Seismic Landslide Hazard Assessment of Mandi Town, Himachal Pradesh

  • Conference paper
  • First Online:
Proceedings of 17th Symposium on Earthquake Engineering (Vol. 4) (SEE 2022)

Abstract

This study performs slope displacement-based probabilistic seismic landslide hazard assessment for Mandi town. Here, the slope angles of the concerned region are obtained from the digital elevation map (DEM), and the material properties are obtained from lithological information and literature. The critical acceleration of the slopes is estimated by combining the obtained slope angle and material properties. In this work, hazard assessment is performed considering the arid and fully saturated condition of the soil mass of the slopes. The PGA values are estimated for 100, 475, and 2475 years return periods by performing probabilistic seismic hazard analysis of the study region. Further, the PGA values and the slope displacement prediction equation are used to estimate Newmark's sliding displacement. Finally, the hazard map in terms of the probability of slope displacement (SD) value exceeding the threshold values of 5 cm is presented. The developed seismic landslide hazard map highlights the areas that may experience co-seismic landslides in the future. The probability of occurrence of co-seismic landslides gets as high as 93.4% for saturated soil and 86.3% for arid soil for a return period of 2475 years. This hazard map will help local authorities and planners with tools for assessing the seismic landslide risk associated with land use and taking necessary measures to minimize the damages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ALOS PALSAR—ASF: Retrieved July 28, 2022, from https://asf.alaska.edu/data-sets/sar-data-sets/alos-palsar/ (n.d.)

  2. Ambraseys, N.N., Menu, J.M.: Earthquake-induced ground displacements. Earthquake Eng. Struct. Dynam. 16(7), 985–1006 (1988). https://doi.org/10.1002/eqe.4290160704

    Article  Google Scholar 

  3. Ambraseys, N., Bilham, R.: A note on the Kangra Ms = 7.8 earthquake of 4 April 1905. Curr. Sci 79(1), 45–50 (2000)

    Google Scholar 

  4. Bilham, R.: Himalayan earthquakes: a review of historical seismicity and early 21st century slip potential. Geol. Soc. 483(1), 423–482 (2019). https://doi.org/10.1144/SP483.16

    Article  Google Scholar 

  5. Chand, D.K., Sharma, D.D.: Spatial pattern of landslide vulnerability at block level in district Mandi of Himachal Pradesh: a GIS based approach. J. Clim. Change Water 2(1), 17 (2017)

    MathSciNet  Google Scholar 

  6. Choubey, V.M., Mukherjee, P.K., Bajwa, B.S., Walia, V.: Geological and tectonic influence on water–soil–radon relationship in Mandi-Manali area, Himachal Himalaya. Environ. Geol. 52(6), 1163–1171 (2007). https://doi.org/10.1007/s00254-006-0553-1

    Article  Google Scholar 

  7. Dhanya, J., Raghukanth, S.T.G.: Ground motion prediction model using artificial neural network. Pure Appl. Geophys. 175(3), 1035–1064 (2018). https://doi.org/10.1007/s00024-017-1751-3

    Article  Google Scholar 

  8. Gade, M., Nayek, P.S., Dhanya, J.: A new neural network–based prediction model for Newmark’s sliding displacements. Bull. Eng. Geol. Env. 80(1), 385–397 (2021). https://doi.org/10.1007/s10064-020-01923-7

    Article  Google Scholar 

  9. Ghosh, A., Sarkar, S., Kanungo, D., Jain, S., Kumar, D., Kalura, A., Kumar, S.: Slope instability and risk assessment of an unstable slope at Agrakhal, Uttarakhand. In: Proceedings of the India Geotechnical Conference, Guntur, India (2009)

    Google Scholar 

  10. Google Earth: Retrieved July 28, 2022, from https://earth.google.com/web/ (n.d.)

  11. Gupta, H.K., Gahalaut, V.K.: Can an earthquake of Mw ∼9 occur in the Himalayan region? Geol. Soc. 412(1), 43–53 (2015). https://doi.org/10.1144/SP412.10

    Article  Google Scholar 

  12. Gupta, H.K., Sabnis, K.A.: Develo** an earthquake resilient society in the vicinity of Himalaya. J. Geol. Soc. India 97(12), 1593–1602 (2021). https://doi.org/10.1007/s12594-021-1918-5

    Article  Google Scholar 

  13. Jibson, R.W.: Regression models for estimating coseismic landslide displacement. Eng. Geol. 91(2–4), 209–218 (2007). https://doi.org/10.1016/j.enggeo.2007.01.013

    Article  Google Scholar 

  14. Jibson, R.W.: Predicting earthquake-induced landslide displacements using Newmark’s sliding block analysis. Transp. Res. Record 1411 (1993). https://trid.trb.org/view/384547

  15. Keefer, D.K.: Investigating landslides caused by earthquakes—a historical review 38 (2002). https://doi.org/10.1023/A:1021274710840

  16. Kumar, A., Sharma, R.K., Bansal, V.K.: GIS-based landslide hazard map** along NH-3 in mountainous terrain of Himachal Pradesh, India using weighted overlay analysis. In: Singh, H., Garg, P., Kaur, I. (eds.) Proceedings of the 1st International Conference on Sustainable Waste Management Through Design, vol. 21 (pp. 59–67). Springer International Publishing (2019). https://doi.org/10.1007/978-3-030-02707-0_9

  17. Mali, N., Shukla, D.P., Kala, V.U.: Identifying geotechnical characteristics for landslide hazard indication: a case study in Mandi, Himachal Pradesh, India. Arab. J. Geosci. 15(2), 144 (2022). https://doi.org/10.1007/s12517-022-09475-8

    Article  Google Scholar 

  18. Martha, T.R., Roy, P., Mazumdar, R., Govindharaj, K.B., Kumar, K.V.: Spatial characteristics of landslides triggered by the 2015 Mw 7.8 (Gorkha) and Mw 7.3 (Dolakha) earthquakes in Nepal. Landslides 14(2), 697–704 (2017). https://doi.org/10.1007/s10346-016-0763-x

  19. Middlemiss, C.S.: The Kangra Earthquake of 4th April, 1905, vol. 38. Geological survey of India (1910)

    Google Scholar 

  20. Muthuganeisan, P., Raghukanth, S.T.G.: Site-specific probabilistic seismic hazard map of Himachal Pradesh, India Part II. Hazard estimation. Acta Geophys. 64(4), 853–884 (2016)

    Article  Google Scholar 

  21. Muthuganeisan, P., Raghukanth, S.T.G.: Site-specific probabilistic seismic hazard map of Himachal Pradesh, India. Part I. Site-specific ground motion relations. Acta Geophysica 64(2), 336–361 (2016a)

    Google Scholar 

  22. Nayek, P.S., Gade, M.: Seismic landslide hazard assessment of central seismic gap region of Himalaya for a Mw 8.5 scenario event. Acta Geophysica 69(3), 747–759 (2021). https://doi.org/10.1007/s11600-021-00572-y

  23. Newmark, N.M.: Effects of earthquakes on dams and embankments. Géotechnique 15(2), 139–160 (1965). https://doi.org/10.1680/geot.1965.15.2.139

    Article  Google Scholar 

  24. Oldham, R.D.: Report of the Great Earthquake of 12th June, 1897. Office of the Geological Survey (1899)

    Google Scholar 

  25. PH and HP State Unit, Chandigarh: Report on preliminary assessment of the landslide, team of GSI office. https://employee.gsi.gov.in/cs/groups/public/documents/document/b3zp/mtyx/*edisp/dcport1gsigovi161798.pdf. Accessed 1 Nov 2017

  26. Parker, R.N., Densmore, A.L., Rosser, N.J., de Michele, M., Li, Y., Huang, R., Whadcoat, S., Petley, D.N.: Mass wasting triggered by the 2008 Wenchuan earthquake is greater than orogenic growth. Nat. Geosci. 4(7), 449–452 (2011). https://doi.org/10.1038/ngeo1154

    Article  Google Scholar 

  27. Refice, A., Capolongo, D.: Probabilistic modeling of uncertainties in earthquake-induced landslide hazard assessment. Comput. Geosci. 28(6), 735–749 (2002). https://doi.org/10.1016/S0098-3004(01)00104-2

    Article  Google Scholar 

  28. Rodriguez-Peces, M.J., Garcia-Mayordomo, J., Azanon, J.M., Jabaloy, A.: Regional hazard assessment of earthquake-triggered slope instabilities considering site effects and seismic scenarios in Lorca Basin (Spain). Environ. Eng. Geosci. 17(2), 183–196 (2011). https://doi.org/10.2113/gseegeosci.17.2.183

    Article  Google Scholar 

  29. Rollo, F., Rampello, S.: Probabilistic assessment of seismic-induced slope displacements: an application in Italy. Bull. Earthq. Eng. 19(11), 4261–4288 (2021). https://doi.org/10.1007/s10518-021-01138-5

    Article  Google Scholar 

  30. Sharma, P., Rawat, S., Gupta, A.K.: Study and remedy of Kotropi landslide in Himachal Pradesh, India. Ind. Geotechn. J. 49(6), 603–619 (2019). https://doi.org/10.1007/s40098-018-0343-1

    Article  Google Scholar 

  31. Singh, P., Ao, A., Thakur, S., Rana, S., Sharma, R., Krishnakanta Singh, A., Singhal, S.: Geology, Structural, Metamorphic and Mineralization Studies Along the Mandi-Kullu-Manali-Rohtang Section of Himachal Pradesh, NW-India (pp. 437–460) (2021).

    Google Scholar 

  32. Thakur, V.C., Jayangondaperumal, R., Joevivek, V.: Seismotectonics of central and NW Himalaya: plate boundary–wedge thrust earthquakes in thin- and thick-skinned tectonic framework. Geol. Soc. 481(1), 41–63 (2019). https://doi.org/10.1144/SP481.8

    Article  Google Scholar 

  33. Thakur, V.C., Sriram, V., Mundepi, A.K.: Seismotectonics of the great 1905 Kangra earthquake meizoseismal region in Kangra-Chamba, NW Himalaya. Tectonophysics 326(3–4), 289–298 (2000). https://doi.org/10.1016/S0040-1951(00)00126-8

    Article  Google Scholar 

Download references

Funding

This research is supported by Indian Institute of Remote Sensing (IIRS), ISRO, Government of India, under the grant no. IIRS/DO/DMSP-ASCB/2022/14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kothiala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kothiala, A., Nayek, P.S., Gade, M., Kala, U.V. (2023). Seismic Landslide Hazard Assessment of Mandi Town, Himachal Pradesh. In: Shrikhande, M., Agarwal, P., Kumar, P.C.A. (eds) Proceedings of 17th Symposium on Earthquake Engineering (Vol. 4). SEE 2022. Lecture Notes in Civil Engineering, vol 332. Springer, Singapore. https://doi.org/10.1007/978-981-99-1459-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1459-3_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1458-6

  • Online ISBN: 978-981-99-1459-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation