Improving Right Ventricle Contouring in Cardiac MR Images Using Integrated Approach for Small Datasets

  • Conference paper
  • First Online:
Artificial Intelligence and Sustainable Computing (ICSISCET 2022)

Abstract

Deep learning methods are showing progressive development in the medical imaging field. The accuracy of segmentation is improving challengingly with various deep techniques. Cardiac imaging is a very useful modality to evaluate functional analysis of the right ventricle. We propose an integrated model with the learning approach and Active Contour Method in this paper. We have customized UNet architecture on the basis of performance parameters such as dice metric and Haussdorff distance, training accuracy and testing accuracy etc. with MICCAI 2012 RVSC data. Six layer (6L)-UNet architecture was selected for learning the model. The predicted results of UNet are given to active contour model. These are considered as seed points to extract RV contours. Thus, our model replaces the semi-automatic active contour method into fully automatic segmentation method. It shows promising average results of dice metric and Haussdorff distance such as 0.9 and 2 mm. The active contour method is significant to remove undesired surroundingsĀ from extracted ROI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 234.33
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 299.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kot et al. (2020) U-net and active contour methods for brain tumour segmentation and visualization. IEEE, 978-1-7281-6926-2/20

    Google ScholarĀ 

  2. Petitjean C, Dacher J (2011) A review of segmentation methods in short axis cardiac MR images. Med Image Anal

    Google ScholarĀ 

  3. Punithakumar K, Noga M, Boulanger P (2013) Cardiac right ventricular segmentation via point correspondence. In: 35th Annual international conference, IEEE EMBS, pp 4010ā€“4013

    Google ScholarĀ 

  4. Zhang H et al (2010) 4-D cardiac MR image analysis: left and right ventricular morphology and function. IEEE Trans Med Imaging 29(2)

    Google ScholarĀ 

  5. Haddad et al (2008) Right ventricular function in cardiovascular disease part I: anatomy physiology aging and functional assessment of the right ventricle. Circulation 117(11):1436ā€“1448

    Google ScholarĀ 

  6. Guo et al. (2018) Local motion intensity clustering (LMIC) model for segmentation of right ventricle in cardiac MRI images. IEEE J Biomed Health Informatics 10:1109

    Google ScholarĀ 

  7. Rai et al (2020) Integrating deep learning with active contour models in remote sensing image segmentation. IEEE, 978-1-7281-6044-3/20

    Google ScholarĀ 

  8. Giannakidis A, Kamnitsas K (2016) Fast fully automatic segmentation of the severely abnormal human right ventricle from cardiovascular magnetic resonance images using a multi-scale 3D convolutional neural network. IEEE Comput Soc 42ā€“46

    Google ScholarĀ 

  9. Wang Z et al (2014) Direct estimation of cardiac biventricular volumes with an adapted Bayesian formulation. IEEE Trans Biomed Eng 61(4)

    Google ScholarĀ 

  10. Tarroni G et al (2013) Near-automated 3D segmentation of left and right ventricles on magnetic resonance images. In: 8th International symposium on image and signal processing and analysis, pp 522ā€“527

    Google ScholarĀ 

  11. Bai et al (2015) A bi-ventricular cardiac atlas built from 1000+ high resolution MR images of healthy subjects and an analysis of shape and motion. MedIA Image Anal 26(1):133ā€“145

    Google ScholarĀ 

  12. Bernard et al (2016) Standardized evaluation system for left ventricular segmentation algorithms in 3D echocardiography. IEEE Trans Med Imag 35(4):967ā€“977

    Google ScholarĀ 

  13. Peng et al (2016) A review of heart chamber segmentation for structural and functional analysis using cardiac magnetic resonance imaging. Magn Reson Mater Phy. Springer 29:155ā€“195

    Google ScholarĀ 

  14. Yang et al (2013) Right ventricle segmentation by temporal information constrained gradient vector flow. In: IEEE International conference on systems, man, and cybernetics, pp 2551ā€“2555

    Google ScholarĀ 

  15. Bai W et al (2013) A probabilistic patch-based label fusion model for multi-atlas segmentation with registration refinement: application to cardiac MR images. IEEE Trans Med Imaging 32(7)

    Google ScholarĀ 

  16. Avendi M, Kheradvar A, Jafarkhani H (2016) A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. MedIA Image Anal 30:108ā€“119

    ArticleĀ  Google ScholarĀ 

  17. Yang et al (2019) A deep learning segmentation approach in free-breathing real-time cardiac magnetic resonance imaging. Hindawi, BioMed Research International

    Google ScholarĀ 

  18. Zotti et al. (2018) Convolutional neural network with shape prior applied to cardiac MRI segmentation. IEEE J Biomed Health Informat. https://doi.org/10.1109/JBHI.2018.2865450

  19. Li et al (2018) Dilated-inception net: multi-scale feature aggregation for cardiac right ventricle segmentation. IEEE, pp 0018ā€“9294 (c)

    Google ScholarĀ 

  20. Chen et al (2020) Deep learning for cardiac image segmentation: a review. Front Cardiovascul Med. https://doi.org/10.3389/fcvm.2020.00025

  21. Zheng et al (2018) 3D consistent & robust segmentation of cardiac images by deep learning with spatial propagation. IEEE Trans Med Imaging. https://doi.org/10.1109/tmi.2018.2820742

  22. Zhou et al (2019) A review: deep learning for medical image segmentation using multi-modality fusion. 2590ā€“0056, Array 3ā€“4, 100004

    Google ScholarĀ 

  23. Bhan A, Goyal A, Ray V (2015) Fast fully automatic multiframe segmentation of left ventricle in cardiac MRI images using local adaptive K-means clustering and connected component labeling. In: 2nd International conference on signal processing and integrated networks

    Google ScholarĀ 

  24. Emad O, Yassine I, Fahmy A (2015) Automatic localization of the left ventricle in cardiac MRI images using deep learning. IEEE, pp 683ā€“686

    Google ScholarĀ 

  25. http://www.litislab.eu/rvsc

  26. http://laurentnajman.org/heart/H_data

  27. Petitjean et al (2015) Right ventricle segmentation from cardiac MRI: A collation study. Med Image Anal 19:187ā€“202

    Google ScholarĀ 

  28. Kermani et al (2020) NF-RCNN: heart localization and right ventricle wall motion abnormality detection in cardiac MRI. Elsevier. Physica Medica 70

    Google ScholarĀ 

  29. Kumar P, Noga M, Boulanger P (2013) Cardiac right ventricular segmentation via point correspondence. In: IEEE EMBS, 35th Annual international conference, pp 4010ā€“4013

    Google ScholarĀ 

  30. Cicek et al (2016) 3D U-net: learning dense volumetric segmentation from sparse annotation. In: Medical image computing and computer-assisted interventionā€”MICCAI 2016. Lecture notes in computer science, vol 9901. Springer, Cham. https://doi.org/10.1007/978-3-319-46723-8_49

  31. Zhu et al (2013) Automatic delineation of myocardial wall from CT images via shape segmentation and variational region growing. IEEE Trans Biomed Eng 60(10):2887ā€“2895

    Google ScholarĀ 

  32. Li et al (2011) A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans Image Process 20(7):2007ā€“2016

    Google ScholarĀ 

  33. Dou et al (2017) 3D deeply supervised network for automated segmentation of volumetric medical images. Elsevier, Medical Image Analysis, pp 40ā€“54

    Google ScholarĀ 

  34. Lianyu et al (2021) Unsupervised segmentation framework with active contour models for cine cardiac MRI. IEEE. https://doi.org/10.1109/ICIP42928.2021.9506229

  35. Kass M, Witkin A, Terzopoulo D (1988) Snakes: active contour model. Int J Comput Vision 321ā€“331

    Google ScholarĀ 

  36. Nosrati M, Hamarneh G (2016) Incorporating prior knowledge in medical image segmentation: a survey. arxiv.org/abs/1607.01092

    Google ScholarĀ 

  37. Avendi M, Kheradvar A, Jafarkhani H (2017) Automatic segmentation of the right ventricle from cardiac MRI using a learning-based approach. Magnet Resonance Med. Wiley, New York, NY, USA. https://doi.org/10.1002/mrm.26631

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjali Abhijit Yadav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abhijit Yadav, A., Ganorkar, S.R. (2023). Improving Right Ventricle Contouring in Cardiac MR Images Using Integrated Approach for Small Datasets. In: Pandit, M., Gaur, M.K., Kumar, S. (eds) Artificial Intelligence and Sustainable Computing. ICSISCET 2022. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-99-1431-9_19

Download citation

Publish with us

Policies and ethics

Navigation