J Toxicol Environ Health B 11(8):660–680

    Article  CAS  Google Scholar 

  121. Hawkes D, Benhamu J, Sidwell T, Miles R, Dunlop RA (2015) Revisiting adverse reactions to vaccines: a critical appraisal of autoimmune syndrome induced by adjuvants (ASIA). J Autoimmun 59(0):77–84

    Article  PubMed  Google Scholar 

  122. Exley C, Siesjö P, Eriksson H (2010) The immunobiology of aluminium adjuvants: how do they really work? Trend Immunol 31(3):103–109

    Article  CAS  Google Scholar 

  123. Zafrir Y, Agmon-Levin N, Paz Z, Shilton T, Shoenfeld Y (2012) Autoimmunity following hepatitis B vaccine as part of the spectrum of ‘autoimmune (auto-inflammatory) syndrome induced by adjuvants’ (ASIA): analysis of 93 cases. Lupus 21(2):146–152

    Article  CAS  PubMed  Google Scholar 

  124. Couette M, Boisse M-F, Maison P, Brugieres P, Cesaro P, Chevalier X et al (2009) Long-term persistence of vaccine-derived aluminum hydroxide is associated with chronic cognitive dysfunction. J Inorg Biochem 103(11):1571–1578

    Article  CAS  PubMed  Google Scholar 

  125. Li X- b, Zheng H, Zhang Z-r, Li M, Huang Z-y, Schluesener HJ et al (2009) Glia activation induced by peripheral administration of aluminum oxide nanoparticles in rat brains. Nanomedicine 5(4):473–479

    Article  CAS  PubMed  Google Scholar 

  126. Passeri E, Villa C, Couette M, Itti E, Brugieres P, Cesaro P et al (2011) Long-term follow-up of cognitive dysfunction in patients with aluminum hydroxide-induced macrophagic myofasciitis (MMF). J Inorg Biochem 105(11):1457–1463

    Article  CAS  PubMed  Google Scholar 

  127. Meroni PL (2011) Autoimmune or auto-inflammatory syndrome induced by adjuvants (ASIA): old truths and a new syndrome? J Autoimmun 36(1):1–3

    Article  CAS  PubMed  Google Scholar 

  128. Cohen AD, Shoenfeld Y (1996) Vaccine-induced autoimmunity. J Autoimmun 9(6):699–703

    Article  CAS  PubMed  Google Scholar 

  129. Sienkiewicz D, Kułak W, Okurowska-Zawada B, Paszko-Patej G (2012) Neurologic adverse events following vaccination. Prog Health Sci 2(1):129–141

    Google Scholar 

  130. Boissé L, Mouihate A, Ellis S, Pittman QJ (2004) Long-term alterations in neuroimmune responses after neonatal exposure to lipopolysaccharide. J Neurosci 24(21):4928–4934

    Article  PubMed  PubMed Central  Google Scholar 

  131. Galic MA, Spencer SJ, Mouihate A, Pittman QJ (2009) Postnatal programming of the innate immune response. Integr Comp Biol 49(3):237–245

    Article  CAS  PubMed  Google Scholar 

  132. Besedovsky HO, Rey A, d. (2007) Physiology of psychoneuroimmunology: a personal view. Brain Behav Immun 21(1):34–44

    Article  CAS  PubMed  Google Scholar 

  133. Besedovsky HO, Rey A, d. (2008) Brain cytokines as integrators of the immune–neuroendocrine network. Handb Neurochem Mol Neurobiol: Neuroimmunol 20:3–17

    Article  Google Scholar 

  134. Conti B, Tabarean I, Andrei C, Bartfai T (2004) Cytokines and fever. Front Biosci 9:1433–1449

    Article  CAS  PubMed  Google Scholar 

  135. Dinarello CA (1999) Cytokines as endogenous pyrogens. J Infect Dis 179(Supplement 2):S294–S304

    Article  CAS  PubMed  Google Scholar 

  136. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS, Harris TH, Kipnis J (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523(7560):337–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM et al (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21(3):383–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Thanks are due to Drs. Housam Eidi for constructive comments on a draft of this article. Michael Kuo provided help with references and formatting. Funding was provided by the Luther Allyn Shourds Dean estate. Some of the sections in this article were excerpted from my book Neural Dynamics of Neurological Disease (John Wiley & Sons, 2017).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shaw, C.A. (2023). Aluminum as a CNS and Immune System Toxin Across the Life Span. In: Niu, Q. (eds) Neurotoxicity of Aluminum. Springer, Singapore. https://doi.org/10.1007/978-981-99-1592-7_4

Download citation

Publish with us

Policies and ethics

Navigation